
Real Analysis
By [REDCATED]

Introduction
Continuous at a: ∀ϵ > 0, ∃δ > 0 such that |x−a| < δ implies
|f(x)− f(a)| < ϵ.
Supremum: The lest upper bound. The unique real number
M such that:

• a ≤M for all a ∈ A and
• If M ′ is any real number such that a ≤M ′ for all a ∈ A,

then M ≤M ′

Convergence: an converges to a if for every ϵ > 0 there exists
an N ∈ N such that n ≥ N implies |an − a| < ϵ.
Cauchy Sequence: If for every ϵ > 0 there exists an N ∈ N
such that m,n ≥ N implies |am − an| < ϵ.
Note: Convergence says that the numbers are getting closer
and closer to a as n gets bigger, while Cauchy says that the
numbers are getting closer and closer to each other as n gets
bigger.
Bolzano-Weierstrass Theorem: Every sequence of real
numbers which is bounded must have a convergent subse-
quence.
Ratio Test: If a sequence satisfies limn→∞

|an+1|
|an| = r < 1,

then the series
∑

n an converges. If r > 1 then the series di-
verges, if r = 1 it is inconclusive.
Intermediate Value Theorem: For a continuous function
f : R → R, IVT says that for every value c strictly between
f(a) and f(b) there is some x ∈ [a, b] such that f(x) = c.
Extreme Value Theorem: For a continuous function f :
R → R, there are values c and d in [a, b] at which f takes on
the extreme values m and M where m ≤ f(x) ≤ M for all
x ∈ [a, b]. Meaning f(c) = m and f(d) =M .
Mean Value Theorem: For a function f : R → R, contin-
uous on a closed interval [a, b] and differentiable on an open
interval (a, b), then there exists a point c ∈ (a, b) such that
f ′(c) = f(b)−f(a)

b−a

Rolles Theorem: If f is continuous on a closed interval [a, b]
and differentiable on the open interval (a, b), and f(a) = f(b),
then there exists at least one c ∈ (a, b) such that f ′(c) = 0.
Chain Rule: Given a composition of differentiable functions
ϕ(x) = L ◦ E(x) we have ϕ′(x) = L′(E(x))E′(x)
Cauchy-Schwarz Inequality:

x1y1 + ...+ anbn ≤
√
a21 + ...+ a2n

√
b21 + ...+ b2n

Sequences and Series of Functions:
Pointwise Convergence: The sequence (fn) converges
pointwise to the function f , iff for every x in the domain we
have

lim
n→∞

fn(x) = f(x)

Uniform Convergence: The sequence (fn) converges uni-
formly on a set E with limit f if for every ϵ > 0 there exists
an N ∈ N such that for all n ≥ N and x ∈ E:

|fn(x)− f(x)| < ϵ

If fn converges uniformly then it converges pointwise.
Weierstrass M-test: Suppose there exists a sequence
(Mn)n∈N such that |fn(x)| ≤ Mn, ∀x ∈ E and n ∈ N and∑∞

n=1Mn < ∞. Then the series
∑∞

n=1 fn(x) converges uni-
formly on E.
Lemma: Uniform convergence iff:

lim
n→∞

sup
x∈E

|fn(x)− f(x)| = 0

Lemma: If fn is continuous on some interval, and f isn’t,
then the convergence isn’t uniform.
Uniformly Cauchy: A sequence of functions fn is uniformly
Cauchy if for all ϵ > 0 there exists N ∈ N such that if m,n ≥ N
then ∀x ∈ E we have |fm(x)− fn(x)| < ϵ
Power Series: is a series of the form

∞∑
n=0

an(x− c)n

Where an are the coefficients and c is its centre.
Radius of Convergence: R is defined by

R = sup{r ≥ 0 : (anr
n) is bounded}

Unless (anrn) is bounded for all r ≥ 0, in which case we declare
R = ∞
It is a general fact that the radius of convergence of a power
series is given by:

lim
n→∞

inf
k≥n

|ak|−1/k

Root Test: Let
L = lim sup

n→∞

n
√

|an|

If L < 1 then the series converges absolutely. If L > 1 then it
diverges. if L = 1 and the limit approaches strictly from above
then the series diverges.

Theorem 2: Assume that R > 0. suppose that 0 < r < R.
Then the power series converges uniformly and absolutely on
|x− c| ≤ r to a continuous function f , i.e.

f(x) =

∞∑
n=0

an(x− c)n

defines a continous function f : (c−R, c+R) → R.
Lemma: The two power series

∞∑
n=1

an(x− c)n and
∞∑

n=1

nan(x− c)n−1

have the same radius of convergence.
Theorem 3: f(z) defined above is infinitely differentiable on
|x− c| < R where R is the radius of convergence, and for such
x:

f ′(x) =

∞∑
n=0

nan(x− c)n−1

and the series converges absolutely and uniformly on [c−r, c+r]
for any r < R. Moreover:

an =
f (n)(c)

n!

Uniformly Continuous: Let I be an interval and let f : I →
R be a function. We say that f is uniformly continuous on I
if for every ϵ > 0 there is a δ > 0 such that for all x, y ∈ I,
|x− y| < δ implies that |f(x)− f(y)| < ϵ.
Lemma: Let I be an open interval in R. Suppose f : I → R
is differentiable and its derivative f ′ is bounded on I. Then f
is uniformly continuous on I.
Proof: Suppose that |f ′(ζ)| ≤ M for all ζ ∈ I. By MVT we
have f(x) − f(y) = (x − y)f ′(ζ) for some ζ between x and y.
So |f(x)− f(y)| = |x− y||f ′(ζ)| ≤M |x− y|. Let ϵ > 0 and let
δ = ϵ/M . If now |x− y| < δ we have M |x− y| < Mδ = ϵ.
Theorem: Suppose f : [a, b] → R is continuous. Then it is
uniformly continuous.
Proof: Assume f isn’t unif cont. Then there is ϵ > 0 and there
are sequences xn, yn with |xn−yn| → 0 but |f(xn)−f(yn)| ≥ ϵ.
Bolzano-Weierstrass tells us that (xn) has a convergent subse-
quences xnk → x ∈ [a, b]. Since |xn − yn| → 0, ynk also
converges to x as k → ∞. Continuity of f at x gives that
limk→∞ f(xnk ) = f(x) and similarly limk→∞ f(ynk ) = f(x).
So limk→∞ |f (xnk )− f (ynk )| = 0. But this contradicts the
fact that |f(xn)− f(yn)| ≥ ϵ for all n.
Series Converge Pointwise: Series

∑∞
n=1 fn(x) converges

pointwise to a function s : E → R on E iff for every x ∈ E
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and ϵ > 0 there is an N ∈ N such that for k ≥ N we have
|
∑k

n=1 fn(x)− s(x)| < ϵ.
Series Converge Uniform: Series

∑∞
n=1 fn(x) converges

uniformly to s : E → R on E iff for every ϵ > 0 there
is an N ∈ N such that for k ≥ N and all x ∈ E we
have |

∑k
n=1 fn(x) − s(x)| < ϵ. Alternatively iff for every

ϵ > 0 there is an N ∈ N such that for k ≥ N we have
supx∈E |

∑k
n=1 fn(x)− s(x)| < ϵ

Sequence and Series Examples:
• From FPM: nxn → 0 as n→ ∞
• f : I → R is uniformly continuous on I iff when-

ever sn, tn ∈ I are such that |sn − tn| → 0, then
|f(sn)− f(tn)| → 0.
Proof: Suppose f : I → R is unif cont on I and that
sn, tn ∈ I are such that |sn − tn| → 0 as n → ∞. Let
ϵ > 0. By unif cont of f there is a δ > 0 such that
|x − y| < δ =⇒ |f(x) − f(y)| < ϵ. Since |sn − tn| → 0
there is an N such that n ≥ N implies |sn − tn| < δ.
So if n ≥ N we have |f(sn) − f(tn)| < ϵ. Now suppose
that f is continuous but not unif cont. So there is an
ϵ > 0 such that taking δ = 1/n there are sn, tn ∈ I with
|sn − tn|δ but |f(sn)− f(tn)| ≥ ϵ. So |sn − tn| → 0 but
|f(sn)− f(tn)| doesn’t tend to zero.

• Let f(x) = x2 when x is rational and f(x) = 0 when x
is irrational. f is discontinuous everywhere except zero,
since if ϵ > 0 then |x| <

√
ϵ implies |f(x) = f(0)| < ϵ.

Therefore it can’t be differentiable at any point except
possibly zero (It is differentiable at zero).

• Radius of convergence of
∑∞

n=0 a
2
nx

n: the sequence is
(anr

n)∞n=0 is bounded for r < R and unbounded for
r > R. So (a2nr

2n) is bounded for r2 < R2 and un-
bounded for r2 > R2 so that (a2ns

n) is bounded for
s < R2 and unbounded for s > R2. So R2 is the ra-
dius of convergence.

• Radius of convergence of
∑∞

n=0 a2nx
2n cannot be deter-

mined only from R. It might happen that a2n = 0 and
the radius of convergence is infinite, or the radius of con-
vergence could be R. It could be any value in [R,∞).

• If R is the radius of convergence for
∑∞

n=0 anx
n then

the radius of convergence for
∑∞

n=0 anx
2n is ρ =

√
R

and
∑∞

n=0 a
2
nx

n is ρ = R2

• If fn is continuous and converges uniformly to f on
J then f is continuous. Proof: Let a ∈ J and let

ϵ > 0. There exists N such that n ≥ N and ∀x ∈ J
we have |fn(x) − f(x)| < ϵ/3. Continuity of fN at a
implies that ∃δ > 0 such that for |x − a| < δ we have
|fN (x)− fN (a)| < ϵ/3. So for |x− a| < δ we have:

|f(x)− f(a)| ≤

|f(x)− fN (x)|+|fN (x)− fN (a)|+|fN (a)− f(a)| < 3ϵ/3

So f is continuous at a.
• If fn is uniformly continuous and converges uniformly to

f on J then f is uniformly continuous. Proof: consider
any ϵ > 0. There exists N such that n ≥ N and ∀x ∈ J
we have |fn(x)− f(x)| < ϵ/3. Uniform continuity of fN
implies that ∃δ > 0 such that for x, y ∈ J, |x−y| < δ =⇒
|fN (x) − fN (y)| < ϵ/3. So for any x, y ∈ J , |x − y| < δ
we have:

|f(x)− f(y)| ≤

|f(x)− fN (x)|+|fN (x)− fN (y)|+|fN (y)− f(y)| < 3ϵ/3

So f is uniformly continuous on J .
• Let fn(x) = nx(1− x2)n for 0 ≤ x ≤ 1. Find limit func-

tion and if uniform.
Proof: If x = 0, 1 then fn(0) = 0. If 0 < x < 1 then
0 < 1 − x2 < 1 and so n(1 − x2)n → 0. So fn con-
verges pointiwse to the zero function. If it was uni-
form convergence we’d have

∫ 1

0
fn →

∫ 1

0
0 = 0. But∫ 1

0
fn = n

2(n+1)
→ 1/2 ̸= 0. So convergence isn’t uni-

form on [0, 1]. If a ≤ x ≤ 1 then 1− x2 ≤ 1− a2 so that
|fn(x)| ≤ n(1−a2)n → 0 since a > 0. So the convergence
is uniform on such intervals.

• Is f(x) = 1/x on (0,∞) uniformly continuous? No.
Proof: Take ϵ = 1. Consider the sequences xn = 1/n
and yn = 1/(n+1). Then |f(xn)−f(yn)| = 1 so there is
no δ > 0 such that |x− y| < δ implies |f(x)− f(y)| < 1.
What about [a,∞) for a > 0? Yes.
Proof: Let ϵ > 0. Consider |f(x) − f(y)| for a ≤ x, y.
This equals |x − y|/|xy| ≤ a−2|x − y| for such x, y. So
if a > 0, we take δ < ϵa2 we have |x − y| < δ =⇒
|f(x)− f(y)| < a−2ϵa2 = ϵ.

• Let fn converge uniformly to f . Let (xn) be a se-
quence of real numbers which converge to x ∈ R. Show
fn(xn) → f(x).
Proof: From triangle inequality |fn (xn)− f(x)| ≤
|fn (xn)− f (xn)| + |f (xn)− f(x)|. Since it’s implied
that f is continuous, let ϵ > 0. Then by uniform conver-
gence of fn to f , there exists N ∈ N such that n ≥ N

we have |fn(y) − f(y)| < ϵ/2 for all y. Let y = xn.
So if n ≥ N we have |fn(xn) − f(xn)| < ϵ/2. Since
xn → x, and f is continuous, there is an M ∈ N such
that n ≥ M implies |fn(xn) − f(xn)| < ϵ/2. So if
we take n ≥ max{N,M} we have: |fn (xn)− f(x)| ≤
|fn (xn)− f (xn)|+ |f (xn)− f(x)| < ϵ/2 + ϵ/2 = ϵ

• Proof
∑∞

n=1
1
np converges for p > 1:

From integral test we want f continuous, positive, de-
creasing on [1,∞) such that an = f(n).

∞∑
n=1

an converges ⇐⇒
∫ ∞

1

f(x)dx converges

So define f(x) = 1
x

, then
∫∞
1
f(x)dx = [ln(x)]∞1 =

limn→∞ ln(u)− 0 = ∞.
So

∑∞
n=1

1
n

doesn’t converge.

Integration of Real Functions
Characteristic Function: With E ⊆ R define χE : R → R
by χE(x) = 1 if x ∈ E and χE(x) = 0 if x /∈ E. Let I be a
bounded interval, and:∫

χI := length(I) = |I| = b− a

.
Step Function: We say ϕ : R → R is a step function with
respect to {x0, x1, ..., xn} if there exists x0 < x1 < ... < xn for
some n ∈ N such that:

• ϕ(x) = 0 for x < x0 and x > xn

• ϕ is constant on (xj−1, xj) 1 ≤ j ≤ n

In other words, ϕ is a step function with respect to
{x0, x1, ..., xn} iff there exists c0, c1, ..., cn such that

ϕ(x) =

n∑
j=1

cjχ(xj−1,xj)(x)

Integrals of Step Functions: If ϕ is a step function with
respect to {x0, x1, ..., xn} which takes the value on cj on
(xj−1, xj), then ∫

ϕ :=

n∑
j=1

cj (xj − xj−1)

and ∫
(αϕ+ βψ) = α

∫
ϕ+ β

∫
ψ

2



Riemann Integrable Def 1: Let f : R → R we say that
f is Riemann Integrable if for every ϵ > 0 there exists step
functions ϕ and ψ such that:

• ϕ ≤ f ≤ ψ

•
∫
ψ −

∫
ϕ < ϵ

Theorem 1: A function f : R → R is R-I iff:
sup{

∫
ϕ : ϕ is a step function and ϕ ≤ f} = inf{

∫
ψ :

ψ is a step function and ψ ≥ f}
Integral Definition: if f is R-I, and ϕ, ψ are step functions,
then we define

∫
f :∫

f := sup{
∫
ϕ : ϕ ≤ f} = inf{

∫
ψ : ψ ≥ f}

Riemann Integrable Def 2: A function f : R → R is R-I iff
there exists sequences of step functions ϕn and ψn such that:

ϕn ≤ f ≤ ψn for all n, and
∫
ψn −

∫
ϕn → 0

If ϕn and ψn are any sequences of step functions satisfying
above, then as n→ ∞∫

ϕn →
∫
f and

∫
ψn →

∫
f

Lemma 1: Let f : R → R be a bounded function with bounded
support [a, b]. The following are equivalent:

• f is Riemann-Integrable
• For every ϵ > 0 there exists a = x0 < ... < xn = b such

that if Mj and mj denote the supremum and infimimum
values of f on [xj−1, xj ] respectively then

n∑
j=1

(Mj −mj)(xj − xj−1) < ϵ

• For every ϵ > 0 there exists a = x0 < ... < xn = b such
that, with Ij = (xj−1, xj) for j ≥ 1:

n∑
j=1

sup
x,y∈Ij

|f(x)− f(y)| |Ij | < ϵ

Theorem 3: Suppose f and g are R-I, and α, β are real num-
bers. Then:

• αf + βg is R-I and the integral is what you expect
• If f ≥ 0 then

∫
f ≥ 0, if f ≤ g then

∫
f ≤

∫
g

• |f | is R-I and |
∫
f | ≤

∫
|f |

• max{f, g} and min{f, g} are R-I
• fg is R-I

Theorem: If f is not zero outside some bounded interval then
it is not integrable.
Theorem 4: If g : [a, b] → R is continuous, and f is defined
by f(x) = g(x) for a ≤ x ≤ b, f(x) = 0 for x /∈ [a, b], then f is
R-I.
Fundamental Theorem of Calculus: Let g : [a, b] → R be
R-I. For a ≤ x ≤ b define

G(x) =

∫ x

a

g

G is differentiable on (a, b) and its derivative is g(x).
Theorem 5: Let g : [a, b] → R be R-I. For a ≤ x ≤ b let
G(x) =

∫ x

a
g. Suppose g is continuous at x for some x ∈ [a, b].

Then G is differentiable at x and G′(x) = g(x).
Theorem 6: Suppose f : [a, b] → R has continuous derivative
f ′ on [a, b]. Then ∫ b

a

f ′ = f(b)− f(a)

Theorem 7: Suppose that fn : R → R is a sequence of R-I
functions which converges uniformly to a function f . Suppose
that fn and f are zero outside some common interval [a, b].
Then f is R-I and ∫

f = lim
n→∞

∫
fn

Corollary: Suppose that fn : R → R is a sequence of R-I
functions such that

∑
n fn converges uniformly to a function

f . Suppose that fn and f are zero outside some common in-
terval [a, b]. Then f =

∑
n fn is R-I and∫ ∑

n

fn =
∑
n

∫
fn

Integral Test: Suppose (an)
∞
n=1 is a non negative sequence

of numbers and f : [1,∞) → (0,∞) is a function such that:
•

∫ n

1
f ≤ K for some K and all n

• an ≤ f(x) for n ≤ x < n+ 1

Then
∑

n an converges to a real number which is at most K.
Proof: Take ϕ =

∑n
k=1 akχ[k,k+2) is a step function which

satisfies ϕ ≤ fχ[1,n+1) so that:
n∑

k=1

ak =

∫
ϕ ≤

∫
fχ[1,n+1) =

∫ n+1

1

f ≤ K

Integral Examples:
• If f : R → R is R-I, then f must be bounded and have

bounded support.
Proof: If f is R-I then taking ϵ = 1, there exists step
functions such that ϕ ≤ f ≤ ψ. Then |f | ≤ max{|ϕ, |ψ|},
which as a step function, takes only finitely many val-
ues, therefore is bounded. So f is bounded. Moreover,
there are M,N ∈ R+ such that ϕ(x) = 0 for |x| > M
and ψ(x) = 0 for |x| > N , so that ϕ(x) = ψ(x) = 0 for
|x| > max{M,N}. Since ϕ ≤ f ≤ ψ this forces f(x) = 0
for |x| > max{M,N}, and so f has bounded support.

• Not zero outside some bounded interval =⇒ not inte-
grable.
Not bounded =⇒ not integrable.
Proof: Since every step function is bounded and vanish-
ing outside a bounded interval, the fact that ϕn ≤ f ≤
ψn implies the same for f .

•
∑N

n=1 r
n = rN+1−1

r−1
provided −1 < r < 1

• Converges only if: p > 1

∞∑
n=1

1

np

• This function is R-I:

f(x) =

{
1 x = 1/n2, n ∈ N
0 otherwise

Proof: Takes infintely many different values so not a step
function. Define ϕ = 0 and ψ(x) = 1 for 0 ≤ x ≤ 1/N2

and x = 1/n2, 1 ≤ n ≤ N and ψ(x) = 0 otherwise.
We get ϕ ≤ f ≤ ψ, and

∫
ϕ = 0,

∫
ψ = 1/N2. So f

integrable and
∫
f = 0.

• χQ∩[0,1] Is not R-I.
Proof: let there be step functions such that ϕ ≤
χQ∩[0,1] ≤ ψ. Then on any interval of positive length
on which ϕ is constant, the value of ϕ must in fact
be non-positive. This is because any interval of posi-
tive length must contain irrationals, and we have that
χQ∩[0,1](x) = 0 for irrational x. Thus ϕ(x) ≤ 0 ex-
cept for possibly finitely many values of x, and therefore∫
ϕ ≤ 0. Similarly any interval of positive length must

contain rationals, ψ must be at least 1 on any interval
of positive length meeting [0, 1] on which it is constant.
Therefore

∫
ψ ≥ 1. Hence

∫
ψ −

∫
ϕ ≥ 1. So not true

that ∀ϵ > 0 there exist step functions ϕ and ψ such that
ϕ ≤ χQ∩[0,1] ≤ ψ and

∫
ψ −

∫
ϕ < ϵ.
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Metric Spaces
Metric Space: is a set X with a function d : X × X → R
which satisfies the following for all x, y, z ∈ X:

• Positive Definite: d(x, y) ≥ 0 with d(x, y) = 0 iff x = y

• Symmetric: d(x, y) = d(y, x)

• Triangle Inequality: d(x, y) ≤ d(x, z) + d(z, y)

The Usual Metric: Every Euclidean space Rn is a metric
space with metric d(x, y) = ||x− y||.
The Discrete Metric: R is a metric space with metric

σ(x, y) =

{
0 x = y
1 x ̸= y

Examples:

• d1(x, y) =
∑n

i=1 |xi − yi| (looks like unit diamond

• d2(x, y) = ||x − y|| = (
∑n

i=1 |xi − yi|n)
1
n (looks like the

unit circle)

• d∞(x, y) = max1≤i≤n |xi−yi| (looks like the unit square)

Function Metric Spaces: on C([0, 1]) we have:

•

d1(f, g) :=

∫ 1

0

|f − g|

•

d2(f, g) :=

(∫ 1

0

|f − g|2
)1/2

•
d∞(f, g) = sup

x
|f(x)− g(x)|

Strongly Equivalent: if between two metrics d and ρ on a
set X, there exists positive numbers A and B such that:

d(x, y) ≤ Aρ(x, y) and ρ(x, y) ≤ Bd(x, y) for all x, y ∈ X

Equivalent: if between two metrics d and ρ on a set X, for
every x ∈ X and every ϵ > 0 there exists a δ > 0 such that:

d(x, y) < δ =⇒ ρ(x, y) < ϵ

and
ρ(x, y) < δ =⇒ d(x, y) < ϵ

Completeness and Contraction
Converging: (xn) converges in X if there is a point a ∈ X
such that for every ϵ > 0 there is an N ∈ N such that:

n ≥ N =⇒ d(xn, a) < ϵ

Cauchy: (xn) is Cauchy if for every ϵ > 0 there is an N ∈ N
such that:

n,m ≥ N =⇒ d(xn, xm) < ϵ

Complete Metric Space: If every Cauchy sequence of points
in the metric space has a limit that is also in the metric space.
Or that every Cauchy sequence in M converges in M.
Contraction: Let (X, d) be a metric space. A function
f : X → X is called a contraction if there exists a number
α with 0 < α < 1 such that

d(f(x), f(y)) ≤ αd(x, y) for all x, y ∈ X

Banach’s Contraction Mapping Theorem: If (X, d) is a
complete metric space and if f : X → X is a contraction, then
there is a unique point x ∈ X such that f(x) = x. This point
x is called a fixed point of f .
Proof: Pick x0 ∈ X, and let x1 = f(x0), x2 =
f(x1), ..., xn+1 = f(xn). Consider d (xn+1, xn) =
d (f (xn) , f (xn−1) ≤ αd (xn, xn−1)). Repeating we get
d (xn+1, xn) ≤ αnd (x1, x0).
So that when m ≥ n

d (xm, xn) ≤ d (xm, xm−1) + . . .+ d (xn+1, xn)

≤
(
αm−1 + . . .+ αn) d (x1, x0)

≤ αn

1− α
d (x1, x0)

Since α < 1. This shows that (xn) is a Cauchy sequence
in X, and since X is complete, there exists x ∈ X to
which it converges. Now a contraction map is continuous,
so continuity of f at x shows that f(x) = f(limn→∞ xn) =
limn→∞ f(xn) = limn→∞ xn+1 = x, so indeed f(x) = x. Fi-
nally, if there are x, y ∈ X with f(x) = x and f(y) = y, we
have d(x, y) = d(f(x), f(y)) ≤ αd(x, y). Which since α < 1,
forces d(x, y) = 0 =⇒ x = y.

Compactness in Metric Spaces
Cover: A covering of X is a collection of sets whose union is
X. An open covering of C is a collection of open sets whose
union is X.
Compact: For Q to be compact: for every open cover of Q
there is a finite subcover.
Negation: There exists some open cover {Uα} of Q which has
no finite subcover.
More in Depth Compactness Definition: For every col-
lection of open sets {Uα} in R2 such that Q ⊆ ∪αUα there is a
finite subcollection {Uα1 , ..., Uαk} such that Q ⊆ ∪k

j=1Uαj .
Proposition: A subset A ⊆ Rn is compact iff it is closed and
bounded.
Corollary: A compact set is always closed. A closed subset
of a compact set is compact.
Theorem: Suppose (X, d) is a complete metric space, which
for all r > 0 we can cover X by finitely many closed balls of
radius r > 0. Then X is compact.
Proof Sort Of: Suppose X is compact. Consider the open
cover given by {B(x, r) : x ∈ X}. This has a finite subcover
{B(xj , r) : 1 ≤ j ≤ n}. Then the closed balls of radius r with
centres at xj cover X.
Lemma: If X is compact then it is sequentially compact. i.e
every sequence in X has a convergent subsequence.
Compact Functions: The direct image of a compact metric
space by a continuous function is compact. i.e let X and Y
be metric spaces, with X compact, and let f : X → Y be a
continuous surjective map. Then Y is compact.
Continuity: For a mapping f : X → Y , it is continuous if:

(∀ϵ > 0)(∀x ∈ X)(∃δ > 0) (∀x′ ∈ X)
dX (x, x′) < δ =⇒ dY (f(x), f (x′)) < ϵ

Uniform Continuity: For a mapping f : X → Y , it is uni-
formly continuous if:

(∀ϵ > 0)(∃δ > 0)(∀x ∈ X) (∀x′ ∈ X)
dX (x, x′) < δ =⇒ dY (f(x), f (x′)) < ϵ

Proposition: Let f be a continuous mapping of a compact
metric space X into a metric space Y . Then f is uniformly
continuous.
Cluster Point: a ∈ X is a cluster point iff Bδ(a) contains
infinitely many points for each δ > 0

Bolzano-Weierstrass Property: X satisfies the Bolzano-
Weierstrass Property iff every bounded sequence xn ∈ X has
a convergent subsequence.
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Heine-Borel: Let X be a separable metric space which sat-
isfies the Bolzano-Weierstrass Property, and H be a subset of
X. Then H is compact iff it is closed and bounded.

Metric Examples:
• Proof of Cauchy-Shwarz

∫
fg ≤

(∫
f2

)1/2 (∫
g2
)1/2.

Just expand
∫
(f − αg)2 ≥ 0 and find the determinant

when it has at most one real root.
• On the complete metric space C([0, 1]) with the metric

d∞(f, g) = sup)t ∈ [0, 1]|f(t)− g(t)|. Consider the map-
ping T : C([0, 1]) → C([0, 1]) given by

T (f)(s) =

∫ s

0

f(t)(s− t)dt+ g(s)

Nor for any 0 ≤ s ≤ 1 we have:

T (f)(s)− T (h)(s) =

∫ s

0

(f(t)− h(t))(s− t)dt

|T (f)(s)− T (h)(s)| ≤
∫ s

0

|f(t)− h(t)|(s− t)dt∫ s

0

|f(t)− g(t)|(s− t)dt ≤ sup
0≤t≤1

|f(t)− g(t)|
∫ s

0

(s− t)dt

=
s2

2
d∞(f, g) =⇒ d∞(Tf, Th) ≤ 1

2
d∞(f, h)

Since α < 1 T is a contraction =⇒ ∃ unique fixed point
f ∈ C([0, 1]) of T .

• Function metrics d1 and d∞ aren’t strongly equivalent.
Proof: fn(x) = xn, d1(fn, 0) = 1/(n+1) and d∞(fn, 0) =
1 for all n.

• Show that f(x) = 2 + x−2 on [2,∞) is a contraction
mapping [2,∞) into itself.
Proof: For x ≥ 0 we have f(x) ≥ 2 and hence the map
maps [2,∞) into itself. We check that f is a contraction.
Clearly:

|f(x)− f(y)| =
∣∣∣∣ 1x2 − 1

y2

∣∣∣∣ = ∣∣f ′(c)
∣∣ |x− y|

for some c ∈ [2,∞) by MVT. Since |f ′(c)| = 2

|c3| ≤
1
4
< 1

the map is a contraction.
• If d and ρ are strongly equivalent, then they are equiv-

alent.
Proof: If ϵ > 0 then choosing δ = ϵ/B works for the first
statement, and δ = ϵ/A works for the second statement
for all x. So δ = min{ϵ/A, ϵ/B} works for both.

• Let (X, d) be a discrete metric space, then it is complete.
Proof: Suppose (xn) is Cauchy in (X, d). Take ϵ = 1.
Then ∃N such that for m,n ≥ N we have d(xm, xn) < 1.
But this means for m,n ≥ N we have that xm = xn, i.e
that xn is constant for n ≥ N . Hence (xn) converges
and so (X, d) is complete.

Spaces:
Interior: Let E be a subset of a metric space X. The interior
of E is:

Eo :=
∪

{V : V ⊆ E and V is open in X}

Closure: Let E be a subset of a metric space X. The closure
of E is:

E :=
∩

{B : B ⊇ E and B is closed in X}

E = {x ∈ X : x is a limit point of E}
Theorem:

• Eo ⊆ E ⊆ E

• If V is open and V ⊆ E, then V ⊂ Eo

• If C is closed and E ⊆ C, the E ⊆ C

Boundary: let E ⊆ X, then the boundary of E is:

∂E := {x ∈ X : ∀r > 0, Br(x) ∩ E ̸= ∅ and Br(x) ∩ Ec ̸= ∅}

Theorem: Let E ⊆ X. Then ∂E = E\Eo

Separable: Metric space X is separable iff it contains a count-
able dense subset. i.e iff there is a countable set Z of X such
that for every point a ∈ X there is a sequence xk ∈ Z such
that xk → a as k → ∞
Relatively Open: A set U ⊆ E is relatively open in E iff
there is a set V open in X such that U = E ∩ V
Relatively Closed: A set U ⊆ E is relatively closed in E iff
there is a set C closed in X such that A = E ∩ C

Spaces Examples:
• R is closed and open. intR = R, R = R, ∂R = ∅. Not

compact, but connected since path connected.
• Q is not open, not closed. intQ = ∅, Q = R, ∂Q = R. Not

compact, not connected.
• A ⊂ R is connected iff A is any type of interval (open,

closed or semi-open).

• E =
∪∞

n=1

{
1
n

}
× [0, 1] Is neither open nor closed.

intE = ∅, ∂E = E = E ∪ {0} × [0, 1]. Since it is not
closed it is not compact. It is not connected, we can
take U = {(x, y) : x < 3/4} and V = {(x, y) : x > 3/4}.
These are two open disjoint sets that separate E.

Definitions
• Injective: f(a) = f(b) =⇒ a = b

• Surjective: ∀y ∈ Y, ∃x ∈ X such that y = f(x)

• Closed: A set F ⊂ X is closed iff the complement X\F
is open. That is for any x ∈ X\F there is r > 0 such
that B(x, r) ⊂ X\F .

• Open Ball: Let a ∈ X and r > 0. Then the open ball
with centre a and radius r is the set:

B(a, r) := {x ∈ X : d(x, a) < r}

• Closed Ball: Let a ∈ X and r > 0. Then the closed
ball with centre a and radius r is the set:

B(a, r) := {x ∈ X : d(x, a) ≤ r}

• Support: The support of a real valued function is a
subset of the domain containing elements which are not
mapped to zero. If the domain is a topological space,
the support is instead the smallest closed set containing
all points not mapped to zero.

• A countable union of countable sets is countable.
• Compact (set): Closed and bounded
• Connected (set): If path connected. i.e connected

space is a topological space that cannot be represented
as the union of two or more disjoint non-empty open
subsets. i.e
A subset A ⊂ X is connected if there does not exist open
and disjoint sets U, V ⊂ X such that

A ∩ U ̸= ∅, B ∩ V ̸= ∅, and A ⊂ U ∪ V

• Radius of Convergence: The radius of convergence
R of the given power series is the unique number R such
that the series converges for |x| < R and diverges for
|x| > R. We have R ∈ [0,∞) ∪ {∞} where when R = 0
the series only converges at x = 0 while R = ∞ means
that the power series converges for all x ∈ R.
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