Real Analysis
By [REDCATED)]

Introduction

Continuous at a: Ve > 0, 36 > 0 such that |z —a| < § implies
|f(x) = fla)] <e.

Supremum: The lest upper bound. The unique real number
M such that:

e a< M foralla € A and

o If M’ is any real number such that a < M’ for all a € A,
then M < M’

Convergence: a, converges to a if for every € > 0 there exists
an N € N such that n > N implies |a, —a| < e.

Cauchy Sequence: If for every € > 0 there exists an N € N
such that m,n > N implies |am — an| < €.

Note: Convergence says that the numbers are getting closer
and closer to a as n gets bigger, while Cauchy says that the
numbers are getting closer and closer to each other as n gets
bigger.

Bolzano-Weierstrass Theorem: Every sequence of real
numbers which is bounded must have a convergent subse-
quence.

% =r <1,
then the series ) a, converges. If r > 1 then the series di-
verges, if r = 1 it is inconclusive.

Intermediate Value Theorem: For a continuous function
f R — R, IVT says that for every value c strictly between
f(a) and f(b) there is some z € [a,b] such that f(z) = c.
Extreme Value Theorem: For a continuous function f :
R — R, there are values ¢ and d in [a,b] at which f takes on
the extreme values m and M where m < f(z) < M for all
x € [a,b]. Meaning f(c) =m and f(d) = M.

Mean Value Theorem: For a function f : R — R, contin-
uous on a closed interval [a,b] and differentiable on an open
interval (a,b), then there exists a point ¢ € (a,b) such that
fle) = o=@

Rolles Theorem: If f is continuous on a closed interval [a, b]
and differentiable on the open interval (a,b), and f(a) = f(b),
then there exists at least one ¢ € (a,b) such that f'(c) = 0.
Chain Rule: Given a composition of differentiable functions
¢(z) = L o E(z) we have ¢'(z) = L'(E(x))E'(z)
Cauchy-Schwarz Inequality:

Ratio Test: If a sequence satisfies lim,— oo

T1Y1 + ... + anb, < \/af + ... +a%\/b§ + ...+ 02

Sequences and Series of Functions:

Pointwise Convergence: The sequence (f,) converges
pointwise to the function f, iff for every x in the domain we
have

Jim_ f(a) = f(z)

Uniform Convergence: The sequence (f,) converges uni-
formly on a set E with limit f if for every € > 0 there exists
an N € N such that for all n > N and x € E:

|fn(z) — f(z)] <€

If f, converges uniformly then it converges pointwise.
Weierstrass M-test: Suppose there exists a sequence
(Mp)new such that |fn(z)] < M,, Vo € E and n € N and
Yoo  Mn < oo. Then the series 3.7 | fn(x) converges uni-
formly on F.
Lemma: Uniform convergence iff:

lim sup |fn(z) — f(z)] =0
Lemma: If f, is continuous on some interval, and f isn’t,
then the convergence isn’t uniform.
Uniformly Cauchy: A sequence of functions f, is uniformly
Cauchy if for all € > 0 there exists N € N such that if m,n > N
then Vx € F we have |fm(z) — fu(z)| <€
Power Series: is a series of the form

Z an(z —c)"

Where a,, are the coefficients and c is its centre.
Radius of Convergence: R is defined by

R =sup{r > 0: (a,r™) is bounded}

Unless (anr™) is bounded for all » > 0, in which case we declare
R =00

It is a general fact that the radius of convergence of a power
series is given by:

lim inf |ay| /"
n—oo k>n

L =limsup V/|an|
n—oo

If L < 1 then the series converges absolutely. If L > 1 then it
diverges. if L = 1 and the limit approaches strictly from above
then the series diverges.

Root Test: Let

Theorem 2: Assume that R > 0. suppose that 0 < r < R.
Then the power series converges uniformly and absolutely on
|x — ¢| < r to a continuous function f, i.e.

f@) =S au(z—c)"

defines a continous function f: (¢ — R,c+ R) = R.
Lemma: The two power series

i an(x —¢)" and i nan(z —c)" "
n=1

n=1

have the same radius of convergence.

Theorem 3: f(z) defined above is infinitely differentiable on
|z — ¢| < R where R is the radius of convergence, and for such
x:

F@) =3 nan@—o"

and the series converges absolutely and uniformly on [c—r, c+7]
for any r < R. Moreover:

AR

n!

an

Uniformly Continuous: Let I be an interval and let f : I —
R be a function. We say that f is uniformly continuous on I
if for every € > 0 there is a § > 0 such that for all z,y € I,
|z — y| < & implies that |f(z) — f(y)| <e.

Lemma: Let I be an open interval in R. Suppose f: I — R
is differentiable and its derivative f’ is bounded on I. Then f
is uniformly continuous on I.

Proof: Suppose that |f'({)| < M for all ¢ € I. By MVT we
have f(z) — f(y) = (x — y)f'(¢) for some ¢ between z and y.
So |£(z) ~ £(y)] = |z — yllf ()] < Mz — y|. Let ¢ > 0 and let
d=¢/M. If now |z —y| < § we have M|z —y| < Mé =e.
Theorem: Suppose f : [a,b] — R is continuous. Then it is
uniformly continuous.

Proof: Assume f isn’t unif cont. Then there is € > 0 and there
are SEqUENCEs Tn, Yn With |2, —yn| — 0 but |f(zn)— f(yn)| > €.
Bolzano-Weierstrass tells us that (z,) has a convergent subse-
quences Tn, — = € [a,b]. Since |zn — yn| — 0, yn, also
converges to x as k — oo. Continuity of f at x gives that
limp— oo f(2n,) = f(z) and similarly limgoo f(yn,) = f(2).
So limy oo |f (2n,,) — f (yn, )| = 0. But this contradicts the
fact that |f(zn) — f(yn)| > € for all n.

Series Converge Pointwise: Series Y 7 fn(x) converges
pointwise to a function s : £ — R on F iff for every x € FE



and € > 0 there is an N € N such that for &k > N we have
128y ful) — s()| < e.

Series Converge Uniform: Series > 7 | fa(x) converges
uniformly to s : £ — R on E iff for every ¢ > 0 there
is an N € N such that for ¥ > N and all z € E we
have | S°F_ fa(z) — s(z)| < e Alternatively iff for every
€ > 0 there is an N € N such that for & > N we have
SUp,epp | 22:1 fo(z) —s(z)| <€

Sequence and Series Examples:

e From FPM: nz" — 0 as n — oo

e f : I — R is uniformly continuous on [ iff when-

ever sp,t, € I are such that |s, — t,|] — 0, then
[F(50) — f(ta)] = 0.
Proof: Suppose f : I — R is unif cont on I and that
Sn,tn € I are such that |s, — t,] — 0 as n — oo. Let
€ > 0. By unif cont of f there is a § > 0 such that
e —y| <d = |f(z) — f(y)| < e. Since |sn —tn| = 0
there is an N such that n > N implies |s, — t,| < .
So if n > N we have |f(sn) — f(tn)] < €. Now suppose
that f is continuous but not unif cont. So there is an
€ > 0 such that taking § = 1/n there are sp,t, € I with
|sn — tn]d but |f(sn) — f(tn)| > €. So |sn —tn| — 0 but
|f(sn) — f(tn)| doesn’t tend to zero.

o Let f(x) = x* when 2 is rational and f(x) = 0 when =
is irrational. f is discontinuous everywhere except zero,
since if € > 0 then |z| < /e implies |f(z) = f(0)| < e.
Therefore it can’t be differentiable at any point except
possibly zero (It is differentiable at zero).

« Radius of convergence of > °° jaZz": the sequence is

(anT™)5%0 is bounded for r < R and unbounded for
r > R. So (a2r®) is bounded for r* < R? and un-
bounded for > > R? so that (a2s™) is bounded for
s < R? and unbounded for s > R%. So R? is the ra-
dius of convergence.

¢ Radius of convergence of Zi‘;o a2,x2" cannot be deter-
mined only from R. It might happen that a2, = 0 and
the radius of convergence is infinite, or the radius of con-
vergence could be R. It could be any value in [R, o).

e If R is the radius of convergence for ZZO:O anz” then
the radius of convergence for ZZO:O anz?®™ is p = VR
and 0% jaZa™ is p = R®

e If f, is continuous and converges uniformly to f on
J then f is continuous. Proof: Let a € J and let

€ > 0. There exists N such that n > N and Vx € J
we have |fn(z) — f(z)| < €/3. Continuity of fx at a
implies that 36 > 0 such that for |z — a| < § we have
|fn(z) — fn(a)] < €/3. So for |x — a] < § we have:

|f(z) = fa)] <
|f(z) = I (@) +|fn () = fn(a)[+fn(a) = fla)] < 3e/3

So f is continuous at a.

If f,, is uniformly continuous and converges uniformly to
f on J then f is uniformly continuous. Proof: consider
any € > 0. There exists N such that n > N and Vz € J
we have |fn(z) — f(z)| < /3. Uniform continuity of fx
implies that 36 > 0 such that for z,y € J, |[z—y| < § =
|fn(z) — fn(y)| < €/3. So for any z,y € J, |[x —y| < §
we have:

(@) )] <
|f(2) = I (o) [+ fn (@) = fn W)+ fn (y) = fy)] < 3e/3
So f is uniformly continuous on J.

Let fo(z) = nx(1 — )™ for 0 < x < 1. Find limit func-
tion and if uniform.

Proof: If x = 0,1 then f,(0) = 0. If 0 < < 1 then
0<1-2%<1andson(l—2*)"— 0. So f, con-
verges pointiwse to the zero function. If it was uni-
form convergence we’d have fol fn — fOIO = 0. But
fol fn = m — 1/2 # 0. So convergence isn’t uni-
form on [0,1]. If a < 2 <1 then 1—22<1—a? so that
| fn(z)] < n(1—a®)" — O0since a > 0. So the convergence
is uniform on such intervals.

Is f(z) = 1/z on (0, 00) uniformly continuous? No.
Proof: Take ¢ = 1. Consider the sequences =, = 1/n
and y, = 1/(n+1). Then |f(zn)— f(yn)| = 1 so there is
no § > 0 such that |z — y| < ¢ implies |f(z) — f(y)| < 1.
What about [a, 00) for a > 0?7 Yes.

Proof: Let € > 0. Consider |f(z) — f(y)| for a < z,y.
This equals |z — y|/|zy| < a 2|z — y| for such z,y. So
if a > 0, we take § < ea® we have |z —y| < § =
(@) - F3)] < a~2ea® <.

Let f, converge uniformly to f. Let (z,) be a se-
quence of real numbers which converge to z € R. Show
fn(@n) = f(2).

Proof: From triangle inequality |fn (zn)— f(z)] <
|fn(@n) = f (zn)| + |f (xn) — f(z)|. Since it’s implied
that f is continuous, let € > 0. Then by uniform conver-
gence of f, to f, there exists N € N such that n > N

we have |fn(y) — f(y)| < €/2 for all y. Let y = .
So if n > N we have |fn(zn) — f(zn)] < €/2. Since
T, — x, and f is continuous, there is an M € N such
that n > M implies |fn(zn) — f(zn)] < €/2. So if
we take n > max{N, M} we have: |f, (zn)— f(z)] <

|fn (@n) = f(zn)l + S (2n) = f(2)| <€/2+€¢/2=¢

o Proof 37, -5 converges for p > 1:
From integral test we want f continuous, positive, de-

creasing on [1,00) such that a, = f(n).

oo oo
Zan converges <= / f(x)dx converges
1

n=1

So define f(z) = X, then [~ f(z)dz = [In(z)]® =
limp— o0 In(u) — 0 = oo.
So >, % doesn’t converge.

Integration of Real Functions

Characteristic Function: With £ C R define xg : R - R
by xe(z) = 1ifx € F and xg(z) =0if x ¢ E. Let I be a
bounded interval, and:

/X} :=length(I)=|I|=b—a

Step Function: We say ¢ : R — R is a step function with
respect to {xo, x1, ..., Zn} if there exists g < 21 < ... < z, for
some n € N such that:

o ¢(x)=0for z < zo and = > z,
e ¢ is constant on (zj_1,2;) 1<j<mn

In other words, ¢ is a step function with respect to
{zo, 21, ..., zn} iff there exists cg,c1, ..., ¢n such that

(;5(1’) = Z CjX(acj,l,xj)(x)
j=1

Integrals of Step Functions: If ¢ is a step function with
respect to {xo,z1,...,xn} which takes the value on ¢; on
(zj-1,;), then

/¢> = icj (x5 —xj-1)

[ossv)=a o5 [v

and



Riemann Integrable Def 1: Let f : R — R we say that
f is Riemann Integrable if for every ¢ > 0 there exists step
functions ¢ and 1) such that:

e 9 f<W
C Ju-fe<e
Theorem 1: A function f:R — R is R-T iff:
sup{[ ¢ : ¢ isastep functionand ¢ < f} = inf{[e
1 is a step function and ¢ > f}
Integral Definition: if f is R-I, and ¢, ¢ are step functions,
then we define [ f:

[ri=sw([o:0<n=int([viv=p

Riemann Integrable Def 2: A function f: R — R is R-T iff
there exists sequences of step functions ¢, and 1),, such that:

én < f <y, for all n, and /1/)n*/¢nﬁo

If ¢ and v, are any sequences of step functions satisfying
above, then as n — oo

[on= [rand [v.= [

Lemma 1: Let f : R — R be a bounded function with bounded
support [a, b]. The following are equivalent:

e f is Riemann-Integrable

e For every € > 0 there exists a = z9 < ... < x, = b such
that if M; and m; denote the supremum and infimimum
values of f on [z;_1,x;] respectively then

n

> (M —my)(x; —x51) <e

=1
e For every € > 0 there exists a = z9 < ... < x, = b such
that, with I; = (zj-1,z;) for j > 1:

n

Z sup |f(z) — f(w)| L] <e

=1 z,y€l;
Theorem 3: Suppose f and g are R-I, and «, 8 are real num-
bers. Then:
e af + Bg is R-I and the integral is what you expect
e If f>0then [f>0,if f<gthen [f< [g
o |flisR-Tand | [ f|<[]|fl

o max{f, g} and min{f, g} are R-I

e fgis R-I
Theorem: If f is not zero outside some bounded interval then
it is not integrable.
Theorem 4: If g : [a,b] — R is continuous, and f is defined
by f(z) = g(z) for a <z <b, f(z) =0 for = ¢ [a,b], then f is
R-IL.
Fundamental Theorem of Calculus: Let g : [a,b] — R be
R-1. For a < x < b define

G<x>:/:g

G is differentiable on (a,b) and its derivative is g(x).
Theorem 5: Let g : [a,b] — R be R-I. For a < = < b let
G(x) = [ g. Suppose g is continuous at x for some z € [a, b].
Then G is differentiable at x and G'(z) = g(x).

Theorem 6: Suppose f : [a,b] — R has continuous derivative
f' on [a,b]. Then

b
/ £ = () f(a)

Theorem 7: Suppose that f,, : R — R is a sequence of R-I
functions which converges uniformly to a function f. Suppose
that f, and f are zero outside some common interval [a, b].
Then f is R-I and

/ f=lim [ f,

n—r oo
Corollary: Suppose that f, : R — R is a sequence of R-I
functions such that »  f. converges uniformly to a function

f. Suppose that f, and f are zero outside some common in-
terval [a,b]. Then f =73 fn is R-I and

/;n:;/n

Integral Test: Suppose (an)n=; is a non negative sequence
of numbers and f : [1,00) — (0, 00) is a function such that:

. flnfSKfor some K and all n
e an < flx)forn<z<n+1

Then )", an converges to a real number which is at most K.
Proof: Take ¢ = Y 7_, arX[kk+2) IS a step function which
satisfies ¢ < fX[1,n+1) SO that:

Integral Examples:

o If f:R — R is R-I, then f must be bounded and have
bounded support.
Proof: If f is R-I then taking ¢ = 1, there exists step
functions such that ¢ < f <. Then |f| < max{|¢, |¥|},
which as a step function, takes only finitely many val-
ues, therefore is bounded. So f is bounded. Moreover,
there are M, N € R4 such that ¢(z) = 0 for |z| > M
and ¢ (z) = 0 for |z| > N, so that ¢(z) = ¢(x) = 0 for
|z] > max{M, N}. Since ¢ < f < 1) this forces f(z) =0
for |z| > max{M, N}, and so f has bounded support.

e Not zero outside some bounded interval = not inte-
grable.
Not bounded = not integrable.
Proof: Since every step function is bounded and vanish-
ing outside a bounded interval, the fact that ¢, < f <

1, implies the same for f.
N+1

. Zf:/:l rt="1r +_1_1 provided —1 <r <1

r

e Converges only if: p > 1

=1
P
n=1

¢ This function is R-I:

f@={ 4

Proof: Takes infintely many different values so not a step
function. Define ¢ = 0 and ¢(z) = 1 for 0 < & < 1/N?
and z = 1/n%,1 < n < N and ¢(z) = 0 otherwise.
We get ¢ < f <, and [¢ =0, [¢ = 1/N. So f
integrable and [ f = 0.

* Xano,1 Is not R-I.
Proof: let there be step functions such that ¢ <
Xan(o,1] < ¥. Then on any interval of positive length
on which ¢ is constant, the value of ¢ must in fact
be non-positive. This is because any interval of posi-
tive length must contain irrationals, and we have that
Xan,1](x) = 0 for irrational . Thus ¢(z) < 0 ex-
cept for possibly finitely many values of x, and therefore
J ¢ < 0. Similarly any interval of positive length must
contain rationals, 1 must be at least 1 on any interval
of positive length meeting [0, 1] on which it is constant.
Therefore [t > 1. Hence [¢ — [¢ > 1. So not true
that Ve > 0 there exist step functions ¢ and v such that

®<xanp1 <vand [¢— [¢<e

z=1/n*n€N
otherwise



Metric Spaces

Metric Space: is a set X with a function d : X x X — R
which satisfies the following for all z,y, z € X:

o Positive Definite: d(z,y) > 0 with d(z,y) =0if z =y
e Symmetric: d(z,y) = d(y,x)
e Triangle Inequality: d(z,y) < d(z,z) + d(z,y)

The Usual Metric: Every Euclidean space R™ is a metric
space with metric d(z,y) = ||z — y||.
The Discrete Metric: R is a metric space with metric

s ={ § 20

Examples:
o di(z,y) =30 | —

o do(z,y) = [lz —yll = O |
unit circle)

yi| (looks like unit diamond

- y¢|”)% (looks like the

o doo(x,y) = maxi<i<n |i —y:| (looks like the unit square)
Function Metric Spaces: on C([0, 1]) we have:

1
mqngﬂ|f—m

@Ugw—(éﬂf—mﬂUQ

deo(f,9) = sup |f(z) — g(=)]

Strongly Equivalent: if between two metrics d and p on a
set X, there exists positive numbers A and B such that:

d(z,y) < Ap(z,y) and p(z,y) < Bd(z,y) for all z,y € X

Equivalent: if between two metrics d and p on a set X, for
every ¢ € X and every € > 0 there exists a § > 0 such that:

d(z,y) <6 = p(z,y) <e

and
plz,y) <d = d(z,y) <e

Completeness and Contraction

Converging: (z,) converges in X if there is a point a € X
such that for every € > 0 there is an N € N such that:
n>N = d(zn,a)<e

Cauchy: (z,) is Cauchy if for every € > 0 there is an N € N
such that:

nm>N =  d(@n,zm)<c¢
Complete Metric Space: If every Cauchy sequence of points
in the metric space has a limit that is also in the metric space.
Or that every Cauchy sequence in M converges in M.
Contraction: Let (X,d) be a metric space. A function

f X — X is called a contraction if there exists a number
o with 0 < a < 1 such that

d(f(z), f(y)) < ad(z,y) for all z,y € X

Banach’s Contraction Mapping Theorem: If (X,d) is a
complete metric space and if f : X — X is a contraction, then
there is a unique point z € X such that f(z) = z. This point
z is called a fixed point of f.

Proof: Pick zo0 € X, and let 1 =
flx1), o, xner = f(zn). Consider
4(f (@n) f (2n-1) < 0 (Tn, 50-1)).
d (-TTH»I, -’En) S a™d (iUl N (L’()).

So that when m > n

flzo),wa =
d(Tnt1,2n) =
Repeating we get

d(Xm,Zn) < d(Tm, Tm-1)+ ... +d(Tnt1,Tn)

< (amfl + ... —i—an) d (z1,z0)

an

<
T 11—«

d (.131, xo)

Since @ < 1. This shows that (z,) is a Cauchy sequence
in X, and since X is complete, there exists * € X to
which it converges. Now a contraction map is continuous,
so continuity of f at z shows that f(z) = f(limp—soeo xn) =
limp oo f(2n) = liMp—00 Tnt1 = @, so indeed f(z) = z. Fi-
nally, if there are z,y € X with f(z) = z and f(y) = y, we
have d(z,y) = d(f(x), f(y)) < ad(z,y). Which since a < 1,
forces d(z,y) =0 — z =y.

Compactness in Metric Spaces

Cover: A covering of X is a collection of sets whose union is
X. An open covering of C is a collection of open sets whose
union is X.

Compact: For @ to be compact: for every open cover of @
there is a finite subcover.

Negation: There exists some open cover {Uas} of @ which has
no finite subcover.

More in Depth Compactness Definition: For every col-
lection of open sets {Us } in R? such that Q C U,U, there is a
finite subcollection {Usy,, ..., Ua, } such that Q C U?Zanj.
Proposition: A subset A C R™ is compact iff it is closed and
bounded.

Corollary: A compact set is always closed. A closed subset
of a compact set is compact.

Theorem: Suppose (X, d) is a complete metric space, which
for all » > 0 we can cover X by finitely many closed balls of
radius r > 0. Then X is compact.

Proof Sort Of: Suppose X is compact. Consider the open
cover given by {B(z,r) : « € X}. This has a finite subcover
{B(zj,r) : 1 < j < n}. Then the closed balls of radius r with
centres at z; cover X.

Lemma: If X is compact then it is sequentially compact. i.e
every sequence in X has a convergent subsequence.
Compact Functions: The direct image of a compact metric
space by a continuous function is compact. i.e let X and Y
be metric spaces, with X compact, and let f : X — Y be a
continuous surjective map. Then Y is compact.

Continuity: For a mapping f : X — Y, it is continuous if:

(Ve > 0)(Vz € X)(36 > 0) (Vo' € X)
dx (z,2') < 6 = dy (f(x), f(2')) < e

Uniform Continuity: For a mapping f : X — Y, it is uni-
formly continuous if:

(Ve > 0)(36 > 0)(Vz € X) (Vo' € X)
dx (z,2') < 6§ = dy (f(x), f(z')) <e

Proposition: Let f be a continuous mapping of a compact
metric space X into a metric space Y. Then f is uniformly
continuous.

Cluster Point: a € X is a cluster point iff Bs(a) contains
infinitely many points for each § > 0

Bolzano-Weierstrass Property: X satisfies the Bolzano-
Weierstrass Property iff every bounded sequence z,, € X has
a convergent subsequence.



Heine-Borel: Let X be a separable metric space which sat-
isfies the Bolzano-Weierstrass Property, and H be a subset of
X. Then H is compact iff it is closed and bounded.

Metric Examples:

Just expand [(f — ag)? > 0 and find the determinant
when it has at most one real root.

o Proof of Cauchy-Shwarz [ fg < (ff2)1/2 (fg2)1/2.

o On the complete metric space C([0, 1]) with the metric
deo(f,g) =sup)t € [0,1]]f(t) — g(t)|]. Consider the map-
ping T : C([0,1]) — C([0, 1]) given by

T(f)(s) = / " F()(s — )dt + g(s)

Nor for any 0 < s < 1 we have:

T(f)(s) =T(h)(s) = /S(f(t) —h(t))(s = t)dt

IT(£)(s) = T(h)(s)] < 05 |f () = h(t)|(s — t)dt

0<t<1

/ 1R — g —ydt < sup 1£() — g(2)] / (s —t)de
0 0

= % da(fo9) = doo(Tf,Th) < duc(f. 1)

Since o < 1 T is a contraction = 3 unique fixed point
fe€C(0,1]) of T.

o Function metrics di and do aren’t strongly equivalent.
Proof: fn(z) = z", di(fn,0) = 1/(n+1) and deo (f»,0) =
1 for all n.

o Show that f(x) = 24 272 on [2,00) is a contraction
mapping [2,00) into itself.
Proof: For z > 0 we have f(z) > 2 and hence the map
maps [2, 00) into itself. We check that f is a contraction.

Clearly:
1 11 .
|f(z) = f)l = o] [F'(e)] = =yl
for some ¢ € 2, 00) by MVT. Since |f'(c)| = |L23‘ <:i<1

the map is a contraction.

e If d and p are strongly equivalent, then they are equiv-
alent.
Proof: If € > 0 then choosing 6 = ¢/B works for the first
statement, and § = ¢/A works for the second statement
for all z. So 6 = min{e/A, e/B} works for both.

o Let (X, d) be a discrete metric space, then it is complete.
Proof: Suppose (z,) is Cauchy in (X,d). Take € = 1.
Then 3N such that for m,n > N we have d(xm, zn) < 1.
But this means for m,n > N we have that x,, = x,, i.e
that z, is constant for n > N. Hence (x,) converges
and so (X, d) is complete.

Spaces:

Interior: Let E be a subset of a metric space X. The interior
of F is:

E° ::U{V: V C E and V is open in X}
Closure: Let E be a subset of a metric space X. The closure
of F is:

E = ﬂ{B : B D E and B is closed in X}

E = {z € X : xis a limit point of E}
Theorem:
e« E°PCECE
e If Visopenand V C F, then V C E°
e If Cis closed and E C C,the EC C
Boundary: let £ C X, then the boundary of FE is:

OF :={x € X :Vr > 0,Br(x) N E # 0 and B,(x) N E° # 0}

Theorem: Let £ C X. Then 0F = E\E°

Separable: Metric space X is separable iff it contains a count-
able dense subset. i.e iff there is a countable set Z of X such
that for every point a € X there is a sequence xx € Z such
that zx — a as k — o

Relatively Open: A set U C F is relatively open in E iff
there is a set V open in X such that U = ENV

Relatively Closed: A set U C FE is relatively closed in E iff
there is a set C closed in X such that A=FEnC

Spaces Examples:

e R is closed and open. intR = R, R = R, 9R = (. Not
compact, but connected since path connected.

o Q is not open, not closed. intQ =P, Q = R, 9Q = R. Not
compact, not connected.

e A C R is connected iff A is any type of interval (open,
closed or semi-open).

« B = U2, {£} x [0,1] Is neither open nor closed.
intE = 0, oF = E = EU {0} x [0,1]. Since it is not
closed it is not compact. It is not connected, we can
take U = {(z,y) : © < 3/4} and V = {(z,y) : © > 3/4}.
These are two open disjoint sets that separate F.

Definitions

e Injective: f(a) = f(b) = a=b
e Surjective: Yy € Y,3x € X such that y = f(z)

o Closed: A set F' C X is closed iff the complement X\ F'
is open. That is for any x € X\F there is r > 0 such
that B(z,r) C X\F.

e Open Ball: Let a € X and » > 0. Then the open ball
with centre a and radius r is the set:

B(a,r):={z € X : d(z,a) <7}

¢ Closed Ball: Let a € X and r > 0. Then the closed
ball with centre a and radius r is the set:

B(a,r) :=={z € X : d(z,a) <r}

e Support: The support of a real valued function is a
subset of the domain containing elements which are not
mapped to zero. If the domain is a topological space,
the support is instead the smallest closed set containing
all points not mapped to zero.

¢ A countable union of countable sets is countable.
o Compact (set): Closed and bounded

e Connected (set): If path connected. i.e connected
space is a topological space that cannot be represented
as the union of two or more disjoint non-empty open
subsets. i.e
A subset A C X is connected if there does not exist open
and disjoint sets U,V C X such that

ANU#£0,BNV #0, and ACUUV

o Radius of Convergence: The radius of convergence
R of the given power series is the unique number R such
that the series converges for |z| < R and diverges for
|z] > R. We have R € [0,00) U {oo} where when R =0
the series only converges at x = 0 while R = co means
that the power series converges for all z € R.



