

Computation and its Limits

This page intentionally left blank

Computation and its Limits

Paul Cockshott
University of Glasgow

Lewis M. Mackenzie
University of Glasgow

Greg Michaelson
Heriot-Watt University

3

3
Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi

New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan South Korea Poland Portugal

Singapore Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

c© Paul Cockshott, Lewis M. Mackenzie and Greg Michaelson 2012

The moral rights of the authors have been asserted
Database right Oxford University Press (maker)

First published 2012

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate

reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,

Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose this same condition on any acquirer

British Library Cataloguing in Publication Data
Data available

Library of Congress Cataloging in Publication Data
Library of Congress Control Number: 2011945375

Typeset by Cenveo, Bangalore, India
Printed and bound by

CPI Group (UK) Ltd, Croydon, CRO 4YY

ISBN 978-0-19-964032-4

1 3 5 7 9 10 8 6 4 2

Contents

1 Introduction 1
1.1 Overview 1
1.2 Summary 4
1.3 Acknowledgements 5

2 What is computation? 6
2.1 The apparent mystery of maths 6
2.2 Counting sheep 11
2.3 Counting materialised in our own bodily movements 16
2.4 From ‘aides-memoire’ to the first digital

calculating devices 23

3 Mechanical computers and their limits 28
3.1 Antikythera 28
3.2 Late mechanical computers 35
3.3 Analogue mechanical multiply/accumulate 39
3.4 Mechanizing the abacus 42

4 Logical limits to computing 47
4.1 Introduction 47
4.2 Propositional logic 47
4.3 Set theory 51
4.4 Predicate logic 52
4.5 Recursion 55
4.6 Peano arithmetic 55
4.7 Paradoxes 58
4.8 Arithmetizing mathematics and incompleteness 61
4.9 Infinities 64
4.10 Real numbers and Cantor diagonalization 66
4.11 Turing machines 67
4.12 Universal TM and undecidability 71
4.13 Computational procedures 74
4.14 The Church–Turing thesis 78
4.15 Machines, programs, and expressions 79

5 Heat, information, and geometry 83
5.1 The triumph of digital computation 83
5.2 Analogue computing with real numbers 84
5.3 What memories are made of 86
5.4 Power consumption as a limit 91

vi Contents

5.5 Entropy 95
5.6 Shannon’s information theory 111
5.7 Landauer’s limit 114
5.8 Non-entropic computation 117
5.9 Interconnection 122

6 Quantum computers 128
6.1 Foundations of quantum theory 128
6.2 The quantum rules 136
6.3 Qubits 142
6.4 Entanglement and quantum registers 146
6.5 Quantum computers 153
6.6 Quantum algorithms 155
6.7 Building a quantum computer 157
6.8 Physical limits to real number representations 167
6.9 Error rates in classical and quantum gates 171

7 Beyond the logical limits of computing? 173
7.1 Introduction 173
7.2 Oracles, complexity, and tractability 174
7.3 Beyond the Turing Machine? 176
7.4 Numberology 177
7.5 What is real about the reals? 180
7.6 Real measurement 181
7.7 Back to Turing 184
7.8 Reservations about Cantor 185

8 Hypercomputing proposals 187
8.1 Infinite Turing Machines 187
8.2 Infinitely precise analogue computers 190
8.3 Wegner and Eberbach’s super-Turing computers 201
8.4 Interaction Machines 202
8.5 π-Calculus 206
8.6 $-Calculus 211
8.7 Conclusions 214

Bibliography 216
Index 226

Introduction
1

1.1 Overview 1
1.2 Summary 4
1.3 Acknowledgements 5

1.1 Overview

Although we are entirely unaware of it, computation is central to all
aspects of our existence; that is, in the application of rules to information
to produce new information, usually to make a decision about what to
do next.1 Every day, we solve, or try to solve, a myriad of problems, from 1Here, we are using ‘information’ in

the general sense of facts or knowledge
about some circumstance, rather than
the precisely defined technical concep-
tion of information discussed in the rest
of this book.

the utterly trivial to the bafflingly complex. To do this, we deploy some
processes of reasoning, often unarticulated, and often aided by large
doses of what we might call ‘common sense’, ‘gut feeling’, or ‘intuition’.
And often, our reasoning is not as definitive as we might like, leading
us to conclusions that are wrong or tentative, or contrary to what we
might prefer.

It is striking that our reasoning is most accurate where the information
and rules are most precise, in particular where we use numbers and
rules deriving from mathematics, such as those for arithmetic, geometry,
and logic. Again, we carry out most of this sort of computation quite
unconsciously, except when we get it wrong. And we do so using
standard representations and rules that we learnt as children, and that
we expect other people to share. One big strength of this standardization
of numerical reasoning is that it can easily be made explicit, and so
repeated and checked, by ourselves or other people, until it is right.
Another big strength is that we can build machines, such as calculators
and computers, to carry out computations for us, and we can agree that
these machines really do embody the rules and information that we hold
in common.

Now, we actually perform very sophisticated computations all the
time. In the course of a day, we might, say:

• check whether we have the right change for an automatic ticket
machine

• decide how much food to buy in order to cook for guests as well
as the household

• make sure that the shop bill has accounted for everything that we
bought

• decide what order to cook the food in, to make sure that the whole
of each course is ready at the appropriate time

2 Introduction

• work out how many days we can afford to spend on our spring
vacation, if we’ve already committed some to a summer holiday
and need to reserve some for a family celebration

• decide whether it’s cheaper to take the train and spend a night in
a hotel on the way or fly directly to our destination

These sorts of computations seem trivial; certainly, they are small and
simple enough for us to perform in our heads. Nonetheless, they actually
require considerable competence in mental arithmetic and sequencing of
activities, as becomes clear if we try to explain how to do them, step by
step, to someone else.

It is important to note that we do not generally need fine precision
for these sorts of daily computations. In the above examples, we want
enough ticket machine change, food or time for cooking, holiday days
left, or travel cost savings, where ‘enough’ allows a reasonable margin
of error. So, we accept that we may make mistakes but are happy with
‘ballpark’ figures.

For more complex—or more costly—computations, however, such as
planning a new kitchen or an extensive holiday, we require greater
assurance and precision. Here, we readily turn first to pencil and paper,
next to a calculator, and, increasingly, to standard software on a personal
computer, such as a spreadsheet. We do so, perhaps, because we believe
that these methods offer a hierarchy of increasing checkability and
reliability as mechanization increases and human computation decreases.
Indeed, these tools enable us to focus on making models of problems—an
area in which human beings are supremely accomplished—rather than
performing complex computations, where we are prone to inaccuracies
and mistakes.

Now, sometimes things still go wrong when we use apparently reliable
tools. Almost always, the mistakes are our own fault—for example, if we
enter the wrong data or faulty equations into a spreadsheet.

Nonetheless, we are plainly aware of the limitations to our tools. Thus,
it’s surprisingly easy to try to carry out a calculation to more decimal
places than a pocket calculator can support. More to the point, we
constantly notice that our personal computers are going ‘too slowly’,
or running out of memory, as we demand more and more from them.
However, these limitations do not seem insurmountable, because we
have got used to the continuous cheapening of computers and memory,
accompanied by increases in their speed and capacity, either through the
use of new technologies or by making better use of existing ones.

For example, just from looking at advertisements, the speed of a single
computer processor seems to have stayed at around 3 GHz since the turn
of the century. However, we are now offered personal computers made
up of multiple cores—first two, next four and eight—with no apparent
limit to the number. Thus, the limited speed of one processor can be
compensated by the use of lots of them.

Furthermore, digital cameras and personal music players now use solid
state memory, whereas previously they were based on magnetic tape,

1.1 Overview 3

magnetic disks, or CDs or DVDs. And laptops and ‘web books’ no longer
necessarily have hard disks, let alone CD or DVD writers.

We have also got used to a very different style of accessing and storing
information, on remote machines run by other people, rather than on
some tangibly physical device on a desk or in a pocket. Just as CDs
killed cassette tapes and LPs for music, and DVDs displaced video for
films, now direct downloading to media players of intangible codes is
replacing personal ownership of physical copies.2 2And books may yet succumb to

eReaders.Contrariwise, we trust more and more material that might once have
been considered our personal responsibility to external repositories of
unknown provenance, collectively known as ‘clouds’. Thus, we not only
implicitly accept remote maintenance of our email folders by our service
providers, but also explicitly upload what we still regard as ‘private’
photographs and documents to unknown physical locations.

Finally, we routinely take advantage of complex computations per-
formed remotely on our behalf. For example, we increasingly optimize
flights for multi-location holidays, check weather forecasts, or find
routes for road journeys, all using online services rather than consulting
timetables, barometers, or maps.

Thus, even if there are restrictions on the machines that we can own
ourselves, there seem to be no bounds to the capacities of the shadowy
world of services and servers at the other end of the Internet. And
even if we constantly run up against the limits of current technology,
or what we can afford, then all our experience suggests that the former
will eventually be overcome, if not the latter.

Alas, as we explore in the rest of this book, there are deep reasons
why such optimism in unlimited technological progress is absolutely
unfounded, even if it seems relatively appropriate. First, when we try
to give a precise characterization to the notion of abstract computation,
we discover that certainty in our reasoning is undermined by troubling
paradoxes at the core of mathematics. And secondly, when we look
at the physical characteristics of our universe, we find that there are
fundamental limits to the properties of the concrete computers that we
might construct.

Now, we are all familiar with the idea that some things are just
not physically feasible—at least, not within physics as we currently
understand it. For example, we generally accept that time travel,
perpetual motion, and faster-than-light speeds are only possible in the
realm of science fiction. Nonetheless, every year people come up with new
attempts to transcend these physical barriers. And every year, scientists
and engineers explore and ultimately refute such attempts.

Similarly, there have been many attempts to develop abstract
hypercomputational systems or concrete hypercomputers, which seek
to transcend the mathematical and physical limits to which we have
just alluded. Thus, as well as exploring limits to computation and to
computers, we will also discuss attempts to overcome them, and consider
why they are ultimately ill-founded.

4 Introduction

1.2 Summary

2. What is computation? In this chapter, we address the abiding
mystery of why mathematics has been so effective in science.
We attempt to answer it by shifting attention from maths as
something to do with ideal numbers on to the practical history of
computation, starting with the foundations of our ability to count,
and proceeding through the use of early aides to calculation.

3. Mechanical computers and their limits. Here, we focus on
the idea of the computer as a distinct physical system that is set
up to to emulate another part of reality. This is easier to see with
some of the earlier mechanical computers, so we pay attention

4. Logical limits to computing. We then go on to discuss how the
modern idea of the universal computer arose from the history of
mathematics in the late nineteenth and early twentieth centuries,
and the attempt to provide a satisfactory basis to number theory.
This leads up to a description of the Turing Machines and the
halting problem.

5. Heat, information, and geometry. Computers are physical
devices and as such are subject to constraints imposed by the laws
of thermodynamics and geometry. In this chapter, we explain the
concept of entropy and how it relates to information. We examine
the extent to which entropy generation limits what computers
can do.

6. Quantum computers. One of the most exciting developments
in theoretical computer science in the last 30 years has been the
proposal to apply quantum mechanisms to computation. We look
at what quantum theory is, how it allows computation in terms
of qubits, and how these might be harnessed to perform novel
algorithms. We also look at the way in which quantum physics
limits what can, in principle, be attained by analogue computing
devices.

7. Beyond the logical limits of computing? Having covered
classical computing theory and looked at the constraints imposed
by physics, we then re-examine issues in classical computation in
the light of these new limits and—if we take them seriously—
ask what this means for our understanding of real-numbered
calculation.

8. Hypercomputing proposals. In our final chapter, we examine a
number of blue-skies proposals that have recently been suggested
for going beyond the Turing Limit in computation. These involve
esoteric relativistic physics and new paradigms for computation
using more conventional physics.

1.3 Acknowledgements 5

1.3 Acknowledgements

We would like to thank the following people for discussions about and
help with various ideas in this book: Gregory Chaitin, Naom Chomsky,
Allin Cottrell, Eugene Eberbach, and Victor Yakovenko.

We alone are responsible for any mistakes in this book. We may be
contacted at:

• Paul Cockshott, University of Glasgow,
William.Cockshott@glasgow.ac.uk

• Lewis M. Mackenzie, University of Glasgow,
Lewis.Mackenzie@glasgow.ac.uk

• Gregory Michaelson, Heriot-Watt University,
G.Michaelson@hw.ac.uk

2 What is computation?

2.1 The apparent mystery
of maths 6

2.2 Counting sheep 11
2.3 Counting materialized

in our own bodily
movements 16

2.4 From ‘aides-memoire’ to
the first digital
calculating devices 23

2.1 The apparent mystery of maths

In an influential paper, Wigner (1960) asked why it was that maths was
so ‘unreasonably effective’ in describing physical reality. The question
he asked is similar to those that we are dealing with in this book. Our
topic is, on the surface, slightly narrower. We are dealing with computing
rather than maths in general. But if we look at what Wigner has to say,
we find that he too is concerned primarily with the practical application
of maths, and that practical application to physics always involves doing
real computations. Therefore, Wigner’s concerns make a good starting
point.

He starts with a perhaps apocryphal tale:

There is a story about two friends, who were classmates in high school, talking
about their jobs. One of them became a statistician and was working on
population trends. He showed a reprint to his former classmate. The reprint
started, as usual, with the Gaussian distribution and the statistician explained
to his former classmate the meaning of the symbols for the actual population,
for the average population, and so on. His classmate was a bit incredulous
and was not quite sure whether the statistician was pulling his leg. ‘How can
you know that?’ was his query. ‘And what is this symbol here?’ ‘Oh,’ said
the statistician, ‘this is pi.’ ‘What is that?’ ‘The ratio of the circumference of
the circle to its diameter.’ ‘Well, now you are pushing your joke too far,’ said
the classmate, ‘surely the population has nothing to do with the circumference
of the circle.’

Posed in this way, the fact that mathematics proves so useful to science
and to understanding the world in general does seem quite remarkable.
But look at this example. Is it really mathematics, or is it computation
that is proving useful?

The Gaussian distribution, π, and so on are being used in order
to perform particular calculations, by means of which the statistician
intends to make predictions about the future population. On most
occasions when we come across examples where maths proves useful, it
is not abstract maths that is directly useful, but applied mathematics.
Applied maths is used to perform calculations, and these either guide
us in our practical engineering or allow us to make predictions in
experimental science. So we can shift Wigner’s question and ask instead
about the remarkable usefulness of applied mathematics.

2.1 The apparent mystery of maths 7

Prior to the universalization of automatic computers, the contempo-
rary distinction between computation and mathematics did not exist.
The one was seen as just a necessary component part of the other. Both
were intellectual activities, and both were performed by mathematicians,
albeit with different specialisms. Now, when computing is done by
machines, we tend to think of them as distinct things: maths as an
intellectual discipline, computation as a rote automatic process. Of
course, everyone concedes that the actual programming of computers
is a tricky intellectual task that may involve mathematical skill. But it
is on computing that science and engineering now depend for practical
predictions—whether the personnel are working at Boeing on the design
and control of an airliner, or in the Met Office on long-term climate
forecasts. So we can now focus in a bit on Wigner’s question and ask
why it is that computers can be so unreasonably effective in the practice
of science.

So long as the question was posed in its original form, it seemed
an insuperable enigma. True enough, Wigner did give an answer.
He attributed the effectiveness of maths to the spatial and temporal
invariance of the laws of physics. That no doubt plays its part, but the
answer remains one that would appeal mainly to physicists, whose vision
of the practical application of mathematics is very much limited to their
own field. It does really answer the query about π in his initial anecdote.

We can allow that the maths required to do physics would be far more
complicated were the laws of physics not spatially invariant, without
gaining much insight into why maths should work in other domains. Why
does maths work for predictions about populations, or in the analysis of
genetic inheritance?

Following up on Wigner, Hamming asked:

Furthermore, the simplicity of mathematics has long been held to be the key
to applications in physics. Einstein is the most famous exponent of this belief.
But even in mathematics itself the simplicity is remarkable, at least to me; the
simplest algebraic equations, linear and quadratic, correspond to the simplest
geometric entities, straight lines, circles, and conics. This makes analytic
geometry possible in a practical way. How can it be that simple mathematics,
being after all a product of the human mind, can be so remarkably useful in
so many widely different situations?

(Hamming, 1980).

We can visualize what Hamming is talking about in Fig. 2.1. There,
we have Isaac Newton using the ideas of geometry to elaborate his
Mathematical Principles of Natural Philosophy. These are pure thoughts,
but, remarkably, the mathematics mirrors what is happening in the solar
system. There seems an uncanny correspondence between some simple
principles of geometry in one man’s mind and the movements of planets
millions of miles away.

To explain his ideas to others, Newton had to resort to pictures,
diagrams, and arguments on the printed pages of his great book. The
book itself was material, and copies survive to this day. While the
thinking that went into writing the book was fleeting and perished along

8 What is computation?

The physical world

Newton

Fig. 2.1 Newton thinks.
with the man, the maths seems eternal, independent of the man and of
his physical printed book. It is just as able to predict heavenly motions
now as it was in the seventeenth century.

If we think of things in this way, as a correspondence between two
quite different domains—that of thought and that of reality—the whole
process seems so remarkable as to tempt us to ascribe some mystical
properties to mathematics:

Thought → Maths ⇐⇒ Reality
Mystical connection

But now look at Fig. 2.2, which depicts the early days of space
exploration. A boffin sits at his old valve computer and gets it to work
out the course that will take a probe to Mars.

At one level, this shows the same process as in Fig. 2.1, but the very
physicality of that big grey metal box in front of the boffin hints at
something different. The similarity is that Newton’s laws, and their

Fig. 2.2 NASA computes.

RealityComputer model

2.1 The apparent mystery of maths 9

associated mathematics, are being used in each case. But the fact that
the calculations are now taking place in a machine makes it harder to
see the process as being one of a correspondence between mathematical
thought and reality.

To do his calculations, the NASA scientist would have had to feed the
computer with a whole lot of data obtained by astronomers. He would
have had to develop programs to represent the dynamics in question.
And then he would have set the machine working. We say that he
would have had to develop programs, but that is not strictly necessary.
The computer in the picture is actually an analogue one, which was
programmed by rewiring it using the patch panel behind the operator.

So the correspondence here is actually between the dynamics of one
physical system, the analogue computer, and the dynamics of another—
the rocket that the designer wishes to control:

Programming
Dynamics of computer ←→ Dynamics of reality

Modelling connection

The above diagram is representative of a lot of what we now call
‘computing’. In this book, we will be examining just how it is that we
can set up a physical system to emulate another system. Our approach
is that of practical computer scientists concerned with real computing
systems, ones that are either buildable now or could in principle be built.
We think that this computer science perspective also helps with other
problems raised by Wigner:

The great mathematician fully, almost ruthlessly, exploits the domain of
permissible reasoning and skirts the impermissible. That his recklessness does
not lead him into a morass of contradictions is a miracle in itself: certainly it
is hard to believe that our reasoning power was brought, by Darwin’s process
of natural selection, to the perfection which it seems to possess.

(Wigner, 1960).

Does it demand a very high level of evolved reasoning power to do what
a great mathematician does?

Does this make unreasonable demands on evolution?
The objection that we never had much selective pressure on us to

master calculus during the Palaeolithic is fair enough. But need we
imagine a specific selective pressure in the past for every behavioural
trait that we observe in the present?

In one sense, the answer has to be no. The diversity of human cultural
behaviour is so great that nobody seriously contends that it is all in the
genes—the social behaviour of the bee, yes, but the social behaviour of
humanity, no. The calculus is clearly a cultural product. It is something
that arose at a specific time with Newton and Leibniz, something that is
learned by individuals rather than being an innate skill. This, however,
still leaves open the question as to why we are able to do the reasoning

10 What is computation?

required by calculus. The specific details of the calculus had to be
developed by Newton, but why did he or any other person have the
reasoning ability to deal with something so abstract?

One possibility is to consider the implications of a very simple
computer, the Turing Machine, described in Chapter 4. This simple
device has a universal mathematical ability.

The key point is that we do not need anything more than a Turing
Machine equivalent process on the part of the mathematician. A mathe-
matician does not master calculus just by innate mental power. He or she
uses a set of learned rules plus external aids—chalk and blackboards, and
so on. Our dependence on external computing aids, from simple paper
and pencils to digital computers, is another theme that we explore.

The computational power of the Turing Machine is universal. Simi-
larly, a person, with a sufficient starting set of mathematical rules plus
external notational aids, also has a universal mathematical ability. We
do not need to assume a series of specific evolved abilities in the brain to
handle the whole diversity of maths. All we need is a certain threshold
of ability. Provided that a certain threshold, the Turing Universality
Threshold, is passed, then the computational system composed of
mathematician, innate reasoning primitives, and external notations will
also be universal:

It is true, of course, that physics chooses certain mathematical concepts for the
formulation of the laws of nature, and surely only a fraction of all mathematical
concepts is used in physics.
...

A possible explanation of the physicist’s use of mathematics to formulate
the laws of nature is that he is a somewhat irresponsible person. As a
result, when he finds a connection between two quantities that resembles
a connection well-known from mathematics, he will jump at the conclusion
that the connection is that discussed in mathematics simply because he
does not know of any other similar connection. It is not the intention of
the present discussion to refute the charge that the physicist is a somewhat
irresponsible person. Perhaps he is. However, it is important to point out that
the mathematical formulation of the physicist’s often crude experience leads
in an uncanny number of cases to an amazingly accurate description of a large
class of phenomena. This shows that the mathematical language has more to
commend it than being the only language that we can speak; it shows that it
is, in a very real sense, the correct language.

(Wigner, 1960).

A point made by Wolfram (2002) is that there may be multiple different
ways of approaching this, with different mathematical models. What
determines how it is represented is a matter of what mathematical
tools were available to the modeller. Consider the problem of feedbacks
occurring in cellular biology. This can be modelled using differential
equations, process algebra, or Boolean algebra. Because the modelling
is now done using a computer, all of these choices come down to the use
of different software to model a real system.

We are no longer surprised to find multiple software packages available
for some task. The mathematical techniques that software packages use

2.2 Counting sheep 11

are one way in which these packages may differ. Wigner agrees that only
a fraction of all the available mathematical concepts have turned out to
be of use in physics. Similarly, only a tiny fraction of all the possible
programs are suitable for a given computing task. What is interesting
is not that some maths and some programs are useful, but the process
by which useful programs and mathematical techniques are developed.
Hamming observes that:

The idea that theorems follow from the postulates does not correspond to
simple observation. If the Pythagorean theorem were found to not follow from
the postulates, we would again search for a way to alter the postulates until
it was true. Euclid’s postulates came from the Pythagorean theorem, not the
other way round.

(Hamming, 1980).

This is a very good point, and it fits in with the view that the develop-
ment of mathematics should be seen a form of software development.
Chapter 4 will look at the relationship between issues in software
development and those that arise in mathematical proof.

One answer to Wigner’s problem is that the simple maths and the
simple geometric entities that he describes are systems with a low
information content, and that they can be generated by processes with
a low information content. This argument can be developed on the basis
of material in Chapter 5.

2.2 Counting sheep

I have tried, with little success, to get some of my friends to understand my
amazement that the abstraction of integers for counting is both possible and
useful. Is it not remarkable that 6 sheep plus 7 sheep make 13 sheep; that
6 stones plus 7 stones make 13 stones? Is it not a miracle that the universe
is so constructed that such a simple abstraction as a number is possible? To
me this is one of the strongest examples of the unreasonable effectiveness of
mathematics. Indeed, I find it both strange and unexplainable.

(Hamming, 1980).

In the above quotation from his paper ‘The unreasonable effectiveness
of mathematics’, Hamming points to how computing got started. People
learned to count out of practical necessity. Once animals had been
domesticated and were being herded, the shepherds needed to know
whether they had lost any sheep. Suppose you set off with a herd in the
morning and then return to the pen at sunset. How, if you can’t count,
can you tell if you have lost any?

If sheep were more placid, you could line up your sheep and put stones
in front of them, one per sheep. More practically, you could set up a pile
of pebbles outside their pen. As the sheep come out, take pebbles from
the pile and put them in a bag. Allocate six sheep to one shepherd and
seven to another, and get them to lead the sheep up to the pasture and
back. When the sheep come back, line the sheep up (or let them into

12 What is computation?

a pen one at a time) and pull one stone out of the bag for each sheep.
If they do not correspond, then you know a sheep has gone missing
(or another sheep has been picked up along the way). At this stage of
development, the society need not have any specific language to refer
to numbers; the stones substitute for words. Menninger (1992) cites the
Wedda of Ceylon as still being at this level in the 1960s.

This can be extended to deal with the shepherd’s two sons, each of
whom takes part of the flock to different pastures. The elder son is given
the greater part of the flock and a jar of his stones is set aside, one stone
for each sheep that he led away—seven stones in Hamming’s example.
The younger son takes the rest, putting a stone in his own jar for each
sheep that he takes. When they come back, the father can determine if
either son has lost a sheep by comparing the stones with the sheep as
they are penned for the night.

Hamming identifies in this simple procedure a real marvel. ‘Is it not a
miracle that the universe is so constructed that such a simple abstraction
as a number is possible?’ he writes. But is it really such a marvel?

What is required for it to work?
Suppose, instead of mere pebbles, that the shepherds went one better

and made little clay models of their sheep, each in the likeness of a
particular sheep. Given that people can become sufficiently familiar
with their sheep to recognize them as individuals, this is not impossible.
Now when Snowflake steps out of the pen, the shepherd puts the clay
Snowflake into the jar; as Misty trips along, in goes clay Misty; and
so on. In the evening, clay Snowflake comes out of the jar as the real
Snowflake comes home. When, at dusk, clay Misty is left in the jar, the
shepherd fears that poor Misty has met Mr Wolf.

This system is more complicated, since individual sheep must be
recognized. But it brings out the essential properties of sheep and tokens
that are exploited in other token-based counting mechanisms.

Is there anything remarkable about this?
Not really: all it requires is that stones and clay tokens don’t

evaporate, and that the bag or jar you kept them in has no holes. There is
nothing mysterious about pebbles. The mystery only arises if you think
that there is an abstract domain of numbers quite separate from counting
technologies. If we focus instead on the actual historical development
of enumeration systems, each step is pragmatic and understandable.
From the use of tokens by herders stored in perishable bags, a second
step developed. Suppose that we have a more advanced form of society,
with a temple-state that administers economic resources. A herder is
despatched from one settlement to another with a herd of sheep. He is
given a bag to record, using tokens, the number of sheep he set out with.
At the other end, the officials compare the sheep he delivered with the
tokens. The problem is that if he simply takes a bag of sheep tokens,
there is nothing to stop him meeting his brother along the way, diverting
a couple of sheep, and throwing away a couple of tokens. Everything still
tallies at the end of the journey.

2.2 Counting sheep 13

To get round this, bags were replaced by sealed clay containers inside
which the tokens were placed (Nissen et al., 1993). These containers were
marked with the temple seal to verify who had inserted the tokens. This
provided a tamper-proof way of sending and keeping a count of stock.

Next, it was realized that it was possible to mark the outside of the
container with impressions showing how many tokens were inside. If
there were four sheep tokens inside, then a sheep token would be pressed
into the outside of the container four times whilst the clay was still soft.
It was but a small step, then, to dispense with the tokens inside and
just use solid clay tablets, with an indicator on the front of what would
previously have gone into the container. Several systems were initially
used to write down numbers of tokens. Base 60 was used for inanimate
objects, as in Fig. 2.3. A base 10 notation was used for animals, and an
alternating base 60 and base 120 system for rations (Englund, 1996).

At this point, you have the development of a written number system,
and with the symbols for the numbers, the idea of the numbers
existing independently of the things that they counted took hold of
people’s imaginations.

If you look at the number system in Fig. 2.3, it uses a number of
distinct signs for ones, tens, sixties, and so on. Within one of these
scales, a number is denoted just by repeating the symbol. So the number
three is three indentations using the stem of a small stylus, 30 is three
indentations using the end of a small stylus, and so on. There is a
limit to the number of units that we can take in at a glance. Our
ability to take in a small number at a glance is called subitizing. Up
to four dots, arranged randomly, can be recognized at a quick glance
(Mandler and Shebo, 1982), but above four the time taken to recognize
the number rises, Fig. 2.5 and above five dots people have to count. If
the dots are arranged in regular patterns, however, this aids our ability
to quickly judge how many there are. A number system such as the
proto-Elamite one builds on our inherent subitizing ability to recognize
the number of units and tens in a written number. If a people lack both
the language to describe numbers and a technology to represent them,
their ability to handle numerosity is limited to what is provided by
our inherited subitizing faculty (Gordon, 2004). The subitizing faculty

10606003600

106106

1

The number 34The number 132
Fig. 2.3 The proto-Elamite numeral
system using alternate base 10 and 6
for its numbers.

14 What is computation?

seems to be primitive in primates, rather than being a derived human
characteristic. Chimpanzees share the ability to recognize small numbers
and can even be taught to associate them with written numerals (Suzuki
and Matsuzawa, 1997).

Subitizing is limited to very small numbers and seems to be a purely
visual process. We have overcome these initial limits by the use of our
language ability and through the use of external aids.

The use of multiple symbols, with a circle representing 10, is more
complicated than simply putting stones in bags, or model sheep in jars.
An intermediate step in this development was the use of special tokens
representing ten sheep, or ten goats, and so on (Nissen et al., 1993).
We are so used to doing sums with Arabic numbers that computational
systems based on tokens or pictures of tokens seem a bit cumbersome,
until we realize that many of our daily computations are still done using
these primitive computational aids. Figure 2.4 shows a token computing
system that is still in widespread use. If you compare it to Fig. 2.3,
you can see that the same basic principles are present in both systems.
Different token types or symbols represent different scales of quantity,
and the accumulation of tokens models accumulations of the things
that they represent.

Let us consider how these could be used for our original example of
counting sheep. Suppose that there are what we would call 32 sheep in
the pen. The farmer has a bag of unit sheep tokens and another bag of
tokens, each of which represents ten sheep. As the beasts are led out, the
farmer puts unit sheep tokens into a jar one by one. When all the sheep
are out, he piles all the tokens in his jar on the ground. He then takes
groups of ten of the unit sheep tokens from his pile and puts them back
in his unit bag. Each time he does this, he puts a ten-sheep token into
his jar. At the end, he is left with two unit tokens in his original pile,
and three of the ten-sheep tokens in his jar. To record the number of
sheep being sent out with the shepherd, he now makes two cup-shaped
marks and three dots.

The invention of tokens of different value overcame the limit to
calculation posed by the weight of a mass of individual tokens.

Fig. 2.4 A token-based computing
system used in part of Northern
Europe.

1

2

5

10

20

50

100

The number 132

The number 34

2.2 Counting sheep 15

 0

 500

 1000

 1500

 2000

1 2 3 4 5 6 7

M
ill

es
ec

on
ds

Number of dots

’subit.txt’

Fig. 2.5 The time taken to recognize
how many dots are present in a group is
almost constant up to four, and above
that the recognition time increases.

So the process of recording a number on the clay tablet would have
required some prior computational aids—tokens in our assumption. But
we have skipped over the question of how the farmer got the piles of
ten tokens. Well, the obvious computational aide for this is shown in
Fig. 2.6—we are all born equipped to count to ten. This explains why
ten occurs so often in notations for numbers. Think of the Roman or
European number system in Fig. 2.7. The first two rows show the close
relationship between the symbols for the numbers up to five and the
corresponding hand-signs. The rows below that, for the tens and to 50
and 100s to 500, show a recursive application of the principle derived
from the ones and fives.

Another technology that may have fed into the Roman number system
is that of tallying, the carving of notches on sticks to count things (Ifrah,
1995). These markings remain in common use, using paper and pencil.
They rely on our subitizing ability to recognize patterns of up to four
strokes.

Fig. 2.6 A primitive digital computer
displaying the numbers two and five.

16 What is computation?

Fig. 2.7 Roman numbers and their
origins in finger counting according to
Ifrah.

2.3 Counting materialized in our own
bodily movements

2.3.1 Fingers

Counting on the fingers is both a motor process and a visual process,
with the visual process acting as a reminder for the motor sequence. If
the use of the fingers is as shown in Fig. 2.7, then visual reminders are
not needed; the thumb holds down the fingers until they released. This
allows one-handed counting whilst the visual attention and the right
hand are used for another task. The thumb imposes a sequence on the
release of the fingers, diminishing the mental effort involved. The same
basic mechanism of counting to five that the fingers provide is carried
over to tallying. This was initially done by carving notches in tally sticks
as shown in Fig 2.8, but the word has persisted in our language to mean
any process of counting objects.

Lakoff and Nunez (2001) argue that much of our mathematical ability
is grounded in primitive conceptual and motor schema primitive to the

Fig. 2.8 Notched tally sticks are
another way of counting in multiples of
five. A tally for 12 is shown alongside a
modern mechanical tally.

2.3 Counting materialized in our own bodily movements 17

nervous system. Motor control processes, they argue, have a basic schema
of components, some of which may be omitted in particular actions:

1. Readiness to act.
2. Starting up.
3. The main process.
4. Possible interruption or resumption.
5. Iteration.
6. Checking for goal achievement.
7. Performing completion actions.
8. The finished state.

A motor schema may include nested subschema that have a similar
structure to the main schema. In the case of finger counting, this schema
would map on to the following steps: (1) place thumb over index finger,
tense index finger, watch for event; (2) observe an event—for example,
a sheep leaving a pen; (3) move thumb, causing finger to fly up; (5)
iterate, going back to step 1; (6) check whether all four fingers are
released; (2) observe an event; (7) complete process by raising the
thumb.

This is a comparatively simple iterative process, with the nervous
sequencing proceeding independently of the count—the count itself being
held on the hand as a mechanical register.

2.3.2 Voice

What computational capacity must our brains have to allow us to count
aloud?

Counting aloud is a motor process, a more complex one than finger
counting, since it is one in which the sequencing has to be all internally
driven by the nervous system. The fingers are no longer there outside
the brain to act as mnemonics. It presupposes a process something like
that shown in Fig. 2.9. This involves a type of sequencing that electrical
engineers have studied under the rubric of finite state automata. A finite
state automaton is a physical system that has a finite number of states,
transitions between those states, and actions. They were examined in
the context of electronic control circuits by (Moore, 1956) and extended
to linguistics by (Chomsky, 1956). They have since become a foundation
block for the analysis of computer languages and the design of computer
hardware.

Chomsky had been investigating the possibility of formally specifying
natural languages. He had classified grammars into classes. These classes
of grammars are now referred to as Chomsky class 0, class 1, class 2,
and class 3 grammars. It turned out that Chomsky class 2 and class
3 grammars are most suitable for describing programming languages,
and the concepts involved in these grammars are also relevant to
understanding what goes on when a person counts out loud. To grasp
what these different classes of grammars are, we need to go into a little
formal notation.

18 What is computation?

Fig. 2.9 Sequencing for counting.

+

+

1 initiate

2 initiate

3 initiate

Motor actions
to say TWO

Motor actions
to say ONE

The syntax or grammar of a language can be thought of as being made
up of a four-tuple (T ; N ; S; P), where:

• T stands for what are called the terminal symbols of the language.
In a human language, these terminal symbols are the words or
lexicon of the language. In a computer language, they are things
such as identifiers, reserved words, and punctuation symbols.

• N stands for what are called the non-terminal symbols of the lan-
guage. In a human language, a non-terminal would be grammatical
constructs such as a sentence, a noun clause, or a phrase. A com-
puter language is likely to have a large number of non-terminals,
with names such as clause, statement, and expression.

• S is the start symbol of the grammar. It is one of the non-terminals,
and its meaning will become clear shortly.

• P is a set of productions or rewrite rules. These tell you how
to expand a non-terminal in terms of other terminals and non-
terminals.

This sounds a bit dry, but it will be clearer if we give an example.
Suppose that we wish to define a grammar that describes the ‘speech’
of a traffic light. A traffic light has a very limited vocabulary. It can
say ‘red’, ‘amber’, or ‘green’, or ‘red-and-amber’. These are the terminal
symbols of its language.

T = { Red, Green, Amber, Red-and-amber }

At any moment in time, the traffic light is in a current state and after
some interval it goes into a new state that becomes its current state.

2.3 Counting materialized in our own bodily movements 19

Each state is described by one of the colours of T . This can be expressed
as a set of non-terminal symbols, which we will call

N = { going-red, going-green, going-amber, going-red-and-amber }

We will assume that when the power is applied for the first time, the
light enters state going-red. Thus

S = going-red

A traffic light has to go through a fixed sequence of colours. These are
the syntax of the traffic light language. Which sequence it goes through
is defined by the productions of the traffic light language. If the light is
in going-red, then it must output a red light and go into going-red-and-
amber. We can write this down as follows:

going-red → Red going-red-and-amber

This is an individual production in the traffic light language. The
whole set of productions is given in Fig. 2.10.

This combination of (T ; N ; S; P) ensures that the only sequences of
colours allowed by the traffic light are the cycles shown in the diagram.

going−red

P = {

}

going-red → Red going-red-and-amber
going-green → Green going-amber
going-red-and-amber → Red-and-amber going-green
going-amber → Amber going-red

going−red−and−amber

going−green

going−amber

Finite State Automaton

Fig. 2.10 Production rules and
behaviour of a traffic light.

20 What is computation?

The traffic light grammar is what Chomsky classified as type 3 and
what computer scientists now call a regular grammar. Regular grammars
can be produced by finite state machines. Finite state machines are
popular among electrical engineers constructing simple control devices,
since they can be constructed using very few components as shown in
Fig. 2.11. If we look back at Fig. 2.9, you can see that the motor control
structure shown there is similar to the finite state machine in Fig. 2.10.
The difference is that the traffic light control process goes in a cycle,
whereas counting is potentially unlimited. What sort of grammar is
required to express, say, counting up to 100 in English?

Clearly, we could do it with a class 0 grammar, but that would require
the brain to hold a finite automaton with 100 states for the purpose. This
is obviously doable, since people can learn poems that are much longer
than that, but it does not seem plausible that it should be done that
way, since to count to 1000 we would have to learn a finite state machine
with 1000 states. Instead, we make use of patterns to save on learning so
many things by heart. We make use of the repeating pattern from one
to nine in counting aloud from 21 to 29, or 31 to 39. The technical issue
is how this sequence is made use of. If we counted as follows:

twenty, one, two, three, four, five, six, seven, eight, nine, thirty, one,
two, three,. . .

then what Chomsky called a class 2 or context-free grammar would suffice
for counting. Class 2 grammars have productions of the form

a0
a1
a2
a3
a4

d5
d6
d7

d4
d3
d2
d1
d0

Register

Read only
memory chip

Output wires

Next state wires

Current
state

Clock

Sense input

Fig. 2.11 A finite state machine suitable for simple sequencing can be built out of a register chip and a read only memory
(ROM) chip. In the picture, the register latches a new address for the ROM each clock cycle. The ROM outputs a next state
and a set of wires that go to control things such as the lights in Fig. 2.10. Thus each cycle it jumps to a new state. The
behaviour of the machine is then defined by the table loaded into the ROM. One or more sense inputs can also be provided,
which provide additional address inputs. The sense inputs could be fed by things such as the pedestrian crossing button. The
presence of the sense inputs allows the next state transitions to be conditional on the sense input. Since the sense inputs are
addresses, each sense input used means a doubling of the table size to handle both the true and false variants of the sense
input.

2.3 Counting materialized in our own bodily movements 21

a → b

where a is a non-terminal symbol and b is some combination of terminals
and non-terminals. Class 2 grammars are more powerful than class 3
grammars because they allow the use of nested patterns. We can, for
example, write down context-free grammar that defines how we say
the numbers from 1 to 999 999 in English. The grammar below is an
extension and clarification of one given by Power and Longuet-Higgins
(1978):

word number role

one 1 digitword
two 2 digitword
ten 10 firstten
nine 9 digitword
. . .

Lexicon of English Numbers. eleven 11 teenword
. . .

nineteen 19 teenword
twenty 20 tenword

. . .
ninety 90 tenword

hundred 100 hundredword
thousand 1000 thousandword

Production rules. number → uptothousand|thousands|thousandsplus
andword → and
numberword → tenword|teenword|digitword|firstten
uptohundred → numberword| tenword digitword
hundreds → digitword hundredword
hundredsplus → hundreds andword uptohundred
uptothousand → uptohundred|hundreds|hundredsplus
thousands → uptothousand thousandword
thousandsplus → thousands andword uptohundred|

thousands hundredsplus

In the above rules, we use the standard convention that | marks
an alternative production. Consider the number 149 234, which we
pronounce as one hundred and forty nine thousand two hundred and
thirty four. We can draw a parse tree of how this can be produced by
the above grammar as shown in Fig. 2.12.

The same grammatical derivation allows us to say the hundreds of
thousands as allows us to say the hundreds. This grammar is certainly no
more complex than we use in day-to-day speech, so saying an individual
large number just involves learning a few additional rules of the type we

22 What is computation?

Fig. 2.12 Parse tree for the linguistic
production ‘one hundred and forty nine
thousand two hundred and thirty four’.

 hundreds andword uptohundred

and

digitword

hundred

hundredsplus

 tenword digitword

 hundreds andword uptohundred

and

digitword

hundred

hundredsplus

 tenword digitword

number

thousandsplus

thousands

uptothousand

one

two

forty nine

thirty fourthousand

149,234

shared

shared

are already familiar with. It is a well-established principle of grammar
theory (Hopcroft and Ullman, 1979) that context-free languages can be
produced by a stack automaton. A stack machine is the composition
of an FSM and a stack on to which the state word can be pushed or
from which the state word can be popped. This allows the automaton
to perform nested operations. In the above case, the nested operation is
the saying of a number in the range 1–999. Is this enough for counting?

No, because a classical stack machine can only look at the top of the
stack. Suppose that we are counting as follows:

one hundred and forty nine thousand two hundred and thirty four
one hundred and forty nine thousand two hundred and thirty five
...
one hundred and forty nine thousand two hundred and thirty nine
one hundred and forty nine thousand two hundred and forty
one hundred and forty nine thousand two hundred and forty one

The italic letters indicate the words that we have to ‘stack’ in our
minds to go on to the next step. The transitions between the final digits
could be carried out using the simple automaton in Fig. 2.13. This may
look like a simple stacking operation, but it is not.

In order to say each number in the correct order, we have to have
access to all the stacked words so that we can repeat them, whereas
a classical stack machine can only see the top word of the stack.
This means that the grammar required for counting, as opposed to saying
one number, is context sensitive. But since natural languages do contain
context-sensitive components to their grammars, it is plausible that the

2.4 From ‘aides-memoire’ to the first digital calculating devices 23

FinishStart

s1

s2

s3

s4

s5

s6

s7

s8

s9
One

Two

Three

Four Five

Six

Seven

Eight

Nine

Fig. 2.13 The repeated pattern
invoked when counting aloud in
English.

process of counting rests upon the same linguistic computing ability that
is used to produce normal speech.

If we relied on the primitive ability of the motor control system to
perform sequences of actions that correspond to regular grammars, then
the ability to count would have been greater than that allowed by
subitizing, but still small. By using our more advanced grammatical
abilities, we can overcome these limits and count much higher.

2.4 From ‘aides-memoire’ to the first
digital calculating devices

The process of counting aloud is error prone. We can easily lose track of
the numbers we are reciting. So the fallibility of our short-term memory
poses another limit, this time to unaided mental computation—hence
the reliance on tallies and counters for practical tasks. Tallies can be
simple marks as in Fig. 2.8 or they can be mechanical devices. But these
just count, the most basic computing operation. How did we get beyond
counting to adding?

Well, if you are counting with pebbles in jars, then all you need to do is
pour the contents of one jar into the other and you have done an addition.
This operation is still reflected in language. When baking a cake, you
add the sugar to the flour in the bowl. Physical addition as pouring
is the primitive operation, arithmetic addition the derivative operation.
If the materials you are pouring are counting pebbles, then pouring has

24 What is computation?

the same effect as addition. Take two flocks of sheep into a single pen
one after the other; supposing that you have pebble jars to count each
flock on its own, then pouring one jar into the other gives you the total
number of sheep in the pen. There is no mystery to this—all it requires
is that our reliance on sheep and pebbles doesn’t vanish mysteriously.

Next, assume that you have tokens in your jars, tokens that can repre-
sent different numbers of sheep as introduced on page 14. Again, you sim-
ply add the contents of one jar to the other and you will have an accurate
record of the number of sheep in the two flocks. Why does this work?

It works because we have a procedure for translating the high-valued
tokens back into unit tokens.

We could either take both jars individually and whenever we find a
ten-sheep token in the jar replace it with ten individual sheep tokens, or
we could wait until after we have put all the mixed tokens into a single
jar before we do the translation. Whichever order we do it in, we end
up with the same number of unit tokens in the final jar. Nowadays, we
teach children that 10(b + c) = 10b + 10c, which is just an abstract way
of talking about the same process.

The old practices persist. Who, when collecting the coins from both
trouser pockets into one pocket, bothers to count the coins first and add
their numbers?

There’s no need—the old addition-as-pouring method still works well
enough. For business or state accountants though, more formal ways of
dealing with collections of coins had to be developed, and for this purpose
people reverted to using beads or stones, the value of which depended on
their position on a reckoning board or counting table, abakion in ancient
Greek, an early example of which was found in Salamis, and is shown in
Fig. 2.14. It appears to have been designed to do additions in units of
the then Greek monetary system of talents, drachmas, and obols. Unlike
counting with coins, where the numerical value is marked on the coin,

Fig. 2.14 The Salamis reckoning
table. The Greek letters denote units of
coinage and indicate the values of coun-
ters in different columns: one drachma
= six obols. It is shown ready to add 51
drachmas (lower half) to 162 drachmas
(upper half). To perform the addition,
the counters on the lower half are
pushed up to the upper half, moving
the corresponding row of counters in
the upper half up to make space. Subse-
quently the representation is renormal-
ized by removing ten counters from any
drachma column with more than nine
and adding one to the column to the
left.

Talents = 6000

Drachmas

1001000 10

1 1/2 1/4 1/8

1

Obols

2.4 From ‘aides-memoire’ to the first digital calculating devices 25

with the abakion, the value assigned to a counter depended the row in
which it was placed.

If two numbers are to be added, tokens are arranged above and below
the line as shown. To perform the actual addition, counters on the lower
half are slid to the upper half, sliding the corresponding rows of counters
in the upper half up to make space. This step has already performed
the physical addition. The top half of the columns now contains the
correct value, but it may be denormalized. That is to say, some columns
may have too many tokens in them—more than nine for the drachmas,
but more than one for the 1

2 , 1
4 , 1

8 obol columns. Subsequently, the
drachma representation is renormalized by removing ten counters from
any column with more than nine and adding one to the column to the
left. The obol representation is renormalized by adding one drachma and
taking away six obols if there are more than five obols in total.

The step from the Greek abakion to the more recent abacus is a
small one. The main shift is that the Salamis abakion was a two-register
device, whereas most modern abacuses are single register. According to
Menninger (1992, pp. 305–315), the Roman hand abacus (Fig. 2.15),
derived from the abakion, spread to Asia, where modified variants of it
are still used. In the twentieth century a hand-operated device that was,
in essence, an abacus was mass produced as a pocket calculator, as shown
in Fig. 2.15(b). One of the authors remembers using these in school.

The Romans continued to use large reckoning tables like the Salamis
one, on which they ‘calculated’ using calculi or small pebbles. The
pebbles that first served as counters were later replaced by discs like
those used in the modern game of draughts.

(a) (b)

Fig. 2.15 Pocket abacuses two millen-
nia apart. (a) A diagram of a Roman
hand abacus. Note that it holds two
rows, one to hold the units and the
other the fives; successive columns indi-
cate powers of ten. The body was a flat
bronze plate with movable studs that
slid in slots. (b) The Addiator, a pocket
abacus from the early twentieth cen-
tury that used sliders rather than beads
and that was operated with a stylus. To
add, one inserted the stylus and moved
the appropriate slider down—unless a
red colour showed, in which case one
moved it up and round to perform a
carry.

26 What is computation?

2.4.1 Multiplication

We have been arguing that computing techniques were ways in which
people predicted or modelled the world. This is clear enough with
counting and adding, which originate with the need to model movable
possessions. The requirement to multiply arises as society becomes more
complex. Architecture requires multiplication to determine quantities of
bricks needed to construct walls, pyramids, tiled floors, and so on. The
organization of work teams requires calculation of the total quantities
of rations that people will eat. Extensive trade involves calculating the
price of a cargo, given the price of a unit. Suppose that we know the sides
of a rectangular floor to be tiled as ‘12 by 17’. The 12 and the 17 can be
represented in some way as counters, tokens, or in a written notation—
the answer likewise. A simple technique is to lay out pebbles in a regular
rectangular pattern, 12 pebbles by 17; the resulting group of pebbles can
then be carried to the tile maker, or counted and the result taken to the
tile maker. This is direct physical modelling of the floor to be tiled with
the pebbles, but at the same time it performs what we would now call
multiplication, though we would scarcely recognize it as such.

Doing multiplication this way is slow. We tend to think of multi-
plication as being some form of shorthand procedure that can achieve
the same result. Menninger describes how reckoning tables were used to
compute multiplications by a much quicker method. Figure 2.16 shows
a four-register reckoning table whilst 54 is being multiplied by 32.

Fig. 2.16 Multiplication on a four-
register reckoning table. The left pair
of registers is used for working; the
right to hold the two numbers to be
multiplied. The working registers are
shown in the successive phases of the
calculation.

32

54

2 × 4 = 8

30 × 4 = 120

128

2 × 50 = 100

228

50 × 30 = 1500

1728

Final answer

Problem
32 × 54 = ?

Stages of work

2.4 From ‘aides-memoire’ to the first digital calculating devices 27

Doing the multiplications requires that the operator learn by heart the
multiplication tables up to ten—just as children have to do now. Here, we
encounter another of the great abiding accelerators of computation—the
look-up table. Tables can be memorized, or they can be written down—
a large part of the Rhind papyrus, one of the first maths texts known,
consists of tables. Their great merit is that they remove the cost of
repeated calculation, substituting for it the much easier task of looking
something up. Here, a temporal limit to calculation is avoided by the
use of a less complex process.

We can summarize the technologies for computation described so far
in the following table:

Technique Skill Operations Range

Subitizing Inbuilt Counting Only to four
Counting on fingers Learned Counting adding To ten
Counting aloud Rote learning Count To hundreds
Unary tokens Simple learned Count, add To tens
Scaled tokens Recursive, learned Count, add To thousands
Base 60 Recursive, learned Count, record Millions
Reckoning tables Skilled, recursive +,−,× Millions

3
Mechanical computers
and their limits

3.1 Antikythera 28
3.2 Late mechanical

computers 35
3.3 Analogue mechanical

multiply/accumulate 39
3.4 Mechanizing the abacus 42

In principle, with large enough reckoning tables, papyrus for notes,
and sufficient time, very large and complex calculations could be
done. But the process of reckoning is slow and, when dealing with
extended calculations, human error creeps in. To overcome these limits,
mechanism was needed.

Mechanical computing started surprisingly early. The earliest known
mechanical computer has been dated to between 150 bc and 100 bc
(Freeth et al., 2006)—but given its sophistication, it may be supposed
that it had earlier predecessors.

3.1 Antikythera

In 1900, a group of sponge divers sheltering from a storm anchored
off the island of Antikythera. Diving from there, they spotted an
ancient shipwreck, with visible bronze and marble statuary. A number of
valuable artefacts were recovered and taken to the National Museum in
Athens. Further diving in 1902 revealed what appeared to be gearwheels
embedded in rock. On recovery, these were found to be parts of a
complicated mechanism, initially assumed to be a clock. Starting in
the 1950s and going on to the 1970s, the work of de Solla Price (1959,
1974) established that it was not a clock but some form of calendrical
computer. A key to this clarification was the use first of gamma ray
photography and then of computer tomography (Freeth et al., 2006) to
reveal details of the mechanism beneath the accretions of millennia of
marine corrosion. A number of reconstructions have since been made,
both physical and in software, one of which is shown in Fig. 3.1. It is
now clear what the machine did, although why it was built remains a
matter for speculation. Our description of its function follows Spinellis
(2008) and de Solla Price (1974).

The machine had two faces: the front with a central dial, the back
with two major and two subsidiary dials (Fig. 3.1(a)). The front dial
had two pointers, one of which bore a solar and the other a lunar globe.
The pointers showed the positions of the sun and moon, both in the
zodiac and relative to the calendar. The calendar was denoted by a scale
ring with 365 days. The scale could be advanced by one day every 4
years, using a retaining pin that could be fitted into one of 365 holes in
the frame behind the movable scale.

3.1 Antikythera 29

(a) (b)

(c)

Fig. 3.1 A modern physical recon-
struction by T. van Vark, reprinted
by permission of the builder. (a) The
front dial, showing the lunar and solar
pointers against zodiac and calender
rings. (b) The rear face, showing the
Metonic and Saros cycle dials with spi-
ral scales. (c) The mechanism linked to
and driving the hypothesized planetary
dials.

The back dials are more complex. The upper back dial shows what is
called the Metonic cycle of 235 lunar months.1 This is the period in which 1A lunar month is the period between

corresponding phases of the moon in
successive lunar cycles.

the the lunar and solar calendars come into synchrony. Nineteen solar
years correspond to 235 lunar months, so after the end of this cycle the
phases of the moon will again be the same on the corresponding calendar
day. In order to gain greater precision on the dial, it is arranged in a
five-deep spiral, with a pin in a moving slider on the pointer going into

30 Mechanical computers and their limits

the spiral. As the pointer turns, the slider moves gradually outwards.
The spiral arrangement increases the angular resolution of the dial.

The lower back dial uses the same spiral dial mechanism, but in this
case it displays the Saros cycle of 223 lunar months. The Saros cycle
is relevant for predicting lunar and solar eclipses. If a lunar or solar
eclipse occurs, then another similar one will occur 223 lunar months
later. The Saros cycle is 6585 1

3 days. Since it is not an integer number
of days, the geographical position from which eclipses are seen shifts by
120◦ each cycle. The 54-year Exeligemos cycle is needed to bring the
geographical position from which lunar eclipses can be seen back into
alignment. For solar eclipse paths of visibility, the calculation is more
complex. A small auxiliary dial shows the Exeligemos cycle. Another
auxiliary dial shows the Callipic cycle, which is four Metonic cycles less
one day. The Callipic cycle improves the accuracy of reconciliation of
the lunar and solar calendars.

The interpretation of the dials is based both on the fragmentary
captions that have survived on their surfaces and on a mutually
consistent reconstruction of the internal workings of the machine.
The sophistication of the mechanism, when uncovered by Price, was
astonishing, given what had previously been known about ancient Greek
computing technology. It involves a large number of gear wheels with
complex interactions. In order to understand these, we need to grasp
certain preliminary principles of how gearwheel computing works.

3.1.1 Addition

The first point is to understand that wheels can implement addition
by addition of angles. In Fig. 3.2 we see a pair of concentric wheels,
with digits round the edge being used for addition. Assume that the two
wheels are free to rotate both absolutely and relative to one another.
To add 3 to 4, we first rotate the inner wheel until its zero is lined up
with 3 on the other wheel, then read off the number on the outer wheel
corresponding to 4 on the inner wheel. This basic mechanism was used
in many ready reckoners and circular slide rules.

Fig. 3.2 Wheels can do modular addi-
tion by addition of angles.

9

8
7

6
5

4

3
2

1
0

9

8
7

6
5

4

3
2

1
0

9

8
7

6

5
4

3
2

1

0

9

8
7

6
5

4

3
2

1
0

Answer

3 + 4

3.1 Antikythera 31

3.1.2 Multiplication by a constant

If two wheels contact tangentially, wheel A has diameter a, and wheel
B has diameter b, then wheel A will rotate at a rate of −b/a times the
rate of rotation of wheel B. If the wheels are cogwheels with matching
sizes of teeth, then the ratio of their diameters will be the ratio of their
tooth numbers. This is shown in Fig. 3.3.

Note that this implies multiplication by rational numbers rather than
arbitrary real numbers.

3.1.3 Differential gears

If gear C is mounted on gear B, and if B and A rotate at the same rate,
then so will C:

ΔA = ΔB ⇒ ΔA = ΔC

In the frame of reference of B, the rotation of C will be −c/a of the rate
of rotation of A also in the frame of reference of B. But the rotation of
A in the frame of reference of B is just ΔA−ΔB. So the full equation
for the rotation rate of C is

ΔC = ΔB + (ΔA−ΔB)−c
b

or

ΔC = c+b
b ΔB − c

bΔA

This mechanism, Fig 3.4, allows the computation of linear functions
of differences between rates.

A B

Fig. 3.3 Multiplication by a constant.
Rotation of wheel A by −144◦ will
result in rotation of wheel B by 72◦.

32 Mechanical computers and their limits

3.1.4 Non-linear functions

The above three principles would be sufficient to construct a mechanical
model of the positions of the moon, sun, and planets if these all followed
uniform circular orbits. A problem arises, however, with the elliptical
orbit of the moon. The angular speed of the moon is not constant.
Kepler’s law, which states that equal areas are swept out in equal periods
by its orbit, means that close to perigee its angular velocity against the
fixed stars is greater than at apogee. This is termed the ‘anomalous
motion’ of the moon.

a b

c

Fig. 3.4 Differential gearing.

Apollonius of Perga (c. 262 bc to c. 190 bc) proposed to model the
lunar motion by either of two models. The one shown in Fig. 3.6 involves
the assumption that the moon rotated in a circular orbit around a point
some distance from the centre of the earth (Neugebauer, 1955). The
other is the theory that we are more familiar with from Ptolemy, that
the moon moved in an epicycle on an otherwise circular orbit. Apollonius
proved the equivalence of the epicycle and eccentric models.

The major contribution to the anomalistic motion of the moon is
the fact that the elliptical orbit is off centre with respect to the earth.
Compared to this, the deviation from circularity of the ellipse is relatively
small. Thus an eccentric circular model gives a very good approximation
of the lunar position. A computing machine such as the Antikythera,
which uses the mechanism in Fig. 3.5 will give predictions of lunar
position that are as accurate as the naked-eye astronomy of the ancient
world could observe.22For a heterodox view of the opti-

cal technology available to Greek
astronomers, see (Temple, 2000).

Our current records of ancient astronomy do not indicate knowledge
of Kepler’s law at the time the Antikythera device was built. Despite
this, the device contains a mechanism to approximate the effects that we
now attribute to Kepler’s law. The technique used is to have two wheels
with slightly different axes, coupled via a pin-and-slot mechanism like
that illustrated in Fig. 3.5.

Fig. 3.5 Variable-speed coupling using
eccentric axes. Wheel B has a different
axis b than that of wheel C. A slot in
B is engaged by a pin d mounted on C.
C will complete one revolution for
every revolution of B, but its rotation
speed will change as B goes round,
being fastest relative to that of B when
the pin is horizontally to the right of b
and slowest when it is horizontally to
the left. When simulating lunar orbital
motion, the more rapid orbital motion
at perigee would be simulated by hav-
ing the pin d horizontally to the right
at perigee.

A

CB

E

b c

d

Groove in B Pin mounted on C

3.1 Antikythera 33

Earth

Moon

Earth

Moon

Centre of circle

(a)

(b)

Nodes of ellipse

KEPLERAPOLLONIUS

E

D

M

C

Bold lines indicate eccentric model
Dashed lines the epicycle model

Fig. 3.6 (a) The contrasting models
of lunar orbits proposed by Apollonius
and Kepler. (b) Apollonius’ proof of
equivalence of the epicyclic and eccen-
tric models. E is the earth, M the moon,
D the centre of orbit of the eccentric
model, and C the centre of the epicycle.
If the rotation of the epicycle is of
exactly the same magnitude but in the
reverse direction to the orbital rota-
tion, then CM must be parallel to ED,
EDMC must be a parallelogram, and so
the path of the moon is in each case a
circle centred on D.

The mechanical approximation mechanism used in the Antikythera
device corresponds closely with the eccentric model of the lunar orbit.
The line of sight from the earth to the moon in Apollonius’ model
(Fig. 3.6(a)) is physically modelled by the grove in wheel B (Fig. 3.5).
The moon in Apollonius’ model is represented by the pin d and the
centre of the lunar orbit by the axis c (both shown in Fig. 3.5).
If we compare the two figures, we can see that the mechanism in
Fig. 3.5 directly implements Apollonius’ model of the lunar orbit. The
mechanism is a simplified representation of a component actually used
in the Antikythera device.

It is easier to construct an eccentric coupling of the sort shown
in Fig. 3.5 than it is to make a direct mechanical implementation of
Kepler’s law. The choice of model proposed by the Greek astronomers
to explain the lunar orbit may thus have been influenced by what
they could feasibly build into a computer. Appollonius of Perga, who
proposed the eccentric model for lunar orbits, also developed the theory
of ellipses in his work on conic sections, so he would have been well
equipped to propose ellipses as a basis for orbits. The preference of the
Greek astronomers for circular motions might have been influenced by
a concern for mechanization.

34 Mechanical computers and their limits

We talk about scientists having a ‘model’ for some physical process
that they seek to explain. By this, we tend to mean a conceptual model.
But a conceptual model does not produce numerical results until the
conceptual model is implemented in a physical model. The Antikythera
device is a beautiful illustration of the interaction between conceptual
and physical models. There is a one-to-one correspondence between
the geometrical mechanisms proposed by the ancient astronomers, and
the physical geometry of one of the computing machines that they
used. Today, the correspondence is less evident, since we use general-
purpose computers. But the correspondences will still be there. The
conceptual model will now be expressed algebraically, and that algebra
will translated into expressions in Fortran, Matlab, or some other
computer notation for explicit calculation. The difference is that we
can now have explicit representations of algebra rather than explicit
representations of geometry in our machines.

With a device such as the Antikythera mechanism, predicting eclipses
became just a matter of turning a handle, something far simpler and
less error prone than the numerical solution of kinematic equations using
reckoning tables.

3.1.5 Was the Antikythera device an
analogue computer?

In the web literature, there are references to the Antikythera device as
an analogue computer. Is this correct?

It depends on how we understand the term ‘analogue’. One sense of
analogue is ‘to bear analogy to’. The Antikythera device is built in such
a way as to be analogous to operations of the cosmos, as understood by
its builders. So in this sense it is an analogue device.

Another interpretation of an analogue computer is one that works
by means of continuous rather than discrete quantities. Again, in this
sense, the Antikythera device is analogue, since the dials on the front
give continuous readings of lunar and solar angles.

But if we look at it from a different aspect, the device is digital; that
is, it performs mathematics in discrete operations. Look back at Fig. 3.3.
The ratio that this pair of gearwheels computes is always going to be
a rational number, a ratio of the integral numbers of teeth on the two
wheels. The multiplications performed by the machine were thus digital.

It is also arguable that its mode of operation was semi-digital, in that
it seems to have been advanced by one ‘clock cycle’ per day. Each day,
the handle on its main driving wheel was rotated once, and the date
pointer on the face would move on by an amount equal to one whole
day. Because the internal multiplications were by rational numbers,
the machine would not have drifted over time. Having completed one
Metonic cycle, it would have gone on to compute the next with equal
accuracy. In so far as the machine drifted with respect to the actual
motions of the moon, it would be because the gearing ratios were not
specified to a sufficient number of digits. This drift, of the calculated

3.2 Late mechanical computers 35

position of the moon from its observed position over multiple cycles,
is characteristic of digital calculations. Digital calculations must always
express ratios in terms of whole numbers, and to get more and more
accuracy when simulating some natural process, we are forced to use
larger and larger numbers in the numerator and denominator.

In modern terms, the Antikythera device did digital arithmetic, but
used analogue input and output devices. The analogue scales used for
the answer, although in principle continuous, would in practice usually
have been read off as discrete numbers of days. Had we wished for
more precision, an additional dial, which rotated faster, could have
been used. This is the principle used in clocks. A clock has a solar
pointer (the hour hand) that completes two rotations for every apparent
rotation of the sun. To enable us to be able to tell the time to greater
accuracy, we then have minute and second hands that rotate 12 times
and 720 times faster. By appropriate multiplication of scales, a cog-wheel
computational mechanism can add least significant digits to its output.
Clocking down the main output, can add leading digits to the output:
Antikythera does this with its Callipic cycle dial.

3.1.6 Limitations

The techniques used in the Antikythera device were limited to the
performance of the operations of angular addition and subtraction, along
with multiplication by negative constants. Final readout accuracy was
limited by the mechanical precision of the dials. Arithmetic is modular.

3.2 Late mechanical computers

The main use of computers in the first half of the twentieth century was
for warfare, particularly for naval warfare. It was here that the greatest
computational demands lay. The development of long-range guns and
steam power meant that by the start of the twentieth century it was
no longer possible for navies to simply aim their guns using open or
telescopic sights. The ranges at which successful firing between warships
occurred increased from 7 km at the Battle of Tsushima in 1905 to 25
km at the Battle of Calabria in 1940. By 1914, the speeds of ships had
increased so much that their relative velocities could exceed 100 km h−1.

At ranges above a few kilometres, shot from naval guns came down
in a plunging fashion. To hit another ship, it was not sufficient to aim
directly at the ship; gunners had to know the range of the target ship
and aim their guns high so that the shot would fall on to the target.
This problem could be broken down into a number of sub-problems.

1. The bearing of the target had to be found.
2. The range had to be estimated. Initially, this was done using stereo

matching (see Fig. 3.7(c)). Later, radar was used to get a more
accurate estimate.

36 Mechanical computers and their limits

Fig. 3.7 Gunners had to have an
accurate estimate of range to prevent
shot from falling short or over. (a) A
schematic representation of the falling
of a shell. (b) A salvo straddling USS
Iowa in 1923 during ranging practice.
(c) A model by R. Brassington of
the Argo Pollen gyro-stabilized stereo-
scopic rangefinder used by the Royal
Navy.

(a)

(b)

(c)

3. The relative velocity of the two ships then had to be estimated.
The initial shell velocity might be around 800 m s−1. A shell might
be in flight for 20 or 30 seconds. A ship moving with a velocity of
60 km h−1 relative to the firing ship could have moved some 500
m during the time of flight.

4. The range and bearing of the target at the end of flight had be
estimated.

5. The up-to-date range and bearing had to be translated into an
appropriate elevation and deflection of the gun before firing.

All these calculations had to be done in real time, with the time between
shots being of the order of 30 seconds. Early in the twentieth century, it
was realized that it was quite impractical to do the calculations by hand,
both because that would have been beyond the trigonometrical ability
of most gunnery officers, and because it would have been far too slow.
The well-funded admiralties of the day could command the attention of
skilled engineers, scientists, and instrument makers, so it was not long
before mechanical solutions were devised.

The techniques that were arrived at, 2000 years after the Antikythera
device, show a strong family resemblance to that earlier real-time
calculator. They have a similar mode of display, based on dials; similar

3.2 Late mechanical computers 37

construction, using: brass frames and gearing; and many of the same
mechanical implementations of arithmetic techniques. We will focus on a
couple of the devices invented for the purpose; for a more comprehensive
account, readers should consult Brooks (2005).

3.2.1 Estimating rates of change

A moving ship has a course bearing and a speed. Together, these can
be represented as a vector. In modern computing, we tend to think of
vectors as a list of numbers, so a ship steering a course due south at 10
metres per second could be described by the pair [0,−10], these being
the components of its velocity in a Cartesian coordinate system whose
x-axis was aligned with the equator. A ship sailing west at the same
speed would have a velocity vector [−10, 0]; and a ship sailing north-
east a velocity vector [7.07, 7.07], since it would be moving at just over
7 metres per second north and a similar amount east. Now let us look at
the concrete example in Fig. 3.8. Ship A is moving with velocity vector
[0,−14] and ship B is moving with a velocity vector [15,−3]. We want to
know the combined velocity of B relative to A. To do this, we subtract
the velocity of A from that of B: [15, 3]− [0,−14] = [15, 11].

This gives us the velocity of B relative to A. In order to aim a gun,
we need to break this velocity down into two components, one along
the line of sight and the other perpendicular to the line. If we were
doing that nowadays, we would use multiplication by a rotation matrix
to get this effect. Back in the early 1900s, this operation would have
involved a prohibitive amount of equipment, but a naval officer by the
name of Lieutenant Dumaresq (1905) came up with a device (Figures 3.9
and 3.10) that—although, at first sight, a bit baffling—actually uses
some beautifully simple principles.

Look at Fig. 3.9(a). It shows the first principle: vector addition by
direct geometric implementation. The Dumaresq consisted of a circular
frame graduated on its upper edge from 0◦ to 180◦, Red and Green
relative to the fore and aft Bar that is mounted on the frame. The frame
itself was fixed, with this bar parallel to the fore and aft line of the ship.

A B

Velocity of B
relative to A = [15,11]

Bearing of B relative
to A

B’s velocity
[15,−3]

A’s velocity [0,−14]

Fig. 3.8 Vector addition of the relative
motion of two ships.

38 Mechanical computers and their limits

Fig. 3.9 The operating principle of the
Dumaresq.

Rate of
increase in
range

Velocity across line of site

Own
speed Enemy

speed

Enemy’s
relative course

Fore

Aft

Bar aligned with own ship

Line of sight to

enemy

Rotating slider

(a) (b)

(c)

Under this bar, a slider was mounted that travelled along the bar,
carrying an index cursor that could be moved aft from the centre along
a scale graduated from 0 to 35 knots. This scale measured the ship’s own
speed. On the slider was a rotating ruler, also marked in a scale of knots.
The ruler had to be aligned with the enemy course relative to your own
ship’s course; that is, the angle between the bar and the ruler had to
be the same as the angle between your course and the enemy course.
Since the ruler is scaled in knots, a line from the Dumaresq centre to the
point on the ruler corresponding to the enemy speed will be the enemy’s
relative velocity vector.

The Dumaresq modelled geometry with geometry and avoided the
detour into pairs of numbers that we would do on a modern computer.

There remained the problem of how to transform a relative velocity
vector in the frame of reference of the ship into one in the frame of
reference of the gun. We said that the modern technique would be to
multiply the vector by a rotation matrix. The 1905 solution was to use
a rotating disc on which was marked a system of Cartesian coordinates
giving the velocity parallel with and normal to the line of sight. The
disc was rotated until the arrow on it was aligned with the target, after

3.3 Analogue mechanical multiply/accumulate 39

Fig. 3.10 A Dumaresq analogue
mechanical computer used in naval
gunnery computations. The one illus-
trated is a Wind Dumaresq, which
in addition to giving corrections for
relative motion of the ships also
provides an additional compensation
term due to the wind. Image from
a model by R. Brassington, with his
permission.

which the range rate and deflection normal to the line of sight could be
read off the scale. The task of the modern ‘rotation matrix’ was achieved
using a matrix of lines that physically rotated.

3.3 Analogue mechanical
multiply/accumulate

We now come to another new technique used in the gunnery computing
devices, an integrator. Up to now, we have discussed mechanical
multiplication by a constant, achieved via gearing ratios. If we consider
the problem faced by those dealing with ranging, we can see that this
would not have been enough.

Range estimates via the stereo rangefinders came through intermit-
tently, and the gunners had to have intermediate estimates of range.
Suppose that we know the range r0 at time to and, using the Dumaresq,
we have an estimate r′ of the rate at which the enemy ship is approaching
along the line of sight. We need to calculate

rt = r0 +
∫ t

0 r′

A mechanical integrator had been developed by William Thomson,
later Lord Kelvin, and his brother James Thomson in 1876 (Thomson,
1876 a,b)—an illustration of his design is shown in Fig. 3.11. His one was
built into a more complex apparatus that was able to extract the Fourier
components of a signal. We will describe the simpler version used in the
Vickers Range Clock (Dawson, 1909). Look at Fig. 3.12. We have a flat

40 Mechanical computers and their limits

Fig. 3.11 The original integrator
developed by Thomson.

Fig. 3.12 A mechanical integrator as
used in range clocks and later in differ-
ential analysers.

Range rate scale

Sliding drive wheel

Range clock

Constant-
speed
drive

Turntable

S

W

R

P

F

0 −200−100100200

horizontal wheel or turntable, driven by a clock such that it rotates once
every minute, and such that we have a slider S that we can use to record
r′ in, say, 100 metres per minute. The slider carries a friction roller F
that bears on the surface of W and is driven round by it. If we move
the slider, then the friction roller moves with it. As it is moved closer
to the centre of the turntable, the rotational velocity of F will decrease,
as the relative gearing rate between F and W alters. If F is moved past
the axis of W to the other side, it will rotate in the reverse direction.
The effect is to provide a variable multiplication of the rotation of the
time clock by the range rate. This was then transferred to the range clock
dial, which moved at a rate corresponding to the approach or recession
of the enemy.

3.3 Analogue mechanical multiply/accumulate 41

Whenever an actual range observation occurred, the rotating dial of
the range clock R was moved round in order to bring the observed range
into alignment with the range clock pointer P. The range clock would
then point to the current range and would give estimates of the likely
range as it changed.

The representation in Fig. 3.12 is very schematic: actual integrators
had a more compact arrangement, often with the range clock dial above
and coaxial with the turntable.

The basic technology of Dumaresq and range clock had been developed
by 1906. In the next decade, the pressure of the arms race meant that
mechanical computer technology advanced rapidly. Whereas originally,
the transfers of information between Dumaresque and range clock
were manual, they became increasingly automated, with information
being transmitted by what amounted to asynchronous digital serial
transmission between different parts of the ship. By the middle of the
First World War (1914–18), highly integrated machines such as the
Dreyer Table and the Argo Plotter Clock were in use (see Fig. 3.13).
The naval integrators derived from an earlier one built in 1876 by
James Thomson, brother of Lord Kelvin, who acted as a consultant
to Arthur Pollen in the development of the Argo clock. Thompson’s
original mechanism had been used by Kelvin to analyse tidal motions.
The integrator mechanism used in the range clock was later applied by
Hartree (1938) to more general scientific calculations during the 1930s.

The machines developed during the First World War provided the
basis for a later generation of mechanical computers used by leading
navies during the Second World War (1939–45). Dumaresqs remained in
use on small ships, but vessels above the size of a destroyer were fitted
with machines descended from the Argo clock. These typically combined
mechanical computations with digital electrical input and output. These
mechanical gunnery computers (see Fig. 3.14) were last used in US Navy
battleships in 1991, during the first Gulf War.

3.3.1 Limitations

These were all essentially mechanical analogue machines and were
limited in that:

• Their accuracy would be limited to around three decimal digits of
precision. Given that the margins of error of the original input data
were much worse than that, the limited precision of computation
was not significant.

• They were dedicated to performing a single suite of tasks.

Their most significant advance was the ability to multiply variables and
to integrate.

In the rest of this chapter, we will consider how the limitations in
accuracy were addressed by the developers of mechanical computers. In
Chapter 4, we will look at how the concept of a general-purpose machine
was arrived at.

42 Mechanical computers and their limits

Fig. 3.13 Mechanical computers used
during the First World War. The upper
photo shows the Dreyer Table. In
the middle is an automatic Dumaresq,
which controls a range integrator whose
turntable is built into the circular sup-
port of the Dumaresq. On either side
are graph plotters that produce traces
of the relative courses of the enemy
ship. Scatter plots on these record the
fall of shot, and a regression of these
could be estimated using a rotating
disc with scribed parallel lines. The
lower photo shows the control panel of
the Argo Pollen range corrector. Both
images are renders of digital models by
R. Brassington.

Dumaresq

Relative range
plotter

Range rate regressor

Range and corrected range dial
note the spiral layout similar to
Antikythera front panel

Range rate dial

Rate of change of bearing

Own and
enemy
orientation
and speeds

3.4 Mechanizing the abacus

There is a line of development that stretches from the Antikythera
device, via clocks, down to the fire control computers of the twentieth
century. It is family of computating machines that was developed to
meet the needs of astronomy and physics. There was a distinct line of
development that took off from the abacus and was initially dedicated
to commercial calculations. An abacus performs exact integer arithmetic
and can, by adding more rows to the device, be built to calculate to
any desired number of significant figures. Such precision was essential
to commerce. Suppose you were a seventeenth-century banker, lending
100 000 Thaller at an interest rate of 2.5%. You would expect to get back
2500 Thaller. If you did calculations using a machine accurate to only

3.4 Mechanizing the abacus 43

Fig. 3.14 The main computer room
on a US warship during the 1950s.
These designs of mechanical computers
remained in use until the early 1990s.
Wikimedia image.

three significant figures, then all it would tell you is that you ought to
charge between 2000 and 3000 Thaller, which makes a huge difference
to your profit.

A chain of gears linked in successive 1:10 ratios will allow numbers to
be recorded accurately to a high degree of precision, but they only allow
addition using the least significant digit wheel. If you want to repeatedly
add numbers less than ten to a running total, that is fine. But suppose
you have a sequence of six such geared wheels and you want to add
20 000 to the total. You try to move wheel 5 on by two positions. What
happens?

You find that the wheel is stuck, since in order for wheel 5 to move
round by one-tenth of a rotation, the least significant wheel must rotate
1000 times. Friction will make this impossible. A means of overcoming
this was invented by Schickard, who in 1623 designed the first digital
mechanical calculator, using a gearing mechanism based on the principle
shown in Fig. 3.15. This allowed a carry to take place between successive
digit wheels such that as the units wheel made one rotation, it would
advance the tens wheel by one place. On the other hand, a rotation of the
tens wheel by one place would, in general, not move the units wheel, since
they would be decoupled. In 1645, Pascal developed an alternative carry
mechanism that involved the units wheel raising a weighted arm, which
then fell on the tens wheel when the transition from ‘9’ to ‘0’ occurred.
This further reduced the mechanical force required to propagate a carry
(Pratt, 1987; Kistermann, 1998).

44 Mechanical computers and their limits

Fig. 3.15 Top: the use of a single
toothed wheel as a carry mechanism—
one rotation of A generates one-tenth
of a rotation of B. This was later
generalized by Odhner, who in 1874
invented the pinwheel. Bottom: the use
of a pinwheel to add a variable amount
to the take-off wheel.

A B
Keeper rotates with wheel

Extended pins

Take-off wheel

3.4.1 Limitations

These early digital calculators were limited to performing addition. If you
wanted to perform subtraction, you had to use complement arithmetic.
Suppose that you have a three-digit Schickard or Pascal type machine
and want to subtract 7 from 208. You first subtract 7 from 1000 in your
head to give 993, and then do the sum 208+993 = 1201 on the machine.
But since the machine is only three digit, the thousands digit does not
appear and you get the answer 201.

3.4.2 Digital multiplication
Multiplication on an abacus or reckoning table as described in section 2.4
required the user to memorize multiplication tables. It also involved a
nested loop algorithm. Given four reckoning table registers, A, B, C,
and D, with A and B containing the numbers to be multiplied, D the
total, and C a temporary register. Initially, registers D and C contain
no beads. The user proceeded as follows:

for i = 1 to number of digits in A do
for j = 1 to number of digits in B do

in your head set temp = A[i] * B[j] this yields a
2 digit number
place this number in positions C[i+j] and C[i+j-1]

3.4 Mechanizing the abacus 45

Add the contents of register C to register D using
standard method

If we wanted to do this mechanically, a major objective would be to
obviate the need to memorize multiplications. An algorithm involving
no mental arithmetic would involve using repeated addition to obtain
the effect of multiplication:

for i = 1 to number of digits in A do
for j = 1 to number of digits in B do

for k= 1 to A[i] do
C[i+j-1] = B[j]
Add the contents of register C to register D using
standard method

This could have been done on a Pascal machine, but it now involves
three nested loops. We can reduce this to two loops if we have a more
sophisticated addition mechanism. Let n be the number of digits in B:

for i = 1 to number of digits in A do
for k= 1 to A[i] do

C[i..i+n-1] = B[1..n]
Add the contents of register C to register D using
standard method

The key step here is to transfer the whole of B into an appropriately
shifted position in C and add it to D in a single step. It was Leibniz’
achievement to see a way of building a machine to implement this
algorithm (Pratt, 1987). A late machine based on his principle is shown
in Fig 3.16. Assuming that all numbers are held as gear positions, he
had to make two innovations:

Fig. 3.16 A Brunsvega Model 13-
pinwheel calculator, showing the result
of multiplying 23 by 23 using the algo-
rithm of Leibniz. The register that we
have termed D is at the bottom and
can slide sideways with respect to the
barrel of pinwheels in the centre. The
barrel has 23 set on it. The barrel
is the register B in our description
of the Leibniz algorithm. A rotation
of the large handle on the right will
add the contents of the barrel to the
appropriately shifted register D. The
register at the top, A in our descrip-
tion, holds a count of the number of
additions performed in each position. A
reverse rotation of the handle performs
subtraction. Produced 1952–64.

46 Mechanical computers and their limits

1. The sliding carriage allowed number B to be placed in a mechanical
register that could be moved left and right with respect to D.

2. The stepped gearwheel allowed number B to be held in a form
that allowed a single rotation of register B to add register B to
register D. The stepped wheel solved the problem of having a
variable number of cogs by using a wheel in which the number
of cogs varied along its length. A normal gear wheel moved along
the stepped one’s length would engage a different number of cogs
depending on its position.

An improvement on the stepped wheel was the invention of the pinwheel
shown in Fig. 3.15, which allowed a more compact device.

Variable-toothed wheels of different designs along with sliding car-
riages were incorporated in mass-produced commercial calculators from
the nineteenth century, until they were replaced by electronic ones in
the 1970s. Figure 3.16 shows a widely used model of pinwheel calculator
that remained in production until the 1960s.

Logical limits to
computing 4

4.1 Introduction 47
4.2 Propositional logic 47
4.3 Set theory 51
4.4 Predicate logic 52
4.5 Recursion 55
4.6 Peano arithmetic 55
4.7 Paradoxes 58
4.8 Arithmetizing

mathematics and
incompleteness 61

4.9 Infinities 64
4.10 Real numbers and

Cantor diagonalization 66
4.11 Turing Machines 67
4.12 Universal TM and

undecidability 71
4.13 Computational

procedures 74
4.14 The Church–Turing

thesis 78
4.15 Machines, programs,

and expressions 79

4.1 Introduction

In the previous chapters, we have explored the origins and physical
properties of real computing devices. In contrast, we are now going
to stand back and look at the origins and abstract properties of ideas
of computation. Here, we will focus strongly on mathematical logic
(Kneebone, 1963), which seeks to characterize and formalize logical
reasoning, and has strong influences both on how we construct and pro-
gram computers (Computer Science), and on our attempts to construct
machines that emulate human reasoning (Artificial Intelligence).

Within mathematical logic lies meta-mathematics (Kleene, 1952), a
curious discipline concerned with how mathematics can be used to
explain mathematics itself.1 As we shall see, such seemingly arcane

1Here, the Greek prefix meta means
‘over’, as in ‘meta-physics’, the phi-
losophy about the nature of physical
things, as opposed to the science of
physics.

endeavours uncover very practical limits to what we can expect of
computers.

In the rest of this chapter, we will survey the relationships between
theories of computability and meta-mathematics, drawing on founda-
tional work stretching back over 2000 years. We will first look at
the origins of contemporary ideas of computability in propositional
and predicate logic, and draw out the connections and distinctions
between execution, evaluation, and proof. Next, we will explore how
paradoxes arise in systems that are able to describe themselves. We
will then consider Peano arithmetic, and how it can be used to encode
potential mathematical theorems and proofs, and thus engender deep
self-referential paradoxes about mathematics. Next, we will introduce
notions of infinity and discuss Cantor’s characterization of countable
and uncountable quantities. Finally, we will meet both Turing Machines
and Church’s λ calculus, explore fundamental undecidability results that
bound computability, and elucidate the difference between mathematical
systems and embodied machines.

4.2 Propositional logic

Logic is concerned with correct reasoning (see Fig. 4.1; see also
Swinbourne, 1875).

48 Logical limits to computing

Fig. 4.1 Destrawney masters the
Man-eater Logic.

Propositional logic (Nidditch, 1962) is a very simple system for looking
at arguments built from statements about things that can be either true
or false. Such statements, termed expressions, are made up of these truth
values themselves, variables that can stand for arbitrary truth values,
and operations on and between expressions such as ¬ (NOT) and ∧
(AND) and ∨ (OR) and ⇒ (IMPLIES). Figure 4.2 shows a syntax for
propositional logic.

We can then use this logical language to turn simple natural-language
arguments into logical expressions. For example, consider:

truth values
variable
negation
conjunction
disjunction
implication
bracketed expression

true false
var
¬ exp
exp ∧ exp
exp ∨ exp
exp ⇒ exp
(exp)

Fig. 4.2 Propositional logic. If Chris eats bananas then Pat doesn’t have a beard. Pat has a beard. So Chris
doesn’t eat bananas.

4.2 Propositional logic 49

If we introduce variables to stand for the basic assertions:

Chris eats bananas → C
Pat has a beard → P

then we can write the argument as follows:

((C ⇒ ¬P) ∧ P) ⇒ ¬C

It is important to note that even though this argument is patently
nonsensical, nonetheless we can cast it in logic. That is, propositional
logic is not concerned with the real-world meaningfulness of an argu-
ment, but with its internal coherence. It is also important to note that
we no longer view an assertion such as ‘Chris eats bananas’ as implicitly
true, but view it tentatively as something that may be either true or false
and so represented by a variable. Thus, we have constructed a general
argument that is quite independent of bananas and beards.

4.2.1 Truth tables

Now we can ask whether this is a valid argument. That is, if we assume
that the first two sentences are true, then can we establish that the third
sentence is necessarily true? Before we can do this, we first need to give
our logical expressions some semantics. We do so in Fig. 4.3, using truth
tables to show all the values of the operations for all possible values of
their operands.

Thus:

• ¬ flips true to false and false to true
• ∧ is only true if both operands are true
• ∨ is true if either or both operands are truth
• ⇒ is true if either both operands are true or the first operand is

false

Implication (⇒) deserves a wee bit more explanation. Given our
commonsense understanding of ‘premise ⇒ conclusion’, it may seems
strange that an implication should be true if the premise is false. The
point is that even though the implication is true, the conclusion may
still be true or false:⇒ is an operation, not a link in a chain of reasoning.
Or to put it another way, if the premise is false, then it doesn’t matter
if the conclusion is true or false.

false

X

X Y X ∨ Y

¬ X

false

true

true false

false false

false true true

true false true

true true true

X Y X ∧ Y
false false false

false true false

true false false

true true true

X Y X ⇒ Y

false false true

false true true

true false false

true true true

Fig. 4.3 Truth tables for operations.

50 Logical limits to computing

Now, we can check the validity of an argument by constructing a truth
table systematically from each of its component expressions. Figure 4.4
shows the truth table for our example. So, we can see that the argument
is true in all cases.

An expression that is true for all possible assignments of truth
values to variables is called a theorem. As we shall see, evaluating a
logical expression for all possible truth values has strong analogies with
executing a computer program for all possible inputs.

Now, truth tables grow very quickly. They require 2N rows for
N variables and a column for each distinct sub-expression. So even
moderately sized arguments have very large truth tables that are
complex to understand, and time-consuming to construct and check.
If we generate a truth table row by row, we may quickly find a case
where the argument is false. But we might equally well need to try all
the rows only to discover that the last one is false.

4.2.2 Deductive proof

An alternative to using truth tables to tell whether or not a argument is
valid is to try to prove it correct ; that is, to use sound reasoning about
its structure without considering individual cases. To do this, we need a
formal system consisting of basic axioms that are demonstrably always
true, and rules of inference that demonstrably produce new theorems
from axioms and old theorems. Then we try to construct the expression
we’re interested in, starting with axioms and applying rules.

There are many formal systems for propositional logic. One of the
simplest, by Lukasiewicz, requires three axioms and one rule of inference,
as shown in Fig. 4.5. It is straightforward to show that the axioms hold
by constructing a truth table.

The Modus Ponens (MP) rule says that if some premise (X) holds
and if some conclusion (Y) follows from it, then that conclusion holds.

We will also use the simplification

¬¬X = X

to cancel out repeated negations.

C
false
false
true
true

C ⇒ ¬ P (C ⇒ ¬ P) ∧ P ((C ⇒ ¬ P) ∧ P) ⇒ ¬ C

P
false
true
false
true

true
true
true
false

false
true
false
false

¬ C
true
true
false
false

¬ P
true
false
true
false

true
true
true
true

Fig. 4.4 The truth table for an argument.

4.3 Set theory 51

X ⇒ (Y ⇒ X)

((X ⇒ Y) ⇒ Z) ⇒ ((X ⇒ Y) ⇒ (X ⇒ Z))
(X ⇒ Y) ⇒ (¬Y ⇒ ¬X)

given X and X ⇒ Y , conclude Y
(X, Y and Z stand for any expressions)

AX1

AX2

AX3
Modus Ponems (MP)

Fig. 4.5 Axioms and the rule of infer-
ence for propositional logic.

So, to prove our theorem, with the assumptions

C ⇒ ¬P AS1
P AS2

we proceed as follows:

1. (C ⇒ ¬P) ⇒ (¬¬P ⇒ ¬C) AX3
2. ¬¬P ⇒ ¬C AS1, 1., and MP
3. P ⇒ ¬C 2. and simplification
4. ¬C AS2, 3., and MP

The ‘magic’ trick here is to be able to construct the right initial expres-
sion(s) from which to reason via the assumptions to the conclusion. It
is, of course, debatable whether it is in any sense easier to construct a
proof or a truth table.

4.3 Set theory

Propositional logic is restricted to reasoning about simple truthful
propositions. In order to be able to reason about more general entities
than truth values, we need some formalism for characterizing and
manipulating them, both individually and severally. One of the simplest
such systems is set theory (Halmos, 1960), which is concerned with
properties of collections of things.

At their simplest, sets are made up of unitary elements with distinct
symbolic representations. Sets are usually written as comma-separated
sequences of elements within the {and} brackets:

{element1, element2, . . . elementN}
For example, we might have:

{papaya, peach, pear, persimmon, pineapple, plantain, plum}
Note that each unique element may only occur in any set once.

The empty set is written {}.
Note that the order of elements is not important, so two sets are equal

if they have the same elements:

{apple, banana, cherry} = {cherry, apple, banana} → true

It may be tested whether some value is a member of a set:

banana ∈ {apple, banana, cherry} → true

52 Logical limits to computing

or if some set is a subset of another; that is, whether every member of
the first is a member of the second:

{apple, cherry} ⊂ {banana, cherry, date} → false

Two sets may be joined together through union:

{banana, apple, cherry} ∪ {elderberry, cherry, date} →
{banana, apple, cherry, elderberry, date}

Note that cherry only appears once in the resultant set.
The elements common to two sets may be found through intersection:

{apple, banana, cherry} ∩ {cherry, date, elderberry} → {cherry}

The elements of one set may be removed from another through
difference:

{apple, banana, cherry, date}\{date, banana} → {apple, cherry}

As with propositional logic, there are also axiomatic systems for set
theory. Cantor is attributed with developing the first. Contemporary set
theories are developments of the more recent systems by Zermelo and
Fraenkel. We will not consider these further here, but use set notation
as a useful tool in subsequent sections.

4.4 Predicate logic

In the above discussion of propositional logic, we treated statements such
as ‘Chris eats bananas’ and ‘Pat has a beard’ as unitary entities that can
simply be true or false. In predicate logic (Hodges, 1977), we may further
decompose such statements to separate out predicates that may qualify
appropriate values. For example, we might use a truth table to identify
the values Chris and Pat, which are both instances of person, and the
predicates eatsBananas and hasBeard, which apply to a person, to
return truth values:

P eatsBanana(P) hasBeard(P)
Chris true false
Pat false true

Alternatively, we could identify bananas and beard as instances of
things, and the binary relations eats and has, which both apply to
a person and a thing to return a truth value:

4.4 Predicate logic 53

P T eats(P,T) has(P,T)
Chris banana true false
Chris beard false false
Pat banana false false
Pay beard false true

We could formulate person and thing more precisely as sets by listing
their members:

person = {Chris, Pat}
thing = {bananas, beard}

We can also formulate the predicates as sets:

eatsBananas = {Chris}
hasBeard = {Pat}

Now we can test whether a predicate holds for a value by checking if the
value is a member of the set for the predicate:

hasBeard(Chris) == Chris ∈ hasBeard→ false

For the binary relations eats and has, we can use sets of bracketed
pairs to associate the operands:

eats = {(Chris, bananas)}
has = {(Pat, beard)}

and test if a relation holds between two values by checking if the
corresponding pair is a member of the set for the relation:

eats(Chris, bananas) == (Chris, bananas) ∈ eats→ true

Note that we may use sets to represent both values and properties of
values.

Predicate logic enables us to ask questions as to whether or not some
predicate holds for all members of a set (universal quantification):

∀var ∈ set : predicate(var)

or whether there exists some member of a set for which some predicate
holds (existential quantification):

∃var ∈ set : predicate(var)

To explore this, let’s consider a marginally richer world:

person = {Chris, Jo, Les, Pat}
likesFruit = {Chris, Jo, Pat}
fruit = {peach, pear, plum}
likes = {(Chris, peach), (Chris, plum)(Jo, pear),

(Pat, peach), (Pat, plum)}

54 Logical limits to computing

So we might ask if someone doesn’t like fruit:

∃p ∈ person : ¬likesFruit(p)
or if every fruit is liked by someone:

∀f ∈ fruit : (∃p ∈ people : likes(p, f))

Universal quantification is equivalent to a sequence of conjunctions:

∀var ∈ {e1, e2, ...} : predicate(var) ==
predicate(e1) ∧ predicate(e2) ∧ ...

and existential quantification to a sequence of disjunctions:

∃var ∈ {e1, e2, ...} : predicate(var) ==
predicate(e1) ∨ predicate(e2) ∨ ...

So, we can test the truth or falsity of a quantified expression by
constructing a truth table and systematically evaluating the expanded
form. For example, for ‘someone doesn’t like fruit’:

P likesFruit(P) ¬ likesFruit(P)
Chris true false
Jo true false
Les false true
Pat true false
∃ true

we check likesFruit for each person and then ∨ the results together.
And for ‘every fruit is liked by someone’:

P F likes(P,F)
Chris peach true
Jo peach false
Les peach false
Pat peach true
∃ true
Chris pear false
Jo pear true
Les pear false
Pat pear true
∃ true
Chris plum true
Jo plum false
Les plum false
Pat plum true
∃ true
∀ ∃ true

4.6 Peano arithmetic 55

we test for ∃ for each fruit in turn and then ∧ the results together.
As with propositional truth tables, predicate truth tables grow very

quickly with the number of variables and the sizes of the associated
sets. An alternative is to extend propositional logic with new axioms
and rules of inference for predicate logic, to enable proof. We will not
explore doing so here.

4.5 Recursion

Recursion (Peta, 1967) is a central technique in meta-mathematics and
involves defining something in terms of properties of itself. Typically,
recursion is used to explore properties of a collection of things like a set,
by inspecting each item in the collection in turn until there are none
left. Thus, recursive definitions usually have two components:

• the base case, where the collection is empty so some final value is
returned

• the recursion case, where the collection is not empty so the
property is checked for one item, and then the rest of the collection
is checked

We can define the universal and existential quantifiers by recursion. ∀
is equivalent to applying the predicate to the first member and ∧ing the
result to that from checking the rest of the set. And, in the base case,
any predicate is true for all of an empty set:

∀ var ∈ {e1,e2...} : predicate(var) ==
predicate(e1) ∧ predicate(e2) ∧ ... ==
predicate(e1) ∧ ∀ var ∈ {e2,...} : predicate(var)

∀ var ∈ {} : predicate(var) == true

Similarly, ∃ is equivalent to applying the predicate to the first member
and ∨ing the result to that from checking the rest of the set. And an
empty set has no members for which a predicate can be true:

∃ var ∈ {e1,e2...} : predicate(var) ==
predicate(e1) ∨ predicate(e2) ∨ ... ==
predicate(e1) ∨ ∃ var ∈ {e2,...} : predicate(var)

∃ var ∈ {} : predicate(var) == false

4.6 Peano arithmetic

4.6.1 Natural numbers

At the end of the nineteenth century, the Italian mathematician
Giuseppe Peano sought to formalize arithmetic over the natural num-
bers; that is, the positive integers. Peano arithmetic (Kneebone, 1963)

56 Logical limits to computing

is based on the recursive notion that an arbitrary positive integer is a
finite number of successors of zero. That is, all positive integers can be
constructed by starting with zero and adding one a finite number of
times. So, if we write the successor of a number N as SUCC(N), then:

decimal Peano
0 0
1 = 1+0 SUCC(0)
2 = 1+1 SUCC(SUCC(0))
3 = 1+2 SUCC(SUCC(SUCC(0)))
... ...

4.6.2 Arithmetic

It is then possible to elaborate many arithmetic operations by a recursive
definition for an operand, say N , with:

• a base case, when N is 0
• a recursion case, where N is not 0

Recursive functions are often characterized by separate equations for the
base case where the defining parameter is 0 and a recursion case where
the defining parameter is SUCC(N).

For example, we may define addition (X + Y) with cases where Y is
0 or SUCC(Y):

X + 0 = 0
X + SUCC(Y) = SUCC(X + Y)

Any number plus zero is that number (base case). And the sum of any
number (X) and the successor of some number (Y), is one more than the
sum of those numbers (recursion case); that is, for X plus Y , increment
X Y times.

For example, ‘2 + 2’ is

SUCC(SUCC(0)) + SUCC(SUCC(0)) (Recursion case) ⇒
SUCC(SUCC(SUCC(0)) + SUCC(0)) (Recursion case) ⇒
SUCC(SUCC(SUCC(SUCC(0)) + 0)) (Base case) ⇒
SUCC(SUCC(SUCC(SUCC(0))))⇒ 4

Having defined addition purely in terms of recursion with zero and
successor, we can now define multiplication:

X ∗ 0 = 0
X ∗ SUCC(Y) = X + X ∗ Y

so the product of any number and zero is zero. And the product of any
number and the successor of some number is the first number added to

4.6 Peano arithmetic 57

the product of those two numbers. That is, for X times Y , add X to
zero Y times.

Similarly, we can define subtraction, division, and the taking of the
remainder (modulo):

X − 0 = X

SUCC(X)− SUCC(Y) = X − Y

X/0 = 0
X/Y = SUCC((X − Y)/Y)

X mod Y = X −X ∗ (X/Y)

This style of recursive definition and evaluation is now used in
declarative programming languages such as Prolog and Haskell.

4.6.3 Inductive proof

Peano arithmetic may be formalized in a surprisingly small number of
axioms. First:

1. 0 is a natural number.
2. If N is a natural number, then SUCC(N) is a natural number.
3. For any natural number N , NOT (SUCC(N) = 0).
4. For any natural numbers M and N , M = N if SUCC(M) =

SUCC(N).

The first two axioms tell us how to make natural numbers, and the third
and fourth establish when natural numbers are equal. Finally, Peano
introduced an axiom for inductive proof, where some property P of all
natural numbers may proved true by:

• base case—proving P (0) true
• induction case—assuming P (N) true and proving P (SUCC(N))

true

Thus, inductive proof corresponds closely to recursive definition in terms
of 0 and SUCC.

For example, suppose we want to prove that SUCC(X + Y) = X +
SUCC(Y). For the base case, we need to prove that SUCC(X + 0) =
X + SUCC(0):

1. SUCC(X + 0) ⇒ (+ base) 1. X + SUCC(0) ⇒ (+ recursion)
SUCC(X) 2. SUCC(X + 0) ⇒ (+ base)

SUCC(X)

And for the recursion case, we assume that SUCC(X + Y) = X +
SUCC(Y) and try to show that SUCC(X + SUCC(Y)) = X +
SUCC(SUCC(Y)):

58 Logical limits to computing

1. SUCC(X + SUCC(Y)) ⇒ (Assum)
SUCC(SUCC(X + Y))

1. X +SUCC(SUCC(Y))
⇒ (Assum)

2. SUCC(X + SUCC(Y)
⇒ (Assum)
SUCC(SUCC(X +Y))

The significance of induction here is that it establishes some property
for any number, not just some finite set of instances of numbers.

4.6.4 Numbers and sets

Note that we can now use Peano numbers to quantify sets—that
is, to determine how many elements they have—by putting distinct
set elements into one-to-one correspondences with successive Peano
numbers. Indeed, we did this implicitly by characterizing sets as:

{element1, element2, ..., elementN}
as we are using the successive numbers 1, 2, ..., N to distinguish the
elements. Thus, we will now use the operator size to return the number
of elements in a finite set; that is, N in the above characterization.
Suppose that the operator take returns an arbitrary element of a set.
Then, using induction on sets, we can define size as:

size({}) = 0
size(S) = SUCC(size(S\{take(S)})

The size of an empty set is zero. And the size of a non-empty set is
one more than the size of the set less an arbitrary element.

This also gives us a rather different way of looking at numbers as
properties of sets. Hence, we might talk about a set whose elements can
be put into one-to-one correspondence with the first N integers as having
the property of ‘N -ness’. For example, we can show that the set

{cabbage, carrot, celery, cauliflower, cucumber}
has five elements, or ‘fiveness’:

integer 1 2 3 4 5
element cabbage carrot celery cauliflower cucumber

Indeed, as discussed above, numbers may well have first arisen as
abstractions from putting different collections of things into one-to-one
correspondences with each other; for example, people and items of food.

4.7 Paradoxes

We have seen informally that there are strong links between logical
argument and manipulating sets. There was considerable interest at

4.7 Paradoxes 59

the start of the twentieth century into whether all mathematics could
be developed systematically from logic and set theory. The German
mathematician David Hilbert enunciated what has come to be known
as Hilbert’s programme (Kleene, 1952) for mathematics, for establishing
whether it could be formally demonstrated that foundational systems
were consistent, complete, and decidable (Hunter, 1971).

In a consistent system, it is not possible to prove a contradiction;
that is, that some expression and its negation are both theorems. In
a complete system, there are no expressions that can be shown to be
theorems by arguments outside the system—say, by constructing truth
tables—but that cannot be proved to be theorems. And in a decidable
system, there is a mechanical procedure for establishing whether or
not an arbitrary expression is a theorem. As we shall see, there
are very strong correspondences between mechanical procedures and
computations, and between decidability and the limits to computation.

Now, it might seem promising that formal axiomatic systems for pure
propositional and predicate logic have these highly desirable properties.
However, as we shall see, these start to break down as logical formality
is further extended with set theory and Peano-style arithmetic.

Returning to set theory, a natural development from sets composed of
atomic elements is to allow sets with other sets as members. For example,
given sets of cats, dogs, and whales:

{jaguar, cougar, panther}{jackal, dingo, coyote}
{blue, sperm, right}

we might construct a set of animals:

{{jaguar, cougar, panther}, {jackal, dingo, coyote},
{blue, sperm, right}}

For example, given a set of people at a funeral, we might generate the
set of pairs of all people who have to shake hands with each other:

{Jo, Chris, Pat} → {{Jo, Chris}}, {Jo, Pat}, {Chris, Pat}}
For example, given an arbitrary set, it is often useful to generate the
power set ; that is, the set of all subsets including the empty set. For
example:

{Jo, Chris, Pat} → {{}, {Jo}, {Chris}, {Pat}, {Jo, Chris}, {Jo, Pat},
{Chris, Pat}, {Jo, Chris, Pat}}

Now, an interesting question to ask is whether or not a set can be a
member of itself. This is not as odd as it sounds. Consider a library
that has separate sections for different subjects and a catalogue for each
subject. Then, on the front desk, there might be a central catalogue of
all the other catalogues. So, it would not seem unreasonable to include
the central catalogue in itself, for consistency and completeness.2 2Tee hee...

This sounds like a trick, as catalogues contain names of books
rather than books themselves, whereas sets seem to have lists of actual

60 Logical limits to computing

elements. However, in the catalogues, the names of books are identifying
actual books. So if sets can include the names of other sets, and names
uniquely identify sets, then it seems natural to allow a set to include its
own name. That is, we allow sets to be self-referential.

Here, it might be objected that if we subsequently tried to replace the
names of sets by the sets that they named, then we might end up in an
infinite regress. That is, when we replaced the name of a self-referential
set with its members, we would introduce the self-reference again.

However, within a formal system we can legitimately define a set by
specifying its properties using logic rather than by exhaustively listing
all its members. That is, we may write:

{∀var ∈ S|property(var)}
that is, the set of elements of S, called var in general, such that property
holds for var. For example, we might characterize a potentially infinite
list of squares as

{∀sq ∈ Nat|(∃i ∈ Nat|sq = i ∗ i)}
so our new set is all the numbers sq from the natural numbers (Nat)
such that sq is the square of some other natural number i.

Thus, if a set itself satisfies some property that characterizes its
members, then it might well include itself. For example, the set of sets
with at least two elements:

{∀s|size(s) > 2}
has at least two members and so could be included in itself.

Now, most sets are not members of themselves. So, following the
British philosopher Bertrand Russell, perhaps we could make a set of
sets that are not members of themselves:

{∀S|S /∈ S}
We can then ask if this set is or isn’t a member of itself. So:

• if it is a member of itself then, by definition, it can’t be a member
of itself

• if it isn’t a member of itself then, by definition, it must be a member
of itself

Either way, we have a special sort of contradiction: a paradox ; that is, a
statement that asserts its own negation.

One of Hilbert’s requirements for a full formalization of mathematics
was that it should be consistent; that is, it should be free from
contradictions. Russell’s Paradox (Kleene, 1952) suggests that this will
be problematic if mathematics is to be its own meta-language; that
is, if mathematics is to be used to formally characterize itself. As we
shall see in later sections, such self-characterization leads ineluctably
to paradoxical self-referential constructs that fatally undermine decid-
ability; that is, our ability to determine mechanically whether or not
mathematical constructs, including computers and their programs, have
seemingly innocuous properties.

4.8 Arithmetizing mathematics and incompleteness 61

4.8 Arithmetizing mathematics and
incompleteness

Hilbert’s programme also sought to establish that formalized mathemat-
ics is complete; that is, there are no mathematical theorems that cannot
be proved to be so. However, in a seminal piece of work in the early 1930s,
the Austrian mathematician Kurt Gödel showed that a system that is
powerful enough to represent itself must be incomplete; that is, there
will be expressions that are clearly theorems but that are not provable
in the system.

Gödel’s incompleteness theorems(Nagel and Newman, 1959; Gödel,
1962) are rooted in the curious property that an arbitrary, finite sequence
of symbols can be represented as a unique integer, now referred to
as Gödelization. Gödel used a technique based on recursive functions
manipulating multiples of powers of prime numbers; that is, numbers
with no divisors apart from themselves and 1. Rather than following the
full formality of Gödel’s approach, we will use a simpler representation,
and sketch the main features of his result.

Consider again our theorem of Peano arithmetic:

SUCC (X + Y) = X + SUCC (Y)

We can explode it into a sequence of individual symbols:

SUCC (X + Y) = X + SUCC (Y)

Suppose that we give distinct values to all the symbols we can use in
expressions:

symbol A ... X Y Z SUCC () = + ...
value 1 ... 24 25 26 27 28 29 30 31 ...

Then we can represent our expression as a sequence of values:

27 28 24 31 25 29 30 24 31 27 28 25 29

Next, we can turn this into a single number. We start with 0, and
repeatedly multiply the number so far by 100 and add in the next symbol
value, in reverse order:

symbol values number
27 28 24 31 25 29 30 24 31 27 28 25 29 0
27 28 24 31 25 29 30 24 31 27 28 25 29
27 28 24 31 25 29 30 24 31 27 28 2925
27 28 24 31 25 29 30 24 31 27 292528
... ...

29252827312430292531242827

62 Logical limits to computing

This astonishingly large number has the pleasing property that we
can extract each symbol value by reversing the process and repeatedly
dividing by 100 and taking the remainder. We call this a Gödel number.

So, we have seen that we can encode expressions of Peano arithmetic
as single Gödel numbers. Such numbers can themselves be expressed
as Peano numbers, albeit with unimaginably large numbers of SUCC
in them. So encoding and decoding expressions, by multiplying by 100
and adding, and dividing by 100 and taking the remainder, can both be
expressed as operations in Peano arithmetic itself.

We will now write << e >> for the Gödel number for expression e,
and not be further concerned with how such numbers are constructed.

In general, such expressions are of the form:

• 0, or ...
• a variable, say A to Z, or ...
• a bracketed expression
• SUCC of a bracketed expression, or ...
• two expressions separated by an operator such as +, =, and so on

Note that this is a recursive definition of expressions in terms of their
sub-expressions. We can use this definition to structure the syntactic
analysis of expressions.

For example, SUCC(X +Y) = X +SUCC(Y) is an expression made
up of:

1. An expression, SUCC(X + Y), which is ...

a A SUCC of a bracketed expression(X + Y), made up of ...
(i) An expression, which is a variable X, followed by ...
(ii) An operator +, followed by an ...
(iii) expression, which is a variable Y, all followed by ...

2. An operator =, followed by ...
3. An expression X + SUCC(Y), made up of:

(a) an expression, which is a variable X, followed by ...
(b) an operator +, followed by ...
(c) An expression SUCC(Y), made up of:

(i) A SUCC of a bracketed expression (Y), made up of ...
(A) An expression, which is a variable Y .

We could extend this definition to encompass proofs in the style we
have used above, as sequences of the expressions produced at each step
with their proof justifications. Then, in the spirit of Gödel, we could
encode entire proofs as numbers and write recursive functions to pull
them apart and analyse them, in particular to check whether or not they
really do constitute valid proofs.3 Alas, as we discuss below, coming up3In a similar spirit, contemporary proof

carrying code consists of a computer
program along with a proof of its
input/output correctness. This is used
to give assurance of program integrity,
as a doubtful recipient can check that
the proof is correct.

with a proof in the first place is far more problematic than checking a
claimed proof.

Most importantly, Gödelization enables true mathematical self-
reference. That is, it is possible to write arithmetic expressions that refer

4.8 Arithmetizing mathematics and incompleteness 63

to the properties of numbers representing other arithmetic expressions.
And, as we shall shortly see, this way lies paradox. Our account will
follow Nagel and Newman (1959).4 4Without in any way subscribing to

their claim that Gödel’s results shows
that human intelligence is necessarily
more powerful than artificial intelli-
gence.

First, in performing proofs we often want to be able to replace a
variable in an expression with some other expression. We will write

replace(v, e1, e2)

to mean the Gödel number of the new expression after replacing all
occurrences of the variable with number v, with the expression with
number e1, in the original expression e2.

For example, in

replace(<< C >>, << A ∗B >>, << C + D >>⇒<< A ∗B + D >>)

we have replaced C in C + D with A ∗ B, all by manipulating Gödel
numbers.

Next, suppose that x is the Gödel number encoding a proof sequence
that proves that the logical assertion with number z is a theorem. We
represent this as follows:

proves(x, z)

Note that replace makes a new number for a new expression, where
proves is a logical assertion that is either true or false.

Now, consider the logical assertion

A.∀x : NOTproves(x, z)

that is, for all numbers x, it is not the case that the sequence with
number x is a proof of the logical assertion with number z, for some
arbitrary z.

As a special case, consider

B.∀x : NOTproves(x, replace(<< Y >>, Y, Y))

Remembering that << Y >> is the number for variable Y , this asserts
that for all Gödel numbers x, it is not the case that the sequence with
number x is a proof of the logical assertion resulting from replacing all
occurrences of variable Y , with the number Y , in the expression with
number Y .

It is really important to note that Y is a meta-variable denoting the
concrete Gödel number for some expression, where << Y >> is the
specific Gödel number, 25 in our approach, for the expression consisting
solely of the specific variable Y .

Suppose that logical assertion B has number N . Now, consider the
assertion

C.∀x : NOTproves(x, replace(<< Y >>, N, N))

which states that for all Gödel numbers x, it is not the case that the
sequence with number x is a proof of the logical assertion resulting from

64 Logical limits to computing

replacing all occurrences of variable Y with number N in the expression
with number N .

C asserts that there is no number x that is a proof sequence for
the assertion with number replace(<< Y >>, N, N). Now, compare
B and C. To get C, we replaced all the occurrences of Y in B with N .
And we said that B has Gödel number N . So C’s Gödel number must
be replace(<< Y >>, N, N). Thus, C asserts that itself has no proof!

C is a perfectly decent assertion of mathematical logic, encoded
entirely in mathematical logic. And C is patently true. So C is a theorem
of mathematical logic that cannot be proved within mathematical logic.
So we have to conclude that mathematical logic is incomplete.

To put this another way, for any given claimed proof sequence, we
can check whether or not it actually proves some assertion, but there
are true assertions for which we can’t ever find proof sequences. This is
a strong hint that formalized mathematics is undecidable; that is, that
there is no mechanical way to determine whether or not an arbitrary
assertion is a theorem. As we shall see when we explore Alan Turing’s
work below, this has profound implications in establishing the limits to
computation.

4.9 Infinities

Peano’s characterization of integers as arbitrary successors of zero is
unbounded; that is, for any integer I we can form an immediately next
integer SUCC(I) without limit. Thus, there seems to be an infinite
number of integers.

This itself is a strange assertion. It assumes that:

• in some sense, there are such things as integers
• integers themselves are things that can be counted
• we can give denote a quantity that is not finite

The first assumption does not require deep consideration of the onto-
logical status of numbers; that is, whether or not numbers are in any
sense more real than symbols with conventional meanings. That is, we
can focus on numbers purely as symbolic constructs and mathematics as
rules for manipulating symbols, which additionally capture the essential
properties of real-world countability.

Then, if we are treating numbers as symbols, the second assumption
follows directly. Each distinct number has a distinct symbolic represen-
tation as a finite number of successors of zero, and so the Peano sequence
can be put into one-to-one correspondence with itself.

Informally, infinity is about quantities whose counting never termi-
nates. And we are used to using the symbol ∞ to represent infinity.
However, it seems reasonable to ask whether there are different sorts of
infinity; that is, whether or not different infinities have different sizes.
The German mathematician Gregor Cantor made a pioneering study of
infinities: we will next survey his results (Kleene, 1952).

4.9 Infinities 65

It is usual to distinguish between the ordinal numbers, that is, the
usual numbers for counting, and the cardinal numbers, that is, the
numbers for denoting the sizes of sets. Conventionally, while finite sets
have finite cardinals from the natural numbers, transfinite sets have
named cardinals. For example, Cantor started by naming the cardinality
of the natural numbers as ℵ0 (aleph null).

Intuitively, it seems that there must be many different-sized infinities,
depending on where a sequence starts and how it is generated. For
example, it might appear that there are half as many natural numbers
divisible by two than natural numbers: in the sequence 1, 2, 3, and so
on, only every second number is divisible by two. Curiously, however,
Cantor’s work shows that any infinity whose members have distinct
finite representations can be put into one-to-one correspondence with
the natural numbers, and so must have the same cardinality ℵ0.

For example, consider again the numbers that are divisible by two:

number 1 2 3 4 5 6 7 8 ...
double 2 4 6 8 10 12 14 16 ...

The double of any natural number is divisible by two. Hence, there must
be as many numbers divisible by two as natural numbers.

This process of systematically pairing up the members of a infinite set
with the natural numbers is called enumeration; the members are then
said to be enumerable or denumerable or countable.

Now consider the rational numbers;5 that is, numbers made up of the 5Decimal fractions.
ratio of two natural numbers—for example, 27/159. Now, if we regard
a rational number as being an arithmetic division that we can evaluate,
then most do not have finite representations when fully worked out; for
example, 4/3 is 1.333333... . Nonetheless, we can still put the rational
numbers into one-to-one correspondence with the natural numbers if we
use the ratio representation, by systematically listing them. A ratio n/d
consists of a numerator (n) over a denominator (d), so we can construct
a table:

d 1 2 3 4 5 6 ...
n 1 1/1 1/2 1/3 1/4 1/5 1/6 ...

2 2/1 2/2 2/3 2/4 2/5 2/6 ...
3 3/1 3/2 3/3 3/4 3/5 3/6 ...
4 4/1 4/2 4/3 4/4 4/5 4/6 ...
5 5/1 5/2 5/3 5/4 5/5 5/6 ...
6 6/1 6/2 6/3 6/4 6/5 6/6 ...

We can then read off the table entries against the natural numbers,
starting in the top left-hand corner and systematically traversing each
lower left to upper right diagonal:

number 1 2 3 4 5 6 ...
ratio 1/1 2/1 1/2 3/1 2/2 1/3 ...

66 Logical limits to computing

Note that the ratios include many representations of the same values; so,
for example, 1 appears as 1/1, 2/2, 3/3, and so on. But we have shown
that there are as many ratios as natural numbers, and that the rationals
are a subset of the ratios, so once again, there are as many rational
numbers as natural numbers: that is, they have the same cardinality ℵ0.

Quite contrary to our familiar understanding that all operations on
infinity give infinity, and hence infinity is unique, Cantor reasoned that
there are infinite cardinalities beyond ℵ0. For example, a power set is the
set of all subsets of some original set. Figure 4.6 shows the power sets
for the sets {1}, {1,2}, {1,2,3}, and {1,2,3,4}. Note that the power
set includes the empty set and the original set itself.

If the set has size n, then the power set has size 2N .
Thus the cardinality of the power set of the natural numbers of size

ℵ0 must be 2ℵ0 , called ℵ1 (aleph one), which is strictly bigger than ℵ0.

4.10 Real numbers and Cantor
diagonalization

It seems that there are also numbers that are not rational; in other
words, that cannot be expressed as simple ratios of natural numbers.
Such numbers are called irrational or real, and they frequently crop up
in everyday arithmetic.

For example, properties of circles are expressed in terms of π, the ratio
of the circumference to the diameter. Then, in terms of a circle’s radius
R, the area is πR2.

Like all real numbers, π can only be given a finite characterization
by an equation capturing an infinite computation that will generate an
infinite number of decimal place digits. One of the earliest computations
for π, by Madhava of Sangamagrama, from 1400 bc, is as follows:

4/1− 4/3 + 4/5− 4/7 + 4/9− 4/11 ...

Usually, for calculations involving π, we use the crude approximation
22/7, or the finite expansion of some equation giving the familiar
3.14159.. to some useful number of places.

Another common source of real numbers is in taking square roots;
for example, to find the length between diagonally opposite corners of a

Fig. 4.6 Power sets.

Set size Power set sizeSet Power set

{{},{1}}
{{},{1},{2},{1,2}}
{{},{1},{2},{3},{1,2},
{1,3},{2,3},{1,2,3}}
{{},{1},{2},{3},{4},{1,2},
{1,3},{1,4},{2,3},{2,4},{3,4},
{1,2,3},{1,2,4},{1,3,4},{2,3,4},
{1,2,3,4}}

{1}
{1,2}
{1,2,3}

{1,2,3,4}

1
2
3

4

2
4
8

16

4.11 Turing Machines 67

room. As shown in Chapter 7, the square root of 2 cannot be expressed
as a ratio of rational numbers.

We will critically discuss the ‘reality’ of the real numbers in more detail
in Chapter 7. For now, if we consider numbers as lying on some notional
line, in ascending numerical order, then it seems that there might be
an arbitrary number of real numbers in between two adjacent rational
numbers. Nonetheless, perhaps the reals also have cardinality ℵ0; that
is, maybe they could be put into one-to-one correspondence with the
natural numbers, just as the rationals could.

In an elegant demonstration, Cantor showed that, in fact, there must
necessarily be more reals than natural numbers. Suppose that there are
as many reals as natural numbers, and we can characterize them all such
that we can generate their expansions.

A real number consists of a whole integer part and a decimal fraction
part following the decimal point. Here, we will just focus on reals between
0 and 1, so that they all start with 0. Then we can write down their digits
as follows, where di,j is the jth digit of the ith real:

0 . d1,1 d1,2 d1,3 d1,4 d1,5 ...
0 . d2,1 d2,2 d2,3 d2,4 d2,5 ...
0 . d3,1 d3,2 d3,3 d3,4 d3,5 ...
0 . d4,1 d4,2 d4,3 d4,4 d4,5 ...
0 . d5,1 d5,2 d5,3 d5,4 d5,5 ...
0 . d6,1 d6,2 d6,3 d6,4 d6,5 ...

...

Then, we can construct a new number D, with digits:
0 . D1 D2 D3 D4 D5 D6 ...

where the jth digit of D is formed by, say, adding 1 to the jth digit of
number dj,j , and replacing 10 with 0. Then, D1 is not the same as d1,1,
and D2 is not the same as d2,2, and D3 is not the same as d3,3, and so on,
so there is no digit di that is the same as D. But we had assumed that
we could write down all the reals in correspondence with the natural
numbers. So there must be more reals than natural numbers, and than
rational numbers.

The cardinality of the reals may be shown to be ℵ1 (Kleene, 1952).
As we shall discuss in a later chapter, Cantor diagonalization is not

without controversy, as it involves assumptions about being able to
characterize and hence generate expansions of arbitrary reals to arbitrary
places. Nonetheless, we shall see that Turing deployed diagonalization
in a somewhat different context to establish fundamental limits to
computation.

4.11 Turing Machines

As we mentioned above, the third requirement of Hilbert’s programme
was to try to establish if formalized mathematics was decidable; that

68 Logical limits to computing

is, whether or not there was a mechanical procedure for determining
whether or not an arbitrary assertion was a theorem. Mechanical
procedures, also known as algorithms or effective procedures, consist
of sets of rules that return definitive results after a finite number of
applications (see Fig. 4.7; see also Swinbourne, 1875).

Many mathematicians concentrated on trying to find rules to underpin
‘procedures’, without reference to their ‘mechanical’ application. In
contrast, the British mathematician Alan Turing took the ‘mechanical’
aspect as his primary focus, and elaborated the foundational idea of
what are now called Turing Machines (TMs) (Turing, 1937).

Turing started by considering what happens when a human being
‘does mathematics’, in particular arithmetic. Typically, some initial sym-
bols, say a sum, are written on a piece of paper, and then systematically
manipulated according to fixed rules. Usually this involves crossing or
rubbing out some or all of the symbols, and writing down new symbols,
until a final answer is reached. During this process, humans will work
backwards and forwards through the symbols, and, if they run out of
paper, they may continue on a new piece.

Turing then came up with the idea of a very simple machine that could
behave in an analogous manner. Rather than working with symbols on

Fig. 4.7 The logical sausage machine.

4.11 Turing Machines 69

pieces of paper, TMs process a linear tape made up of a sequence of
cells, where each cell can hold just one symbol. The machine also has a
tape head that can inspect and change the symbol in the current cell.

A TM includes a set of rules for solving some specific problem. At each
stage of execution, only a subset of the rules are likely to be relevant;
and, after a rule has been chosen and applied, it may be necessary to
consider a different subset of rules for the next stage of execution. In
a TM, rules are grouped into subsets corresponding to what are called
states. Each rule is then of the following form:

(oldstate, oldsymbol) → (newstate, newsymbol, direction)

This may be read as follows:

If the current state is oldstate and the head is inspecting oldsymbol, then
change the symbol to newsymbol, move the head according to direction, and
change the state to newstate.

So, we might envisage a TM as shown in Fig. 4.8. An instance of the
problem is written down, symbol by symbol, on to the cells of a tape of
the right size, and the current state is set to identify an initial subset of
rules. The execution cycle is then as follows:

• find a rule corresponding to the current state (a) and symbol (b)
• change the current state to the new state (c)
• change the current symbol to the new symbol (d)
• move the tape head either left or right (e)

When either end of the tape is reached, a new empty cell is joined on.
To get a better feel for how TMs work, consider making a copy of a

sequence of 1s with ∗s at either end. Suppose that we:

New
state

New
symbol Direction

Old
symbol

Old
state

Rules

Head

RightLeft

Tape

Symbol

Current
state

(a) (b)

(c)

(d) (e)(e)

Fig. 4.8 The Turing Machine.

70 Logical limits to computing

1. Start at the left-hand ∗ and move right to the first 1.

2. Replace the 1 with an X to show that we’ve copied it, and move
right.

3. Move repeatedly right to the next blank cell, write a 1, and move
left.

4. Move repeatedly left back to the X, replace it with a 1, and move
right to the next 1.

and repeat the process from (2) until there are no more 1s to copy. Then,
(5) we move repeatedly to the right to a blank cell, write a ∗, and halt.

We can visualize this activity as the state transition diagram shown in
Fig. 4.9. Note that an empty cell is denoted by a . Then, we can encode
the machine as follows:

(1,*) -> (2,*,R) (4,1) -> (4,1,L)
(4,*) -> (4,*,L)

(2,1) -> (3,X,R) (4,X) -> (2,1,R)
(2,*) -> (5,*,R)

(5,1) -> (5,1,R)
(3,1) -> (3,1,R) (5,) -> (-,*,halt)
(3,*) -> (3,*,R)
(3,) -> (4,1,L)

Running the machine on an initial tape with *11* proceeds as follows,
with the current head position shown between < and >:

Fig. 4.9 The state transition diagram
for copy.

21
(*,*,R)

5
(*,*,R)

34

(1,X,R)

(1,1,R)
(*,*,R)

(_,1,L)(1,1,L)
(*,*,L)

(X,1,R)

(1,1,R)

(_,*,halt)

(old symb,new symb,direction)

4.12 Universal TM and undecidability 71

state tape state tape
1. <*>11* 3. *1X*<1>
2. *<1>1* 3. *1X*1< >
3. *X<1>* 4. *1X*<1>1
3. *X1<*> 4. *1X<*>11
3. *X1*< > 4. *1<X>*11
4. *X1<*>1 4. *11<*>11
4. *X<1>*1 5. *11*<1>1
4. *<X>1*1 5. *11*1<1>
2. *1<1>*1 5. *11*11< >
3. *1X<*>1 halt *11*11<*>

Now, copying sequences of symbols may seem to be somewhat removed
from meta-mathematics. However, we can represent natural numbers in
unary—that is, as sequences of 1s—just like the Peano representation as
sequences of SUCCs of 0. Then, we can sketch how to construct Peano
arithmetic operations for SUCC, +, and ∗ as follows, where Ni is some
Peano number and UNi is that number in unary:

• SUCC(N):
– tape is ∗UN∗
– TM copies UN with additional 1 at the end

• N1 + N2:
– tape is ∗UN1 ∗ UN2∗
– TM copies UN2 immediately after copy of UN1

• N1 ∗N2:
– tape is ∗UN1 ∗ UN2∗
– TM copies UN2 once for each 1 in UN1

In principle, we could manipulate mathematical assertions by
constructing TM equivalents of recursive Peano arithmetic with
Gödelization. However, we can instead take the much simpler approach
of representing assertions directly on a TM tape, symbol by symbol. We
can then craft TMs to manipulate such assertions by bolting together
rule sets for finding, copying, and modifying symbol sequences.

For example, let’s consider how to implement replace(v, e1, e2), which
replaces variable v with expression e1 in expression e2. First, we can
construct a set of TM instructions to find an occurrence of one symbol
sequence in another symbol sequence, though we won’t give the details
here. Then, if the tape is ∗v ∗ e1 ∗ e2, we repeatedly copy symbols from
e2 until we find a v when we copy e1 instead.

4.12 Universal TM and
undecidability

As we have seen, executing a TM one step, from a current symbol and
state, involves finding an instruction with a matching old symbol and

72 Logical limits to computing

old state, replacing the current symbol on the tape with the new symbol,
changing the current state to the new state, and moving the tape head
left or right.

Now, TM instructions are themselves made up of finite sequences of
symbols, so they can be held, symbol by symbol, on a TM tape. Thus,
with Turing, we could construct a Universal TM(UTM) that will behave
like an arbitrary TM, given a tape containing that TM’s instructions,
tape start state, and initial head position. A UTM is itself defined by
a set of TM instructions that once again involve finding, copying, and
changing symbol sequences.

We will not further discuss the construction of a UTM here: Minsky
(1972) provides an accessible description. However, we should note that
the representation and manipulation of TMs on TM tapes is yet another
instance of self-reference in meta-mathematics, and again anticipates
paradox.

Turing was particularly interested in computable numbers; that is, real
numbers that can be calculated as decimal fractions by what he termed
finite means: ‘a number is computable if its decimal can be written down
by a machine’.

As we’ve seen above, at each step a TM tape may contain both symbols
that are part of the final result and symbols that are used to record
intermediate stages. For example, in the copy machine, we marked a 1
that we were about to copy with an X. Turing distinguished between
circular TMs, which generate only a finite number of result symbols, and
circle-free machines that never stop generating result symbols. Thus, a
computable real must be generated by a circle-free TM, as it has an
infinite number of digits after the decimal point.

Now, TMs are composed of finite numbers of instructions, each with
a finite number of states and symbols, so it is possible to systematically
generate and hence enumerate them. The process is very like generating
the rational numbers as ratios of natural numbers. We start with the
single instruction from one possible state and one possible symbol. Then
we produce the single instructions with one possible state and two
possible symbols. Then we produce all the pairs of instructions from
combinations of these single instructions. Then we produce all the single
instructions with two states and one symbol, the new pairs of single
instructions, and the triples of single instructions. And so on.

Turing also characterized TMs as description numbers, from instruc-
tions defined with a small set of symbols, using what is effectively
Gödelization, by repeatedly multiplying by 10 and adding. So, another
approach (Chaitin, 1987) is to generate successive integers and keep
those that are description numbers of correctly formed TM instruction
sequences.

Either way, the TMs for computable reals form a subset of all the
TMs. On the dubious assumption that we can tell which TMs generate
computable reals, we could set them running one at a time, generating
successive digits:

4.12 Universal TM and undecidability 73

TM1 0 . d1,1 d1,2 d1,3 d1,4 d1,5 ...
TM2 0 . d2,1 d2,2 d2,3 d2,4 d2,5 ...
TM3 0 . d3,1 d3,2 d3,3 d3,4 d3,5 ...
TM4 0 . d4,1 d4,2 d4,3 d4,4 d4,5 ...
TM5 0 . d5,1 d5,2 d5,3 d5,4 d5,5 ...
TM6 0 . d6,1 d6,2 d6,3 d6,4 d6,5 ...
...

Now, it might seem that we could use diagonalization to construct a
new real whose ith digit is different to digit dii of TMi. Thus, the TM
for the new real can’t be in the enumeration, so the new real can’t
be computable. But the process of constructing this uncomputable real
from computable reals is itself computable by a simple TM that picks
up appropriate digits and modifies them. So this argument seems to
disprove the claim that we can enumerate all the TMs that generate
computable reals.

However, we have have made the fundamental assumption that each
enumerated TM is circle free; that is, it goes on generating digits
forever without halting. Suppose, then, that we can build a variant
of the UTM—say, the halting UTM (HUTM) —which can examine an
arbitrary TM and work out whether or not that TM halts. Note that
this HUTM must itself halt, say, printing a Y if the TM halts and N if
the TM doesn’t halt: that is, the HUTM is circular.

Now, we can modify this HUTM to make it circle free if the TM halts.
Suppose that the HUTM has an instruction:

(Statei, Symboli) -> (halt, Y,−)

Here, in Statei, the HUTM has decided that the TM doesn’t halt, so it
prints a Y and halts.

Suppose that we modify this to the following:

(Statei, Symboli) -> (Statei+1, Y,R)
(Statei+1,) -> (Statei+1, , R)

Now, the HUTM writes a Y and changes to state Statei+1, where it
loops endlessly, moving right over empty tape cells.

If we apply this non-halting modified HUTM (nHUTM) to a copy of
itself, then:

• if the nHUTM copy halts, then the nHUTM writes a Y and doesn’t
halt

• if the nHUTM copy doesn’t halt, then the nHUTM writes a N and
halts

So, we have a paradox and we must conclude that we can’t build the
HUTM.

First, this shows that it is impossible to tell if an arbitrary TM halts.
In particular, we can’t tell if an arbitrary TM generates a computable

74 Logical limits to computing

real, because we can’t tell whether or not it generates an infinite sequence
of digits. That is, if we’ve had no output for a while from a TM, we can’t
tell if it has halted or is just thinking.

More profoundly, this confounds the third requirement of Hilbert’s
programme for an effective procedure to decide whether or not an
arbitrary assertion is a theorem; we have no way of telling whether or
not a TM embodying an alleged decision procedure will ever halt and
confirm or deny that the assertion is a theorem.

During the 1930s, several other mathematicians were exploring effec-
tive decision procedures. The Frenchman Emile Post (1936) also focused
on the ‘mechanical’ aspect of effectivity, and, quite independently,
developed a formulation very similar to Turing’s, now known as the
Post machine(PM).66In the period before the Internet,

when international phone calls were
both expensive and hard to organize,
researchers who were not already in
contact typically found out about each
other’s work only after it had been
presented at a conference or published
in a journal.

One important difference between a TM and PM is that Post required
that there be an infinite tape available from the start; whereas, in the
TM, the tape may grow indefiinately but at any given instance it is
finite in length. In Aristotelian terms (Aristotle, 1983), Post sought an
actualized infinity. where Turing only needed a potential infinity. We
shall return to this distinction in Chapter 7 when discussing schemes for
transcending the limits to computing that Turing established.

4.13 Computational procedures

In contrast to Turing and Post, mathematicians such as the Americans
Stephen Kleene and Alonzo Church focused on the ‘procedural’ aspect
of ‘effective procedure’, seeking to develop logical systems that could
capture decidability.

4.13.1 Recursive function theory

Kleene’s theory of recursive functions (Kleene, 1952) is a direct descen-
dant of Peano’s work. Whereas Peano’s formulation permits recursive
functions of arbitrary form, Kleene distinguishes explicitly between
primitive and general recursive functions.

A primitive recursion function is based on a schema that will
always terminate. That is, every recursion must make progress towards
some termination property. The examples that we considered above of
addition and multiplication in Peano arithmetic are primitive recursive,
as the base case terminates with 0 and the recursion case on SUCC(N)
is defined in terms of some function of the strictly smaller N . Primitive
recursion is also termed bounded minimization.

In contrast, a general recursive function is based on a schema that
recurses so long as some arbitrary property of the argument holds,
typically seeking a least value satisfying some property. Unlike primitive
recursion, general recursion may continue for an arbitrary number of
times. Thus, general recursion is also termed unbounded minimization.

4.13 Computational procedures 75

In this formulation, decidable problems are those characterized by
general recursive functions that always halt, whereas semi-decidable
problems are those characterized by partial recursive functions that may
not halt. Note that partial recursive functions have equivalent TMs,
but these TMs may not embody effective computations: an effective
computation is known to halt, but the TM for a partial recursive function
may not.

4.13.2 λ calculus

Church’s λ calculus (Church, 1936), which we will now quickly explore,
took a markedly different approach to that of Kleene.

The λ calculus may be thought of as a notation for describing
substitutions, a bit like the replace function above. λ expressions
are made up of bracketed sequences of variables that form loci for
replacement by other expressions. More formally, a λ expression may
be:

1. A variable—var.
2. A function—λvar.expression.
3. An application—expression1 expression2.
4. A bracketed expression—(expression).

Note that this astonishingly simple calculus does not have any of the
familiar numerical forms or operators. Nonetheless, it is every bit as
powerful as number-theoretic predicate logic, and as TMs.

To go into a bit more detail, in a function

λ var.expression

the var (after the λ) is called the bound variable and identifies places in
the body expression (after the .) at which substitutions may be made.

For example, consider the function

λ x.x (identity)

This has bound variable x and body x. So, if this function is applied to
any expression, it just returns that expression.

Next, consider the function

λ f.λ a.f a (apply)

This has bound variable f and body λa.f a. This function applies one
expression from f to another from a.

Now consider the function

λ s.s s (self apply)

This has bound variable s and body s s. So, this function applies an
expression to itself.7 7Alarm bells ...

76 Logical limits to computing

Expressions are evaluated by a process of substitution termed
β reduction.8 We will indicate one β reduction step with ⇒β .8Here, we just provide a brief overview

of β reduction. For the full subtleties
of free and bound variables, and α
renaming to avoid free variable capture,
see (Church, 1936).

Then, for an application

expression1 expression2

if the first expression expression1 can be evaluated to a function of the
form λ var.expression3, then the second expression expression2 should
be substituted in the body expression3 for the bound variable var.

Given an expression, applications are successively beta reduced from
the outside in, until none are left. The expression is then said to be in
normal form.

For example:

1. ((λf.λa.f a) (λs.s s)) (λx.x) ⇒β

2. (λa.(λs.s s) a) (λx.x) ⇒β

3. (λs.s s) (λx.x) ⇒β

4. (λx.x) (λx.x) ⇒β

5. λx.x

At step 1, f is replaced with λs.s s. At step 2, a is replaced with λx.x.
At step 3, s is replaced twice with λx.x. And at step 4, x is replaced
with λx.x.

In other words, if we apply the ‘apply’ function to the ‘self apply’
and the ‘identity’ functions (1), we will apply the ‘self apply’ function
to the ‘identity’ function (2,3), and finally apply the ‘identity’ function
to itself (4), giving the ‘identity’ function (5).

Not every expression has a normal form; that is, there are expressions
whose evaluation never halts. For example, consider applying the ‘self
apply’ function to itself:

1. (λs.s s) (λs.s s) ⇒β

2. (λs.s s) (λs.s s) ⇒β

3. (λs.s s) (λs.s s) ⇒β

4. ...

Here, both occurrences of s are replaced by λs.s s, and we’re back
where we started.

4.13.3 Meta-mathematics in λ calculus

It is straightforward to represent propositional logic in λ calculus. To
begin with, consider extending logic with the form

if condition then expression1 else expression2

where:

• if the condition is true, then expression1 is evaluated
• if the condition is false, then expression2 is evaluated

4.13 Computational procedures 77

if if behaves like a function of three arguments:

λe1.λe2.λc.(c e1) e2 (if)

where the third (c) somehow selects the first (e1) or second (e2). Then,
true and false should behave like functions of two arguments, where
true selects the first and false selects the second:

λx.λy.x (true)
λx.λy.y (false)

Now, consider the truth table for negation:

X ¬ X
false true
true false

This is like

if X then false else true

or

((λe1.λe2.λc.(c e1) e2) false) true ⇒β

(λe2.λc.(c false) e2) true ⇒β

λc.(c false) true (¬)

Thus:

¬ false ⇒
(λc.(c false) true) false ⇒β

(false false) true ⇒
((λx.λy.y) false) true ⇒β

(λy.y) true ⇒
true

Now, again consider the truth tables for conjunction and disjunction:

X Y X ∧ Y X Y X ∨ Y
false false false false false false
false true false false true true
true false false true false true
true true true true true true

For AND, whenever X is true the result is the same as Y , and otherwise
the result is false:

if X then Y else false ≡ λx.λy.(x y) false (∧)

For OR, whenever X is true the result is true and otherwise the result
is the same as Y :

if X then true else Y ≡ λx.λy.(x true) y (∨)

78 Logical limits to computing

We can then systematically use this if ... then ... else ... style
of construct to represent sets, numbers, Peano arithmetic, and predicate
logic.

Recursion is enabled by the pleasingly named paradoxical combinator,
also known as Y :

Y = λf.(λs.f(ss))(λs.f(ss))

Y has the property that, for any lambda expression F, then

Y F = F (Y F)

as

Y F ⇒β

(λf.(λs.f(ss))(λs.f(ss)))F ⇒β

(λs.F (ss))(λs.F (ss)) ⇒β

F (λs.F (ss))(λs.F (ss)) ⇒β

F (Y F)

That is, Y passes a copy of an expression F with a copy of Y into
itself, so this self-copying can further continue. It will, therefore, come as
no surprise that self-referential paradoxes leading to undecidability can
be formulated in λ calculus. In particular, it can be shown that there is
no mechanical procedure for determining whether or not an arbitrary λ
expression has a normal form. In other words, there is no way to tell if
β reduction of an arbitrary λ expression ever terminates.

4.14 The Church–Turing thesis

Church and Turing both argued that their abstractions captured the
essential features of mechanical procedures/algorithms, which Turing
termed ‘computability’ and Church ‘effective calculability’.

Kleene’s recursive function theory gave precise characterization to the
blend of predicate logic and Peano arithmetic that Gödel has used to
establish his incompleteness results. At the time, Church thought that
λ calculus and recursive function theory both captured the same notion
of effective calculability. Indeed, just as TMs and λ calculus can be used
to represent what is effectively recursive function theory, so:

• TMs can represent λ calculus
• λ calculus can represent TMs
• recursive function theory can represent TMs and λ calculus

This suggests that these formalisms really are strongly equivalent in
two important senses. First, all have the same expressive power. That
is, there are no computations that can be captured by some of these
formalisms but not by others, as an arbitrary computation can be
translated from formalism to formalism. Secondly, a result established
directly in any one formalism must hold through translation in all the

4.15 Machines, programs, and expressions 79

others. In particular, undecidability results for one formalism will apply
to the other formalisms.

In what is now called the Church–Turing thesis, it is widely held that
all possible characterizations of computability will prove to be equiva-
lent. Of course, this is a ‘thesis’ rather than a ‘theorem’, as it cannot be
proved: there is no way to know all possible computability formalisms.
However, every new computability formalism since this pioneering work
has been shown to be equivalent to at least one of the classic formalisms.

In particular, contemporary CPUs can easily be programmed to
behave like TMs, showing that both CPUs and programming languages
satisfy the Church–Turing thesis. Thus, all the classic decidability results
apply to contemporary computers and their programs, with deep practi-
cal implications for what we can hope to know about them. For example:

• if it is impossible to tell beforehand if an arbitrary program stops,
it is impossible to tell:

– how long it will take to run
– how much memory it will require
– how much power it will consume

• if it is impossible to tell whether or not an arbitrary assertion is a
theorem, then it is impossible to prove whether or not:

– an arbitrary program is correct—that is, satisfies some
input/output behaviour characterized in logical assertions

– two arbitrary programs do the same thing
– one arbitary program has been plagiarized from another

program

And in more recent results developed directly for programming lan-
guages, the American computer scientist Gregory Chaitin (1998) has
shown that it is impossible to tell if:

• a program is the most elegant—that is, the smallest possible for
some problem

• a sequence of digits generated by a program really is random—that
is, each subsequence is equally likely

Of course, there may still be heuristics for checking aspects of these
properties; that is, procedures that can often give useful answers for
many specific problem instances, even if they are not effective in always
being guaranteed to halt with a definitive answer.

4.15 Machines, programs, and
expressions

We started this chapter by introducing the idea of meta-mathematics;
that is, the mathematical formalization of mathematics itself. And we
have latterly focused on the undecidability of mechanical procedures
for checking whether or not mathematical assertions are theorems,
noting that different mathematicians have placed differing emphases on
‘procedure’ and ‘mechanical’.

80 Logical limits to computing

This corresponds to our familiar distinction between a ‘program’ as
a sequence of instructions and a ‘computer’ as a machine for executing
programs by carrying out the instruction sequences. Curiously, while
it seems obvious that human mathematicians ‘do’ maths, the notion of
human programmers ‘doing’ programs appears eccentric: computers do
programs. However, programmers really do ‘do’ programs when they
develop and debug them; that is, they quite explicitly try to trace
through their programs as if they were computers executing them.
Indeed, originally the term ‘computer’ meant a person who carried out
a rule-based activity, typically solving or checking the results of hard
sums. And, as we’ve seen above, Turing drew out his characterization
of TMs from a simplified model of humans following rules. Nonetheless,
without something to understand it, be it human or machine, a program
is just an inert set of symbols.

We can clarify this by again considering the difference between a TM
and a Universal TM. First, a TM is a specific machine that embodies
some specific mechanical procedure. A TM cannot be reprogrammed. If
a TM is needed for a different procedure, then it must be built afresh.

Now, if we separate out the head and tape mechanisms, which are com-
mon to all TMs, then the differences between TMs lie solely in the fixed
sets of instructions they are built to follow. Even a Universal TM has
a specific, fixed set of instructions. However, those instructions enable a
UTM to behave like any other TM, provided that it is given an appropri-
ate TM description on its tape. That is, the UTM is an interpreter of TM
descriptions. A TM description itself consists of a sequence of transitions
and an initial tape, written in a precise notation. Thus, we could view the
TM description notation as a programming language, with the meanings
of programs—that is, TM descriptions—defined by the UTM.

This is directly analogous to our common-or-garden computers. Inside
a computer is a Central Processing Unit (CPU), which is an electronic
machine for executing sequences of machine code instructions. The
CPU is physically connected to main memory, which may contain
electronic representations of machine code programs—that is, sequences
of instructions—and of data values. The CPU can then systematically
access the memory, pick up instructions, and execute them to manipulate
data, also from memory.

In TM terms, a CPU is a universal machine code machine; that
is, a CPU is an interpreter for programs written in the machine code
language. Thus we can equate:

Computer UTM

CPU UTM control
Machine code TM instructions
Main memory UTM tape
Machine code program TM description
Data TM tape

4.15 Machines, programs, and expressions 81

Machine code is a very simple notation and it is hard for humans
to construct substantial machine code programs. Instead, we have
developed high-level programming languages, such as Java and HTML,
and high-level data descriptions, such as XML. Nonetheless, for a
computer to execute a program in a high-level language, it must be
compiled—that is, translated—into machine code instructions. Similarly,
data in a high-level form such as XML must be converted into a low-level
form suitable for manipulation in memory.

These days, rather than compiling high-level programs into machine
code, it is increasingly common to deploy an abstract or virtual machine;
that is, a program that interprets programs written in some other9 9Or the same ...

language. Then further virtual machines can be described in languages
for virtual machines, so computer systems may consist of hierarchies
of virtual machines. For example, a PC may process a stream of
XML data using a Java virtual machine running on the .NET virtual
machine that underpins Microsoft Windows systems. Nonetheless, all
these virtual machines finally boil down to the behaviour of a physical
CPU interpreting instruction sequences in its specific machine code.

In contrast to TMs, which embody specific TM descriptions, and
UTMs, which can interpret arbitrary TM descriptions, λ calculus and
recursive function theory expressions do not describe specific machines.
Rather, they are akin to TM descriptions, waiting for a UTM to animate
them. Hence, in a very deep sense, being able to represent expressions
in λ calculus or recursive function theory as TMs is akin to compiling
them into TM descriptions for execution on a UTM.

Of course, it is possible to build both physical and virtual machines
to execute λ calculus or recursive function theory expressions. Indeed,
the very high-level functional programming languages, like Haskell
(Marlow, 2010) and F# (McNamara, 2010), are directly based on these
formalisms, and are often implemented via virtual machines, of which
Peter Landin’s SECD machine (Landin, 1964) is the classic example.

It is also possible to build specific machines directly from programs.
Thus Field Programmable Gate Arrays (FPGAs) are highly flexible, very
low-level hardware devices that can be configured for specific ‘mechanical
procedures’ from specific programs. Once again, however, FPGAs are
also configured as soft cores; that is, as interpreters for machine codes
for extant CPUs.

4.15.1 Von Neumann machines

While TMs provide foundational underpinnings for the theory of
computing, practical computers are based on a very different design that
evolved from work in the United Kingdom, Germany, and the United
States before and during the Second World War. The von Neumann
machine is named after the Hungarian-American mathematician John
von Neumann (1945), whose report gave the first formal characterization
of the stored program computer that is so ubiquitous today. von
Neumann machines are conceptually close to Babbage’s Analytical

82 Logical limits to computing

Engine, in distinguishing processor, memory, and input–output, and
to the Universal Turing Machine in holding both programs and data
in unitary memory, and in providing a general-purpose processor that
interprets machine instructions.

In contrast, Harvard machines, while retaining the UTM’s general-
purpose processor, are closer to the Analytical Engine in holding
programs and data in separate memories. Contemporary designs—for
example, the ARM—may conflate this useful but simplistic distinction.

Heat, information, and
geometry 5

5.1 The triumph of digital
computation 83

5.2 Analogue computing
with real numbers 84

5.3 What memories are
made of 86

5.4 Power consumption as a
limit 91

5.5 Entropy 95
5.6 Shannon’s information

theory 111
5.7 Landauer’s limit 114
5.8 Non-entropic

computation 117
5.9 Interconnection 122

5.1 The triumph of digital
computation

Although Turing had advanced the idea of the universal digital computer
during the 1930s, right up to the end of the 1960s there was an active
tradition of analogue computing that was only gradually replaced by
digital techniques. The tradition of analogue gun control computers
continued, as we have mentioned (p. 40), well beyond the 1940s. Through
the 1950s and 1960s, analogue electronic computers were serious rivals
to digital ones for many tasks. The analogue approach ultimately lost
out because of the twin problems of accuracy and programmability.

Analogue machines were significantly less accurate than digital ones.
Wass (1955) stated that

Errors as small as 0.1% are hard to achieve; errors of 1% are not unusual, and
they are sometimes as large as 5%–10%. This is in striking contrast to digital
machines.

(p. 3).

This meant that analogue computers had to be applied in areas where
high accuracy was not as important as speed of operation. They were
used in aerodynamic control applications such as missile guidance,
where their errors could be tolerated. In these applications, the basic
aerodynamic coefficients of the equations being solved were known to
only about 10% accuracy, whereas the real-time response needed could
not be attained by then-existing digital machines.

Analogue machines were programmed by plug boards. Units to carry
out operations of adding, subtracting, multiplying, differentiating, and
so on were interconnected by removable wires in the same way as in a
manual telephone exchange. Output was typically in the form of real-
time CRT traces of the graph of the function being computed. Storage of
analogue quantities remained a constant problem. MacKay and Fisher
(1962) describes the use of modified Williams (1948) tubes as analogue
stores. (Bergman, 1955) found that over a process of eight read/write
cycles with such tubes the cumulative error amounted to 10%.

84 Heat, information, and geometry

The sources of error in such machines were as follows:

1. Systematic scaling errors due to uncertainty in the parameters of
the resistors and other passive components being used.

2. Distortions due to non-linearities in the amplifiers used.
3. Random fluctuations due to environmental factors. These include

thermal noise in the amplifiers, and in the case of Williams tubes
the effects of stray magnetic fields on the trajectories of the
electrons.

These problems are representative of the difficulties that plague any
attempt to carry out accurate analogue computation.

5.2 Analogue computing with real
numbers

In principle, an analogue device can be thought of as computing with real
numbers. These real numbers can be divided into two classes, the param-
eters supplied as inputs to the calculation and the variables that take on
time-varying values as the computation proceeds. Whilst in a digital
machine the parameters and the variables are uniformly represented
by strings of bits in some digital store, in an analogue machine they
are typically of different types. The variables in an electronic analogue
computer, for example, are instantaneous voltages, whilst the parameters
are provided by the physical setting of resistors, capacitors, and so on.
These components are subject to manufacturing errors and the provision
of higher-specification components becomes exponentially expensive:

That the machine is digital however has a more subtle significance. It means
firstly that numbers can be represented by strings of digits that can be as
long as one wishes. One can therefore work to any desired degree of accuracy.
This accuracy is not obtained by more careful machining of parts, control
of temperature variations, and such means, but by a slight increase in the
amount of equipment in the machine. To double the number of significant
figures, would involve increasing the amount of the equipment by a factor
definitely less than two, and would also have some effect in increasing the
time taken over each job. This is in sharp contrast with analogue machines,
and continuous variable machines such as the differential analyser, where
each additional decimal digit required necessitates a complete redesign of the
machine, and an increase in the cost by as much as a factor of 10.

(Turing, 2004).

The parameters and variables are, in the mathematical abstraction,
transformed by operators representing addition/multiplication, and so
on. In an actual analogue computer, these operators have to be imple-
mented by some apparatus the effect of which is analogous to that of the
mathematical operator. The analogy is never exact. Multipliers turn out
to be only approximately linear, adders show some losses, and so on. All
of these mean that even if the variables were perfect representations of

5.2 Analogue computing with real numbers 85

the abstract concept of real numbers, the entire apparatus would only
perform to bounded accuracy. But no physically measurable attribute
of an apparatus will be a perfect representation of a real number.

Voltage, for example, is subject to thermal and ultimately quantum
noise. We can never set up an apparatus that is completely isolated
from the environment. The stray magnetic fields that troubled Bergman
will never totally vanish. It may be objected that what we call digital
computers are built out of transistors working with continuously varying
currents. Since digital machines seem to stand on analogue foundations,
what then privileges the digital over the analogue?

The analogue character of, for instance, voltage is itself a simplifica-
tion. The charge on the gate of a transistor is, at a deeper level, derived
from an integral number of electrons. The arrival of these electrons on
the gate will be subject to shot noise. The noise will follow a Poisson
distribution, whose standard deviation is≈ √n, with n the mean number
of electrons on the gate. It is clear that by increasing n, making the device
larger, we control the signal-to-noise level. For large enough transistors,
this noise can be reduced to such an extent that the probability of
switching errors becomes negligible during the normal operation of the
computer. It is only if we make devices too small that we have to bear the
cost of lower reliability. We look at this in more detail in Section 5.7.1.

Suppose that we have a device, either electronic or photonic, that
measures in the range 0–1 and that we treat any value above 0.6 as a
boolean TRUE and any value below 0.4 as a boolean FALSE, and say
that in between the results are undefined. Similar coding schemes in
terms of voltage are used by all logic families. For simplicity, we will
assume that our measurements are in the range 0–1 V (volts).

Now suppose that our switching device is designed to be fed with a
mean of 100 quanta when we input a TRUE to it. Following a Poisson
distribution, we have σ = 10, so we need to know the probability that the
reading will be indeterminate, below 0.6 V, or how likely it is that only
60 quanta will arrive given the shot noise; in other words, a deviation of
4σ from the mean. Using tabulations of the normal distribution, we find
that this probability is 0.0000317.

Consider a computer with a million gates, each using 100 electrons.
Then 31 of the gates would yield indeterminate results each clock cycle.
This is unacceptable.

Assuming the million gates and a 1 GHz clock, and that we will
tolerate only one indeterminate calculation a day, we want to push this
down to a failure probability per gate per cycle of about 10−19 or 9σ.
This implies σ = 0.044 V, which can be achieved when our capacitor is
sufficiently large that about 500 electrons will generate a swing of 1.0 V.
The figures are merely illustrative, and posed at a level of abstraction
that would apply to both electronic and optical computers, but they
illustrate the way in which reliability and the number of quanta used to
represent TRUE and FALSE trade off against one another.

Our digital computers are reliable because they use a large number of
degrees of freedom—for example, a large number of quanta of charge—to

86 Heat, information, and geometry

represent one bit. The number can be chosen so that the probability of
a read error is very low, and then, following a read, the signal can be
regenerated. This prevents the propagation of errors that are the bane
of analogue computing.

5.3 What memories are made of

Turing’s initial idea of a universal computer was, as described in Chapter
4, one that used a tape memory. During the Second World War, he
had experience with the code-breaking computer’s code named Colossus
(Hodges, 1983; Gannon, 2006), which was built to break into the German
‘Fish’ code. These machines used very high-speed paper tape readers as
a read only store. Most were destroyed after the war, but a few were
retained for the generation of one-time pads punched tape for use in
British diplomatic ciphers. But the use of tape was not an essential part
of Turing’s conception of a digital computer. His Automatic Computing
Engine, designed in 1945, replaced tapes with mercury delay lines
(Turing, 2004). The essential point was that the memory could be used
to hold either instructions or data. This had been implicit in his original
paper (Turing, 1937). Based on his experience since then, he was by 1950
giving a very general definition of a digital computer:

The idea behind digital computers may be explained by saying that these
machines are intended to carry out any operations which could be done by
a human computer. The human computer is supposed to be following fixed
rules; he has no authority to deviate from them in any detail. We may suppose
that these rules are supplied in a book, which is altered whenever he is put on
to a new job. . . . A digital computer can usually be regarded as consisting of
three parts:

(i) Store.
(ii) Executive unit.
(iii) Control.

The store is a store of information, and corresponds to the human
computer’s paper, whether this is the paper on which he does his calculations
or that on which his book of rules is printed.

(Turing, 1950, p. 436).

His mature conception of the memory was that it addressed randomly
rather than sequentially:

The information in the store is usually broken up into packets of moderately
small size. In one machine, for instance, a packet might consist of ten decimal
digits. Numbers are assigned to the parts of the store in which the various
packets of information are stored, in some systematic manner. A typical
instruction might say:

‘Add the number stored in position 6809 to that in 4302 and put the result
back into the latter storage position.’

Needless to say it would not occur in the machine expressed in English.
It would more likely be coded in a form such as 6809430217.

(Turing, 1950, p. 437).

5.3 What memories are made of 87

(a) (b)

(c)

Fig. 5.1 Memories available to Turing
in the 1940s. (a) Mercury delay
lines, shown with Maurice Wilkes, the
designer of EDSAC. (b) The magnetic
drum. (c) The Williams tube. Photos
(a) and (c) Wikimedia images; (b)
photo by Nial Kennedy.

At the time at which Turing was designing the ACE or working
at Manchester, designing a suitable random access store was still
a considerable problem. Although the conceptual design was for a
store that could be accessed as a series of numbered slots, the actual
implementations available (Fig. 5.1) were all cyclical.

In the Williams tube (Williams, 1948; Lavington, 1975), a cathode ray
tube was raster scanned to read out bits deposited as electric charge on
the surface, an inherently cyclical/serial process.

In the drum store, the data was written to a set of tracks on the drum
and read by fixed heads at slightly offset positions. Data from any head
could be randomly selected, but the user had to wait for a particular
word to come back round as the drum rotated.

In a delay line, the sound waves passed down a mercury-filled tube
and were picked up at the other end to be regenerated (Lavington,
1980). In both cases, the limitation on the computers performance was
the cycle time at which data came back round. On average, we would
expect memory access for a random word to take approximately half the
memory cycle time.

The first genuinely random access memory did not come until the
invention of magnetic core planes such as the one shown in Fig. 5.2.

88 Heat, information, and geometry

Fig. 5.2 (a) A magnetic core memory
storing 1024 bits of information, dating
from 1961, made by the Control Data
Corporation. (b) The first German
1 Mb Dynamic Random Access Mem-
ory chip of 1989, made by VEB Carl
Zeiss Jena.

(a) (b)

With these, the access time could be much faster than in delay lines or
drums. The time to access a core plane of n bits could be modelled as

tm = a log (n) + b
√

n + c

where the logarithmic term a log (n) derives from the decode logic that
selects row and column lines, the b

√
n term derives from the time it

takes for the signal to propagate along the row and column lines, and
the constant term c is the time taken for a single core itself to respond
to being selected. Why does it take this form?

Well, in the photograph the plane has 32 rows and 32 columns. When
an access is performed, one of the rows is selected. To select one row
thus takes 5 bits, since 32 = 25. So the signal that selects the row must
have had to pass through five AND gates. Activation of a row will cause
all 32 bits on that row to be read out along the column lines. The bit
that is wanted must be selected from these 32 using another five address
lines. Therefore, the total number of AND gates involved in the critical
path will be ten. There will be five to select the row and five for the
column. There are 1024 bits in the memory, and log2 (1024) = 10.

Next, consider the time to propagate along the rows and down the
columns. For a randomly chosen memory cell, the row signal has to
propagate halfway across and the column signal has to propagate halfway
down the column. So the mean propagation distance in our example will
be 32

2 + 32
2 = 32 cells. Therefore, in Fig. 5.2 what we have is

tm = 10a + 32b + c

with a being the delay through an AND gate, and b the propagation
time across a distance of one cell, and c the time for the selected core to
switch.

Clearly, for large arrays, the square root term will dominate. In
consequence, there will be an optimal size of plane. Suppose that with the
technology of 1961, the optimal size was 1024 bits. Rather than creating
a plane of 4096 bits whose propagation time would have been twice as
great, it would have been better to fit the machine with four planes of
1024 bits at a cost of only two more AND gate delays. The optimal

5.3 What memories are made of 89

size depended on the relative sizes of the constants a and b, both of
which would change over time as AND gates improved, and as physically
smaller cores meant that the signal propagation distances fell.

During the 1970s, the preferred technology for computer memories
changed from induction to capacitance. Capacitive memories became
commercially viable with the Mostek 4096 bit dynamic RAM chip in
1973. These quickly displaced core memory because they were faster,
cheaper, and more compact. If you look at the DRAM shown in
Fig. 5.2(b), you can see that it was made of 64 smaller arrays, illustrating
our previous argument that there is a sweet point for a given two-
dimensional memory array technology, an array size that minimizes
both decode and propagation delays. For larger memories, one creates
multiples of these optimally sized arrays. It is no accident that both the
core memory and the DRAM were organized as two-dimensional arrays.
A combination of logic, economy, and thermodynamics have forced this
approach on to computer designers.

It is a logical approach because the organization of memory as a grid
allows the decode logic to be shared across many memory cells. In the
old 1024 bit core memory, each row or column wire would have been
fed by an output of a five-level decode tree, a deeper version of Fig. 5.3.
A p-level decode tree requires 2p − 1 demultiplexers, so our core matrix
will have required 31 demux’s for the rows and 31 for the columns; in
general, this approximates to 2

√
n components for an array of n bits.

If each memory bit was fully decoded, then n demultiplexers would be
used, so the grid arrangement uses much less resource in gates.

a0

a1

a2

Row lines

Demux

Fig. 5.3 A three-level decode tree.

90 Heat, information, and geometry

There is another reason why two-dimensional arrays are advantageous.
We should remember that computers are labour-saving devices. They are
only worth using if the total work set free by using the machine exceeds
the total work that goes into making it. If we look at the calculator
shown in Fig. 3.16, its cost in the 1950s was around two month’s average
earnings. It would only be worthwhile for somebody to buy one if they
were an accountant or had some other job that involved them in a great
deal of calculation over a long period of time.

By 1972, when the first mass-produced electronic calculator, the
Sinclair Executive, was launched in the United Kingdom, its price
was the equivalent of two weeks’ wages. Today, a basic four-function
electronic calculator costs the equivalent of about 20 minutes’ average
wages. At today’s price, the time saved on even occasional calculations
will make buying a calculator worthwhile for most families. The fall
in price—which is most obvious with calculators, but has affected all
computing equipment—is a consequence of the adoption of what is
basically a printing technique to produce electronic logic. The chip
layout is transferred to the chip by a parallel photographic process. This
allows all transistors on the chip to be simultaneously manufactured.
Successive generations of chips have small and smaller features on
them. Improvements in imaging technology—the ability to use and focus
ever shorter waves of electromagnetic radiation—have allowed repeated
halvings of feature sizes. These halvings of feature sizes translate into an
exponential growth in the number of transistors per hour that a state-
of-the-art plant can make. Despite the growth in capital costs of chip
plants (Polcari, 2005), this has still led to an exponential cheapening of
transistors.

But for this to work it has been essential that there exists an axis
normal to the circuit, along which its constitutive information can be
transmitted in parallel. In a three-dimensional universe, this constrains
us to making two-dimensional printed products.

Prior to the adoption of printing techniques, some three-dimensional
core arrays were built. But core memories were manufactured sequen-
tially, threading wires through the cores one at a time. Indeed, although
machines were built to automate construction, in the end it was found
more cost-effective to use oriental cheap labour to make them by hand
(Pugh et al., 1991). For cores, there was not the same imperative to
adopt a purely planar organization.

Suppose that we did try to mass produce chips with a 3D structure.
Since the manufacturing process is basically a printing process, at least
one printing step would be required for each layer of our 3D structure.
If we wanted to improve our gate count on a 2D chip by a factor of four,
we could do so provided that we could print each feature at half the
size. Using the third dimension, we could also increase the number of
gates by a factor of four by having four times as many manufacturing
steps to lay down 4 times as many layers. If we grow gates by shrinking
feature sizes, the number of manufacturing steps remains constant. If
we do it by adding layers, the cost increases at least in proportion to

5.4 Power consumption as a limit 91

the additional layers. In fact, the cost metric will be worse than this for
a multi-layer chip, since manufacturing errors will grow exponentially
with the number of layers used. For these reasons, 3D chip manufacture
has never been economically competitive.

Another factor is the problem of heat dissipation. A three-dimensional
structure can only conduct or radiate away heat from its surface. If heat
is to be removed from the interior, it has to be made porous and liquid
or gas blown through to cool it. This was feasible with cores since they
were porous, but it is much more of a problem with silicon chips. These
have to dissipate their heat from their surfaces, and as circuit technology
has advanced, the problem of heat dissipation has become more severe.

5.4 Power consumption as a limit

The first generations of electronic computers used vacuum tubes—or
‘valves’, as they were called—to perform binary switching. In a valve, the
cathode has to be heated by a red-hot element; in consequence, a valve
computer used huge amounts of power. Lavington recounts how amazed
people were by the amount of power used by the Manchester Mk1 in
1948 (Lavington, 1975). Power consumption was substantially reduced
in the second and third generations of mainframe computers, which
used discrete transistors or small-scale integrated circuits (Bashe et al.,
1986; Pugh et al., 1991). The key to the inexpensive mass production
of electronic computers was the development of the microprocessor,
initially as a device for cheapening the production of desktop calculators
(Ceruzzi, 2003).

5.4.1 CMOS

The first generation of microprocessors like the Intel 4004 shown in
Fig. 5.4(a), used what are called PMOS transistors. These were followed
shortly after by NMOS chips like the 8080 and then, from the mid-1980s,
CMOS chips have dominated. The aim of successive changes in circuit
technology has been to combine circuit speed with power economy.

To understand what is involved, look at the NMOS gate shown in
Fig. 5.5. The diagram shows a cross-section through a gate with air
above and silicon below. The silicon is doped in two ways: N-type doping,
which imparts a negative charge; and P-type doping, which imparts a
positive charge. The two N-type regions are labelled S and D, for ‘source’
and ‘drain’. In the middle, labelled G, is the gate, a capacitor plate
that is isolated from the silicon by a layer of insulating silicon dioxide.
The gate acts as a switch that can be opened or closed by applying a
voltage to it.

In the off situation shown in Fig. 5.5(a), current cannot flow from
the source to the drain as it is opposed by the bias voltage between
the N-type silicon of the source and the P-type silicon under the gate.
If a positive charge is applied to the plate G, however, it induces an

92 Heat, information, and geometry

(a) (b)

(c) (d)

Fig. 5.4 Intel and AMD microprocessors. (a) A 4004 PMOS 4-bit chip, from 1971. This was the first microprocessor and was
designed to be used in Busicom desk calculators. (b) An 8080 NMOS 8-bit chip, from 1974. This was used in the first-generation
personal computers, such as the Altair 8800 or the IMSAI 8080. (c) An Intel 80386 CMOS 32-bit chip. (d) An AMD Athlon-64
dual core CMOS 64-bit chip, from 2005.

Fig. 5.5 An NMOS gate: (a) in the off
state; and (b) in the on state.

S D

P
(a) (b)

N+ N+

G S D

P

N+ N+

G

N-type depletion zone immediately under the gate. Consequently, there
is a continuous N-type region from the source to the drain and current
flows. In a PMOS gate, the source and drain are built of P-type silicon
and in the off mode the channel is N. In this case, a negative charge on
the gate induces a P-type depletion zone between the source and drain.

CMOS chips combine the use of both NMOS and PMOS gates, the
motivation being to reduce power consumption. If we look at the NMOS

5.4 Power consumption as a limit 93

+5

+5

Single gate

A

NOT A

NMOS invertor

A

B

NOT(A AND B)
PMOS

NMOS

NOT AA

+5

Fig. 5.6 Left to right: a basic NMOS
transistor symbol, an NMOS NOT
gate, an NMOS NAND gate, and a
CMOS NOT gate. Note the pull-up
resistors on the NMOS NOT gate and.
When the output of the NMOS NOT
gate is low, a current will flow through
this resistor to ground through the
transistor. In the CMOS case, the out-
put is connected either to high or to
ground, with no leakage current.

gates in Fig. 5.6, we see that when the output is low a leakage current will
flow through the pull-up resistor to ground. The CMOS gate avoids this
leakage current by connection of the output either to high or to ground.
Thus there is no static current flow for a CMOS gate. The only current
flow occurs during switching, in order to overcome the capacitance of
the circuit attached to the output of the gate. This led to a considerable
economy in the use of power when the initial transfer from NMOS to
CMOS technology occurred.

As clock speeds have risen, however, the currents required to overcome
capacitance have increased so much that power consumption has again
become a pressing problem. Let us construct an ultra-simple model of
the power consumption of a CMOS processor. We can approximate a
CMOS chip by a collection of capacitors, a portion of which charge and
discharge on each clock cycle. This charging and discharging dissipates
power. For our simple model, we will consider only the capacitance of
the gates themselves, not of the wires between them. The capacitance
of a parallel plate capacitor is given by

C = κ8.854× 10−12 A

d

where C is the capacitance in farads (F), A is the area in square metres,
κ is the dielectric constant of the material between the plates, and d is
their separation in metres. For the silicon dioxide insulator used in most
chips, κ is 3.9. Let us initially consider only the capacitance of the CMOS

94 Heat, information, and geometry

gates themselves, ignoring the wires for now. Since the capacitance of the
gates is inversely proportional to the gate insulation thickness, as feature
sizes are made smaller, the capacitance tends to increase as the thickness
of the gate insulation decreases. Since the insulation under the gates is
thinner than under the wires, the gates contribute a disproportionate
amount to the total capacitance.

Consider a gate that is 65 nm square and has an oxide thickness of
1.2 nm (realistic figures for about 2008):

gate dimensions 65×10−9 m
gate area 4.2×10−15 m2

distance between plates 1.2×10−9 m
capacitance 1.2×10−16 F

The charge on the gate will be the product of the working voltage and
the capacitance = vC, and the power used will be P = fv2C, where f
is the clock frequency. If we operated the gate at 3.3 V and had a clock
speed of 1 GHz, then each gate would use a power of about 1.3×10−6 W
(watts). This does not seem much until you take into account how many
gates there are in a modern chip. An AMD K10, for example, has of
the order of 5 × 108 gates. The power used will depend on the fraction
of the gates that switch each cycle; if 10% switch each cycle, the total
power consumption of the chip would be about 65 W. Clearly, the above
model is very approximate. The fraction of gates switching each cycle
is a guess, and we have made the simplifying assumption that gates are
squares of edge the minimum feature size. We have ignored capacitance
on wires, since the thickness of insulation here is much larger, and we
have also neglected resistive losses.

Despite the simplifications, our estimated power consumption agrees
reasonably well with the figures given by AMD for the Agena version
of the K10, which consumes between 65 and 140 W for clock speeds
between 1.8 GHz and 2.6 GHz.

As clock speeds increase, so does power consumption. As feature
sizes shrink, and thus the insulator thickness falls, this too increases
power consumption per square centimetre of chip surface. The result
is shown in Fig. 5.7. The processor becomes physically dominated
by the equipment required to remove excess heat. The rate of heat
flow away from the surface of the chip is already more than can be
handled by simple conduction. To augment this, heat pipes (Dunn and
Reay, 1973) have to be used (see Fig. 5.7(c)). We are approaching the
limit of heat dissipation that can be practically handled using low-
cost techniques. In the past, mainframe computers used liquid cooling
(Cray, 1986), but this is expensive and not suitable for mass-produced
machines.

Our account of computing has led from primitive arithmetical aids to
devices more like little steam engine boilers. This seems strange.

But there turns out to be a deep relationship between computing and
thermodynamics, and it is thermodynamics that, on the basis of current
understanding, fundamentally limits the power of our computing.

5.5 Entropy 95

(a)

1 2

Casing

Wick Vapour cavity

3

4

Low temperatureHigh temperature
Environment temperature

(b)

(c)

Fig. 5.7 Heat exchangers used in mod-
ern desktop computers. (a) The heat
exchanger used for a 4 core Intel pro-
cessor. The large finned heat exchanger
is cooled by an axial fan and heat is
led up to it from the processor and
graphics chips by heat pipes. (b) The
heat exchanger system used for the
G5 processor on an Apple computer.
(c) The principle of the heat pipe: 1,
the vapour evaporates, absorbing heat;
2, the vapour flows to the cold end; 3,
the vapour condenses, releasing heat; 4,
the wick conducts the liquid back.

5.5 Entropy

Classical thermodynamics is a true experimental science and a founda-
tion stone of classical physics. The theory was fully developed during the
nineteenth century but its roots are earlier, in the study of heat engines,
machines that harness heat to perform work and whose key role in the
future of industrial civilization was already apparent by the early 1800s.
Although the subject had extremely practical motivations, the principles
uncovered by its founding fathers are so general that they can be applied
to any finite macroscopic system and are now considered to constitute
universal laws across this domain. These principles have been extensively
confirmed through empirical confirmation of predictions.

Thermodynamics is concerned with macroscopic properties of matter
and requires no hypotheses concerning microscopic structure. Indeed,
the key to its universal applicability lies in the extraordinary sim-
plicity and generality of the assumptions that it makes. However, the

96 Heat, information, and geometry

corpuscular view of matter had become widely accepted by the late
nineteenth century, and a number of scientists strove to develop a
particle-based theory from which the key derived quantities and laws
of thermodynamics could be deduced. The key protagonists of this
enterprise were James Clerk Maxwell (1831–79) and, especially, Ludwig
Boltzmann (1844–1906), who showed that consideration of the statistical
behaviour of large numbers of particles, behaving probabilistically, could
yield the same predictions as the high-level macroscopic treatment
of thermodynamics. This probabilistic corpuscular theory came to be
known as statistical mechanics (sometimes also called statistical ther-
modynamics). It was extended with enormous success in the twentieth
century when, with the advent of quantum theory, a proper quantum-
mechanical treatment could be applied to the statistical assemblies
under consideration. With this refinement, the predictions of statistical
mechanics have been verified for a wide range of systems, including those
based on matter in extreme and exotic conditions.

Even in its classical form, statistical mechanics can give a considerable
insight into the nature of thermodynamic properties and laws, but the
philosophical status of this insight is not perhaps quite as simple as
it first appears. It is often assumed that thermodynamics must be, in
some sense, a less fundamental theory than statistical mechanics; but
this is not strictly the case, as argued powerfully by, for example, Primas
(1998). Such deep considerations aside, however, in what follows we will
focus on the power of the classical thermodynamic theory, but use a
corpuscular narrative to help anchor the ideas.

The base unit of study in classical thermodynamics is that of a
thermodynamic system, any finite macroscopic region of the universe
that is under study as a coherent whole for some reason. The qualifier
‘macroscopic’ may be interpreted to mean that all matter and energy
within the system and entering or leaving it can be treated as continuous
in nature. The universe other than the system is said to constitute the
surroundings or environment, and the interface between system and
environment is the boundary. Thermodynamics considers the ways in
which energy can drive the behaviour of the system, whether or not
that energy can be transferred to and from the environment. A system
may be simple, consisting for example of a volume of a single substance,
or compound, with several distinct and possibly interacting parts.

Any thermodynamic system is characterized by a number of properties
that describe it. Some of these properties are measurable physical values
such as mass, volume, or pressure, whereas others are derived quantities
such as density. Some properties, such as pressure, field strength, or
temperature, can vary from point to point within the system and are
called intensive; others, such as volume or mass, are properties of
the system as whole and are called extensive. If the surroundings of
the system change, these properties will also change over time, until
eventually no further change occurs. At this point, the system is said to
be in thermodynamic equilibrium. When a system is in equilibrium, it can
be characterized by specifying fixed values for all its properties and it is

5.5 Entropy 97

then said to be in a definite thermodynamic state. If after being slightly
displaced the system will return to its equilibrium state, the equilibrium
is said to be stable; if it is stable for only very small displacements
but unstable for larger ones, it is said to be meta-stable. Finally, a
system that can be displaced by a small disturbance, but will remain
in the displaced state when released, is in neutral equilibrium. Systems
in equilibrium are of central importance in thermodynamics, but much
that is of interest also concerns systems that are not in equilibrium.

One of the simplest systems, often used to illustrate thermodynamic
ideas, is a fixed mass of a so-called ‘ideal’ gas held at equilibrium in
a known volume, V , at some fixed pressure, p, and absolute tempera-
ture, T . The reason for the popularity of this particular system is because
its behaviour is well understood and summarized in the ideal gas law:

pV = nRT (5.1)

where n is the amount of the substance in moles and R is the gas constant
(∼ 8.314 J K−1 mol−1).

The properties of a system in equilibrium are typically subject to
relationships that place constraints on them. For example, if the mass
of the system is fixed at one mole (n = 1) of the constituent gas,
the volume, pressure, and temperature measured will always obey the
ideal gas law (Eq. 5.1), so that if any two of the quantities p, V , and
T are known, the third is automatically determined. The law is an
example of what is called an equation of state for the system and it
shows that if a minimum number of properties are known, the others
are all determined. This number of independent parameters required to
describe a system is a characteristic of that system and is referred to
as the number of degrees of freedom that it possesses. The properties
used to describe the system state are sometimes called thermodynamic
coordinates.

In the case of the ideal gas, the system has two degrees of freedom.
The state of the system can be fully described by specifying, say, its
volume and pressure as thermodynamic coordinates (although volume
and temperature, or temperature and pressure, would do equally well).
It is then possible to represent the state of the system as a point on a
two-dimensional coordinate plane with axes labelled p and V (or p and
T , or V and T). A graph of this kind is called an indicator diagram for
the system (see Fig. 5.8).

It is important to recognize that the concept of state only applies to
a system at equilibrium, and only such a system can be represented
as a point on an indicator diagram. A system in an initial state of
equilibrium will not undergo further change unless it is perturbed.
When this happens, however, the system will typically change, resulting
in it eventually moving to a new equilibrium state. The change can
be partially described by showing the initial and final state as two
points on an indicator diagram but, while this details the start and
end of the change, it does not say anything about what happens in the
middle.

98 Heat, information, and geometry

Fig. 5.8 The state of a thermody-
namic system is represented by a point
on a pressure–volume (p–V) indicator
diagram. A quasi-static change from an
initial state, A, to a final state, B, is
then a continuous path joining the two
points.

V

p

A

B

In certain circumstances, if a change occurs slowly enough, the system
may be thought of as being close to a definite state at every instant
between its initial and final positions. In this case, the system’s progress
between initial and final states can be plotted as a path on the indicator
diagram, with each point on the path denoting an intermediate state
through which the system has passed on the way. A change of this type
is called quasi-static. Between any two points, many paths are possible,
so a system in a certain initial state may follow many different quasi-
static paths to the same final state (see Fig. 5.9). Often, however, a
system will alter state so quickly that some of its intensive properties
have no defined values during the change.

For example, during an explosion, pressure may vary so widely across
a system that was previously in equilibrium that no meaningful value can
be assigned to the property. In this case, while the system is between its
initial and final states, it cannot be represented on an indicator diagram
and no path can be assigned to the change of state.

Fig. 5.9 All changes from state A
to state B are associated with the
same change in internal energy, ΔU =
UB − UA, regardless of mechanism.
This applies not only to all quasi-static
paths (e.g. C and D) but also non-
quasi-static changes with no indicator
diagram path, such as E.

V

p

A

B

Non-quasi-static change

C

D

E

5.5 Entropy 99

For a thermodynamic system in equilibrium to undergo change, energy
must either be delivered to it or taken from it by its surroundings.
The concept of energy is extremely fundamental in physics. Without
attempting a general definition, we will note that a system may possess
energy by virtue of its macroscopic motion (kinetic energy) or position
in an external field of force (potential energy) but also internally, stored
in its physical structure. Here, we will ignore the kinetic and potential
energy and address only that stored internally in the system. In terms of
thermodynamics, it is relatively straightforward to show that a system’s
internal energy, U , is a function of its state. Thus, for example, for a
system consisting of a fixed mass of gas at equilibrium with volume, V ,
and at pressure, p, we can write: U = U(p, V).

In general, when a system moves from an initial state—A, say—
to a final state, B, its internal energy changes by a fixed amount:
ΔU = UB − UA and this is the same regardless of how the change of
state occurs. Whether it is quasi-static or not and, if so, whatever path
it follows, the internal energy difference between initial and final state
is always the same. Indeed, it is a fundamental principle of physics that
energy in such scenarios is conserved, so internal energy gained or lost
comes from or goes to somewhere. Internal energy can be gained either
by performing work on the system or by transferring heat into it from
outside. Similarly, internal energy can be lost by having the system
perform work on its surroundings or by allowing it to deliver heat to
them. From this, it should be clear that the terms ‘work’ and ‘heat’ are
both descriptions of energy in transit and are not, in any way, properties
of any system’s state.

Given this insight, the difference between energy in the form of work
and in the form of heat is interesting to dwell on for a moment. It is most
easily understood if we look at the system from a microscopic point of
view. From this viewpoint, the internal energy of a system is just the
sum of all the energies of the individual particles within it. When energy
is delivered to the system in the form of work, the delivery is ‘ordered’,
for example, by a wall of the system (say, a piston) moving to compress
it. This ordered delivery imparts a non-random motion component to
all system particles encountering the wall. When energy is delivered in
the form of heat, on the other hand, the particles in the wall move
randomly (or thermally) and increase the energy of the system particles
in a similarly random fashion. A transfer of energy will only happen in
this latter circumstance if the average random or thermal energy of the
surroundings is higher than that of the system. However, the distinction
is not always clear cut: both work done on a system and heat entering
it will cause its internal energy to increase.

A key question posed by thermodynamics concerns the extent to which
an increase in a system’s internal energy can then be reversed by the
system doing work on or giving heat to its surroundings, and whether
such a reversal is associated with a penalty of any kind. A change in a
system is said to be reversible if and only if both the system and the envi-
ronment can be restored to their respective conditions before the change.

100 Heat, information, and geometry

The concept of reversibility is an idealization and approximating to it
relies on allowing changes to occur very slowly, so that the system is
always close to a state of equilibrium. For reasons that will become
clearer later, a change can only be reversible if its direction can be
reversed by an infinitesimal change in the conditions of the surroundings.
All reversible changes are necessarily quasi-static, but some quasi-static
changes are not reversible. For example, changes involving dissipative
work, as discussed below, can sometimes be quasi-static but are never
reversible.

When two systems (or a system and its surroundings) are placed in
contact, heat energy will flow from the system whose particles have
higher average thermal energy to the other system. This will occur
until the systems reach a new equilibrium where the average thermal
energy is the same in both. The systems are them said to be in thermal
equilibrium. From observation, it is found that if we have three systems,
A, B, and C, then if A is in thermal equilibrium with B and also in
thermal equilibrium with C, then B and C are in thermal equilibrium
with each other. This universal observation is now known as The Zeroth
Law of Thermodynamics. It is this law that allows the concept of
temperature to be put on a firm footing. Essentially, all systems in
thermal equilibrium are at the same temperature. A standard system
with some thermometric property (for example, the volume of a liquid)
that changes with temperature can then be used as a thermometer.
In microscopic terms, temperature can be interpreted as the average
thermal energy of the particles of which a system is made up.

The most straightforward way in which work can be done on a system
is to supply energy via some change in the external forces acting on
it so as to alter one of its extensive properties. A simple example
of this is the compression of a gas, which—by definition—reduces its
volume (Fig. 5.10a). Work of this type is called configurative and has the
property that, if applied sufficiently slowly, the system can be kept quasi-
statically on a path on its indicator diagram. Assuming that all energy
supplied goes into the configurative change, the system and the environ-
ment can be restored to their original states by reversing the path and
allowing the system to do work. So, for example, by reducing the pressure
slowly, the compressed gas can be allowed to expand again, so doing work
on the surroundings. However, not all work is configurative. Sometimes
when work is done on a system no change in configuration occurs. An
example of this is where work done on a system is dissipated via friction;
another where external electrical energy is supplied to a resistance within
the system (Fig. 5.10b). As is well known, the effect of such dissipative
work is to raise the internal energy of the system in exactly the same
way as if energy had been delivered to the system as heat. A change due
to dissipative work is not reversible for reasons that we shall see shortly.

Heat is exchanged between a system and its surroundings when there
is a temperature difference between them, but only if the boundary
between the systems is diathermal—in other words, it allows heat to
pass. All real boundaries allow some heat to pass, but we can observe

5.5 Entropy 101

Gas

Gas

dV

R

Current (I)

(a) (b)

Fig. 5.10 (a) When a gas is com-
pressed without frictional losses, all the
work goes into reversibly reducing the
volume. This is an example of con-
figurative work. (b) When a current,
I, is passed through a resistance, R,
the work done on the system, I2R, is
dissipative and irreversible. If there is
no change in volume, the temperature
and pressure will increase.

that certain types greatly inhibit it and we could conceive of an idealized
insulating boundary that would be impervious to heat: such a boundary
and a system isolated by it are said to be adiabatic.

An adiabatic system cannot exchange heat with its surroundings and
can only change its internal energy through work. In such a system, it is
observed that the amount of work required to change the system from
an initial state, A, to a final state, B, is always the same, regardless of
how the change is made. This is the most basic form of the famous First
Law of Thermodynamics. If the adiabatic constraint is relaxed, then any
change in internal energy is the sum of the work, W , and the heat, Q,
transferred between the system and its surroundings. Conventionally,
we take work done on the system and heat transferred into it to be
positive, while work done by the system and heat transferred out of it
are negative. The First Law then takes the form:1 1In fact, logically this is just the defini-

tion of heat. The First Law is actually
the above statement about work in adi-
abatic systems. However, the equation
here is often loosely also referred to as
the First Law and we shall follow this
convention.

ΔU = Q + W (5.2)

For an infinitesimal change, the law is expressed thus:

dU = d′Q + d′W (5.3)

It is important to note that, for any given change, although the
difference in internal energy is fixed, the values of Q and W depend
on the path taken, and not only on the endpoints. This is entirely in
line with the remarks above about energy transfer: Q and W are not
functions of state, a fact recognized explicitly by marking the differentials
with a d′ to show that they cannot be integrated except along a known
path. Differentials of this type are called inexact.

In essence, the First Law says that in any change of state in
a thermodynamic system, energy is always conserved. This is not
surprising, but it is only part of the story. Many changes that the First
Law would allow never actually occur. For example, if two systems at
different temperatures are placed in thermal contact, heat will flow from
the hotter to the colder until the temperature equalizes. However, heat
is never observed to flow from a colder to a hotter body or even between

102 Heat, information, and geometry

two systems at the same temperature. Yet such transfers do not violate
the First Law.

The physicists who systematized thermodynamics wanted to unearth a
principle that might explain why some thermodynamic transfers allowed
by the First Law never occur and to do this they turned to the subject
that motivated thermodynamics in the first place: the study of engines.
An engine is a system capable of doing useful work; however, in order
to do useful work, it must cycle from an initial state of higher internal
energy—A, say—to one of lower energy and back to A again. If an
engine does not execute a cycle, it cannot keep delivering work, but to
return to its initial state it must be fed energy from its surroundings.
The engines of interest to the founders of thermodynamics were heat
engines, characterized by using a flow of heat from the surroundings
to supply this required energy. Other options are possible, of course:
an engine might be driven by an external source of electrical energy,
for example, but heat engines are the starting point and it turns
out that the principles discovered from their study are universally
applicable.

The key generalization that emerged concerning which changes are
allowable and which are not, is The Second Law of Thermodynamics.
The first formulation of the Second Law, in 1850, is attributed to Rudolf
Clausius (1822–88), a German physicist and mathematician who was
one of the most important figures in the development of the subject.
The Clausius statement of the Second Law says simply that no process
is possible that has the sole result of transferring heat from a colder to
a hotter body.

Shortly afterwards, William Thomson (1824–1907), who became Lord
Kelvin in 1892, showed that this statement is entirely equivalent to
asserting that no process is possible by which heat can be completely
converted into work. This is now sometimes called the Kelvin–Planck
statement of the Second Law. If an engine takes in heat and does work,
some heat will be wasted and must be returned to the surroundings.
This means that the engine needs some part of the surroundings to
be hotter than it is (a so-called hot reservoir) and another part to be
colder (a cold reservoir). If the Clausius statement were false, such an
engine could be accompanied by another process that simply took the
waste heat from the cold reservoir and restored it to the hot at no cost
whatsoever. Similarly, it can also be shown that if the Kelvin–Planck
statement were false, the Clausius version would also fail. To see this,
imagine an ‘anti-Kelvin’ engine driven from a hot reservoir, driving a
refrigerator that uses the work delivered by the engine to move heat from
the cold reservoir to the hot, thus violating the Clausius statement. In
short, the two formulations, although distinct at first sight, are in fact
expressing exactly the same physical principle.

If an engine has a cycle consisting of reversible changes throughout,
the engine itself is said to be reversible. Suppose that an engine, whether
reversible or not, operates between two reservoirs. It absorbs a quantity
of heat Q1 from the hot reservoir at temperature T 1, does work, W , and

5.5 Entropy 103

V

p

A

B

C
D

Q1

Q2

T1

T2

From hot reservoir

To cold reservoir

Fig. 5.11 In order to do useful work,
an engine must cycle from an initial
state of higher energy to one of lower
energy and back again. In the Carnot
engine, all paths are reversible. Dur-
ing AB (isothermal expansion), the
engine takes in heat Q1 at a constant
temperature T 1 but, by expanding, it
does some work on its environment.
During BC (adiabatic expansion), it
purely delivers work but cools. Dur-
ing CD (isothermal compression), it
rejects heat Q2 to its cold reservoir
at temperature T 2 and also has some
work done on it. During DA (adiabatic
compression), work is done on it to
return it to its original state, heating
it up in the process.

then rejects heat Q2to the cold reservoir at temperature T2 (Fig. 5.11).
The efficiency of the engine is defined in the following way:

η =
W

Q1
=

Q1 −Q2

Q1
(5.4)

In 1824, another of the key figures in the history of thermodynamics,
Sadi Carnot (1796–1832), showed that all reversible engines operating
between two reservoirs are of equal efficiency, and that no non-reversible
engine can attain this efficiency. If all reversible engines operating
between the same two reservoirs have the same efficiency, this (maximal)
value must be a function of the reservoirs themselves and so of their
only defining parameter, their temperatures. Lord Kelvin showed that
one can then define an absolute temperature scale, based upon which,
for any reversible engine:

Qr2

Qr1
=

T2

T1
(5.5)

where Qr1 is the heat reversibly absorbed by the engine from the hot
reservoir at temperature T1 and Qr2 is the heat reversibly rejected to the
cold reservoir at temperature T2. For a general (non-reversible) engine,
since the efficiency must be less than or equal to its reversible equivalent
between the same two reservoirs, we must have

Q1

T1
≤ Q2

T2
(5.6)

If we now take heat entering a system (e.g. Q1) as positive and heat
leaving it as negative, it is easy to show directly from the Second Law
(see, e.g., [Adkins, 1983]) that this result can be generalized around
a cycle where heat is exchanged with the surroundings at arbitrarily
varying temperatures: ∮

dQ

T
≤ 0 (5.7)

with equality holding if and only if the cycle is reversible. In other words
if, for each infinitesimal step around the cycle, we sum the amount of

104 Heat, information, and geometry

heat exchanged with the surroundings (+ve or –ve) divided by the tem-
perature at which the exchange takes place, the result will be less than
or equal to zero. If the path is reversible, equality will definitely hold.
Note that in a reversible change, the temperature of the system and the
surroundings are always approximately equal; if this were not the case,
changes to the system would be irreversible since no infinitesimal change
in the surroundings could reverse the direction. In the irreversible case, T
in Eq. 5.7 is the temperature at which heat is transferred across the sys-
tem boundary. The result (Eq. 5.7) is now known as Clausius’ Theorem.

Clausius now defined a new quantity that he associated with any
reversible change and that he called entropy, usually denoted by the
letter S. For any infinitesimal reversible change that involves a heat
transfer d′Qr at temperature T , the entropy of the system changes by
an amount

dS =
d′Qr

T
(5.8)

It immediately follows from Clausius’ Theorem that, in completing
any reversible cycle, entropy does not change and so, like internal energy,
it must be a property of state. A system in a given state always has the
same entropy, just as it always has the same internal energy, and the
change in entropy associated with a given change of state is the same
regardless of how the change occurs. This is an interesting mathematical
point. In moving a system reversibly between two states, if we sum
the heat exchanges between it and its environment, the final answer
depends entirely on the path followed; however, if each element of heat
is divided by the temperature at which it is transferred, the sum is
always the same, independent of path. The differential form of the
First Law can be usefully recast for reversible changes where work is
configurative and heat transfer reversible. This is often stated in a form
where the configurative work is achieved by using pressure to change
volume reversibly, so that we have d′W = −pdV (the minus sign is
because doing work on the system corresponds to decreasing its volume).
Substituting in the differential form of the First Law:

dU = TdS − pdV (5.9)

This casts the law in a form where all the terms are composed of
functions of state or state variables. The p dV term can be generalized
to include a sum of any intensive–extensive pair of quantities relevant
to a system which together perform configurative work (for example, a
force F, extending an elastic rod by length dL). That aside, from the
form of the equation, it is clear that entropy is an extensive variable
like volume or internal energy. Thus if two systems are taken together,
the entropy of the composite system is just the sum of the entropies of
the components.

Turning now to changes that are not reversible, from Clausius’
Theorem, since the quantity is less than that in an equivalent reversible

5.5 Entropy 105

change, it follows that

dS >
d′Q
T

(5.10)

Now consider an adiabatic system. Here, d′Q is always zero by
definition, so for any change in such a system we must have

ΔS ≥ 0 (5.11)

This is sometimes called the Law of the Increase of Entropy. It is
sometimes stated simply as follows: ‘the entropy of an isolated system
cannot decrease’. In an isolated system in a given equilibrium state, it is
only possible for changes to occur that carry the system to states of equal
or higher entropy. Irreversible changes are those that increase entropy.
Changes that reduce entropy do not occur in an isolated system. It is,
incidentally, possible to show that the earlier statements of the Second
Law can be proven from this assertion and so it is itself an alternative
formulation of the latter.

When a system is not isolated, it is possible for its entropy to decrease,
but only if this is accompanied by a greater or equal increase in the
entropy of the environment. So, for example, when dissipative work is
done on a system the system can be returned to its original state by
transferring heat to the environment, but this heat raises the entropy
of the environment and so the universe as a whole cannot be returned
to its previous state. Note that it is possible for entropy to increase
with no transfer of heat or work into the system if there is a state of
equal internal energy that happens to possess higher entropy than the
initial one.

As defined, the quantities ‘internal energy’ and ‘entropy’ always
appear as differences between states. It has been observed that they
are functions of state variables, but no explicit form of these functions
has been given. In fact, it is possible to deduce such forms, but they
do vary for different types of system. The simplest system to analyse is
again the familiar one consisting of a fixed mass (say, one mole) of an
ideal gas. In this case, it is easy to show that

U = cvT + c1 (5.12)

and

S = cv lnT + R lnV + c2 (5.13)

where cv is the heat capacity of a mole at constant volume, R is the
universal gas constant and c1, c2 are arbitrary constants that can be
fixed at an appropriate origin. Of course, the concept of an ideal gas
is an abstract conceptualization, but real gases at low pressures can
approximate to the behaviour. However, at low temperatures no real
substance behaves like an ideal gas and the formulae given here break
down: thus although the second equation predicts that at T = 0, entropy

106 Heat, information, and geometry

would be −∞, this is absurd. The breakdown of classical idealizations
at low temperatures is due to the fact that quantum effects begin
to dominate close to absolute zero. However, at temperatures where
the approximation to real behaviour is tenable, it can be shown that
cv for an ideal gas is constant. Thus the entropy of an ideal gas
does depend logarithmically on temperature, exactly as the formula
suggests.

Mathematically speaking, thermodynamic entropy is a well-defined
and precise concept, but it often presents intuitive difficulties to new
students of the subject. It is here that a microscopic interpretation
is valuable. In the statistical mechanical picture, the parameters that
classical thermodynamics uses to describe a system are bulk manifes-
tations of the properties of enormous numbers of individual particles
averaged out. To get a sense of just how big the numbers are, we need
only note that the count of molecules in a gram mole of any substance
(say, 12 g of carbon) is given by the Avogadro constant, which is about
6 × 1023. Since the particles in such a microscopic picture would be
quantum in nature, the determination of their properties is a quantum
N-body problem, which is quite intractable. Given the number of entities
involved, any solution must rely on statistical argument.

Assemblies of quantum particles are well understood. In a mass
of a single substance, the constituent particles are indistinguishable
in a fundamental quantum-mechanical sense that has no analogue in
classical physics. Such identical particles do not, in fact, have an entirely
independent existence, but are entangled in a quantum superposition.
What this means is that the properties of individual particles in a
quantum assembly are, in general, undefined, in complete contrast to
the equivalent classical picture. However, it can be shown that if we can
approximate the assembly by assuming no direct interaction between
the particles (an independence premise), individual particle properties
reappear, at least in the sense that it is logically consistent to talk
about them.

If a system is thermally isolated (adiabatic), then so long as work is
not done on it or by it, it will have a fixed internal energy and may
be in equilibrium at a different temperature to its surroundings. If, on
the other hand, the system is in thermal contact with its environment,
it is the internal energy of the system plus that of the environment
that is fixed. The environment is usually modelled as being sufficiently
extensive that its temperature is not significantly affected even when
heat is exchanged with the system, and is traditionally referred to as a
heat bath: at equilibrium, the system must be at the same temperature as
the bath in which it is immersed. In statistical mechanics, an adiabatic
system is said to exhibit microcanonical behaviour, while a system
in isothermal contact with a heat bath exhibits canonical behaviour.
In both situations, the number of particles in the system is fixed:
however, if this constraint is relaxed and both heat and particles may
be exchanged with the environment, the system is described as grand
canonical.

5.5 Entropy 107

En

En +1

En +2

En +3

En +4

En +5

Degenerate energy levels
have multiple eigenstates
with same energy but
differences in other
quantum properties

U ± DU Fig. 5.12 A multi-body quantum sys-
tem has energy levels for the system as
a whole. In principle, the system may
be in one such state if its energy has
been accurately determined; in prac-
tice, it will be possible only to measure
the mean energy with some accuracy
ΔU and the state will be a quantum
mixture of energy states within that
range.

To take the simplest example, consider an isolated system (micro-
canonical) with fixed internal energy—U , say—measured to accuracy
ΔU . If we were able to solve the Schrödinger equation for the entire
system, we would recover the so-called stationary states of the system,
Ψn{j} and their associated energy levels En (Fig. 5.12). A given energy
level may be common to many different stationary states that differ
in some other quantum properties, as indicated by the index j. When
there are multiple states with the same energy level, the level is said to
be degenerate. In principle, when a (quantum) energy measurement is
conducted on the system as postulated, the result should be one of the
En, and the exact microstate of the system (one of the Ψn{j}) is then
determined. Further measurements of other compatible properties may
be necessary to settle the degeneracy.

In practice, however, such precise determination is impossible. The
reason is that the energy levels of any macroscopic system are very
densely packed, with a separation that can be shown to decrease
exponentially with the number of particles. As a result, in any realistic
system, random fluctuations in energy caused by interaction with the
environment will be much larger than the distance between neighbouring
energy levels and consequently the system will never remain in one
energy microstate for long. This is true even if the system is thermo-
dynamically isolated, because no macroscopic system can be isolated at
the quantum level. Consequently, any macroscopic energy measure will
always be no more than a mean value with accuracy much coarser than
the inter-level spacing. For example, if it is determined that the total
energy lies in the range, the system may occupy any microstate with an
energy in this range and will continually move between such microstates.

Once we have an energy value for the system, we may make
further macroscopic measurements and thus determine a macroscopic
configuration or macrostate. We may elect to describe the macrostate

108 Heat, information, and geometry

with parameters and associated accuracies, determinable via macro-
scopic measurement, but not included in the classical thermodynamic
set—such as, for example, the number of particles in the system. There
will typically be enormously many microstates compatible with any
given macrostate, but we cannot ever practically determine which one
the system might occupy at a given instant of time. The number of
microstates corresponding to a given macrostate is called the weight of
the macrostate.

In quantum theory, a system that is not well enough described to allow
its pure time-dependent quantum state to be determined is said to be in a
mixed state, and this concept is at the core of statistical mechanics. The
technical approach is to allocate classical probabilities to the different
microstates that the system could possibly be in (see, e.g., Isham, 1995).
A mixture is quite different from a quantum superposition of states:
a system in a quantum superposition of several states is in a distinct
state different from all the constituents; a system in a mixed state,
however, is always in one or other of its constituents and moves between
them randomly according to some probability distribution. To say that
a system is in a mixed state is to acknowledge that there is not
sufficient information to allow a pure state to be determined. It can
be shown that a thermodynamic system at equilibrium in the mixed
state can be characterized as consisting of stationary states alone and,
consequently, the system can be characterized as moving continuously
between microstates of this type. In principle, a probability distribution
can be defined across these microstates but there is, at first sight,
insufficient information to allow such a distribution to be determined.

The way around this apparent impasse is to postulate that all
stationary microstates are occupied with equal likelihood, so that the
probability of a system being in a given macrostate is proportional to
its weight. In general, for macroscopic systems, the maxima of the weight
function are very strongly peaked and it is these peaks that define the
equilibrium states. A state of a system is a state of equilibrium, when
there are so many microstates corresponding to it that the system will
never stray far from it for long. Thus a macrostate has high entropy
simply because it has a high weight of microstates. Boltzmann was able
to establish that the entropy of a system is directly proportional to the
logarithm of the weight, W , of the equilibrium state:

S = k lnW (5.14)

The constant of proportionality, k = 1.38×10−23 J K−1, is the famous
Boltzmann’s constant.

If all microstates are assumed to be equally probable, working out
probability distributions for macrostates reduces to a counting exercise.
To count stationary microstates, we make another approximation and
assume that the individual particles in the system are effectively
independent. In this case, it can be shown that the microstates of the
system as a whole are products of the energy eigenstates of the N
individual particles. We can thus enumerate the microstates by counting

5.5 Entropy 109

the number of ways in which N particles can occupy allowable single
particle energy levels so as to give a total energy sum in the required
range. This greatly simplifies matters, since single-particle stationary
states can be obtained by solving a single-particle Schrödinger equation,
a much more tractable task than tackling an N -body problem

A particle can be thought of as having energy by virtue of its velocity
(dominant in gases), its rotation, or its vibration, but the principle is the
same in each case. The actual values of the particle’s allowable energy
levels are found by solving the Schrödinger equation for it under suitable
boundary conditions. For example, for a (non-rotating, non-vibrating)
particle of mass m moving freely in a cubical box of volume V , it is easy
to show (Sears, 1975) that the energy levels are given by

Ej = (n2
x + n2

y + n2
z)

h2V − 2
3

8m
(5.15)

where nx, ny, and nz can take any positive integer values, representing
the quantized momentum along each of the coordinate axes. Note first
that the energy levels are proportional to V −2/3 so that, if the volume
of the system increases, the energy levels decrease in value. Each triplet
(nx, ny, nz) defines a different state and we can quickly see that many
energy levels are degenerate: for example, the states defined by (1, 1, 2),
(1, 2, 1), and (2, 1, 1) all have the same value of E. It is easy to verify
that there is only one state for the lowest energy level, E1, (the ground
state), but there are three states with E2, and so on. Subject to the total
amount of energy available, individual particles may occupy any set of
single-particle states at any energy level and a system microstate can be
specified simply by indicating which single-particle state each component
particle is in. Any such microstate must, of course, generate the correct
macroscopic measurements for the system: in particular, the occupation
numbers, ns, of the various energy levels, Es, must be such that

U −ΔU <
∑

s

Esns < U + ΔU (5.16)

By counting in this way, we can enumerate, in principle at least, the
number of microstates compatible with the macrostate. Where multiple
macrostates are possible, then, as observed above, the macrostate with
the maximal weight is the one in which the system is most likely to be
found. Further, since the most probable macrostates are overwhelmingly
more probable than alternatives, these are the states of maximum
entropy and the ones towards which the system inevitably moves—and,
once there, stays. They are, in short, the equilibrium states of the system.

All this gives considerable insight into what the ‘physical meaning’
of Clausius’ entropy really is. For example, when the temperature of a
gas is raised, this increases its internal energy and, in so doing, raises
the average energy of the particles. This allows access to higher energy
levels and increases the number of microstates available, consequently
raising the entropy. If, on the other hand, the volume is increased while
holding U fixed, the available single-particle states reduce in energy level

110 Heat, information, and geometry

and get closer together, allowing particles to access more levels and thus
increasing the number of ways in which U can be made up. With the
greater number of microstates available, entropy again rises.

It is sometimes said that entropy is a measure of disorder. What this
means is that in high-entropy states there are very many microstates
that are indistinguishable from a macroscopic point of view, and the
macroscopic description gives little clue about which microstate is really
in play at any given time, because there is a large amount of missing
information. In a low-entropy state, the macroscopic description is much
closer to the microscopic one. In the extreme example where every
particle is in its ground state and there is only one such state, the system
is entirely specified by the macrostate and the entropy is zero.

Another way of thinking about entropy is that it measures the extent
to which a system is close to equilibrium. Equilibrium occurs at a local
maximum of entropy and, once a system is in stable equilibrium, it
requires external energy to displace it. A system in equilibrium is, by
itself, incapable of converting energy to work; for this, a composite
system is required that is not in equilibrium and that allows energy to
flow between its parts. However, the composite system will itself attempt
to reach equilibrium as heat flows from hotter to colder parts and so its
entropy will increase. The best that can be done is to use this flow of
energy to drive a process that does useful work, but the most that any
such process can achieve, and then only if it is reversible, is to prevent
entropy from increasing. In reality, no process is genuinely reversible
as there are always dissipative losses, and so the inexorable approach
to equilibrium and maximum entropy cannot be staved off. When its
entropy does finally reach a local maximum, the composite system itself
is no longer capable of doing useful work and, at equilibrium, is entirely
resistant to change.

To close this section, we will rewrite Boltzmann’s relation (Eq. 5.14)
reasoning as follows. Suppose that there are N (distinguishable) particles
in a system of total energy E and that the system can be analysed
according to the occupancy of its single-particle states. Suppose further
that the single-particle energy levels are given by Ei with i ≈ 1, . . . , m
and that each energy level contains ni particles. For simplicity, we also
assume that the energy levels are non-degenerate. Clearly,

N =
n∑

i=1

ni (5.17)

and

E =
m∑

i=1

niEi (5.18)

The occupancy of the system energy levels can be taken to define
the system macrostate. A microstate, on the other hand, must specify
exactly which particles are at which energy level. From a well-known
result in combinatorics, the number of possible arrangements of the N

5.6 Shannon’s information theory 111

particles with ni of them at level Ei is given by

W =
N !

n1!n2! . . . nm!
(5.19)

which can be slotted into Eq. 5.14:

S = k ln
(

N !
n1!n2! . . . nm!

)
(5.20)

So long as N is very large, we can use Stirling’s formula for
approximating the factorials of large numbers, and rewrite this as
follows:

S = −kN

m∑
i=1

ni

N
log

ni

N
(5.21)

Now observe that the probability that a particle has energy Ei is just

pi =
ni

N
(5.22)

so Eq. 5.21 becomes

S = −kN
m∑

i=1

pi log pi (5.23)

This relates the Clausius conception of entropy, through Boltzmann,
to Shannon’s information theory, which is discussed in the following
section. In fact, in information terms, Eq. 5.23 is, except for a constant,
the missing information that would be required to specify exactly
the microstate configuration of the system, given only the macrostate
information. Although the example chosen here is simplified, the idea
can be generalized to any physical system at equilibrium. Thus Clausius
entropy is intimately associated with missing information in a strictly
quantifiable sense.

In information theory, the concept of entropy is generalized to mean
the average information associated with any probability distribution. It
is important to be clear that the two concepts are categorically distinct.
Shannon’s information entropy is a mathematical property of any prob-
ability distribution. Clausius entropy, on the other hand, is a physical
property of a thermodynamic system, defined only in equilibrium states.
Nonetheless, the Shannon definition, which is essentially the same as
Eq. 5.23, can be used to extend the classical thermodynamic conception
of entropy to any system where a probability distribution can be defined
across microstates, whether or not that system is in thermodynamic
equilibrium. This will not, however, be pursued further here.

5.6 Shannon’s information theory

The establishment of information theory as a science occurred in the
middle of the last century and is closely associated with the name of

112 Heat, information, and geometry

Claude Shannon. If anyone was father to the information revolution,
it was him. Shannon’s revolution came from asking new questions,
and asking them in a very practical engineering context. Shannon
was a telephone engineer working for Bell Laboratories, and he was
concerned with determining the capacity of a telephone or telegraph
line to transmit information. He formalized the concept of information
through trying to measure the efficiency of communications equipment
(Shannon, 1948).

To measure the transmission of information over a telephone line,
some definite unit of measurement is needed, otherwise the capacity of
lines of different quality cannot be meaningfully compared. We need to
quantify information. According to Shannon, the information content of
a message is a function of how surprised we are by it. The less probable
a message, the more information it contains.

Suppose that each morning the news told us

There has been no major earthquake in the last 24 hours.

We would soon get fed up. That conveys almost no information. If
instead we are told:

We have just heard that Seattle has been devastated by a magnitude
8 earthquake.

this is real news. It is surprising. It is unusual. It is information.
A daily bulletin telling us whether or not a quake had happened

would usually tell us nothing, then one day it would give us some useful
information. Leaving aside the details, if an announcement were to be
made each morning, there would two possible messages

0 ‘No big earthquake.’
1 ‘There has been a big quake.’

If such messages were being sent by wire, we could encode them as the
presence or absence of a short electrical pulse, as a binary digit or ‘bit’
in the widely understood sense of the word. We normally assume that
a bit is the information required to discriminate between two possible
alternatives.

Shannon defines a bit more subtly, as the amount of information
required for the receiver of the message to decide between two equally
probable alternatives.

For example, a sequence of tosses of a fair coin do contain one bit per
toss, and can be efficiently encoded so that heads are 1 and tails 0.

Shannon’s theorem says that if we are sending a stream of 0 or 1
messages affirming or denying some proposition, then unless the truth
and falsity of the proposition are equally likely, these 0s and 1s contain
less than one bit of information each—in which case, there will be a more
economical way of sending the messages. The trick is to use a system
where the more probable message-contents gets a shorter code.

For example, suppose that the messages are the answer to a question
that we know, a priori, will be true one time in every three messages.

5.6 Shannon’s information theory 113

Table 5.1 A possible code for transmitting messages that are true 1
3 of the time.

Binary code Length Meaning Probability

0 1 False, False 4
9

10 2 False, True 2
9

110 3 True, False 2
9

111 3 True, True 1
9

Since the two possibilities are not equally likely, Shannon says that there
will be a more efficient way of encoding the stream of messages than
simply sending a 0 if the answer is false and a 1 if the answer is true.
Consider the code shown in Table 5.1.

Instead of sending each message individually, we package the messages
into pairs, and use between one and three binary digits to encode the
four possible pairs of messages.

The shortest code goes to the most probable message, the sequence
False False with probability 2

3 × 2
3 = 4

9 . The codes are such that they
can be uniquely decoded at the receiving end.

For instance, suppose that the sequence ‘110100’ is received: checking
the table, we can see that this can only be parsed as 110, 10, 0, or True,
False, False, True, False, False.

To find the mean number of digits required to encode two messages, we
multiply the length of the codes for the message-pairs by their respective
probabilities:

4
9

+ 2× 2
9

+ 3× 2
9

+ 3× 1
9

= 1
8
9
≈ 1.889 (5.24)

which is less than two bits.
Shannon came up with a formula that gives the shortest possible

encoding for a stream of distinct messages, given the probabilities of
their individual occurrences:

H = −
n∑

i=1

pi log2 pi (5.25)

The mean information content in a collection of messages comes by
multiplying the log of the probability of each message by the probability
of that message. He showed that no encoding of messages in 1s and 0s
could be shorter than this.

The formula gave him an irreducible minimum of the number of bits
needed to transmit a message stream: the real information content of
the stream.

In his 1948 article, Shannon notes:

Quantities of the form H = − ∑n
i=1 pi log pi play a central role in information

theory as measures of information, choice and uncertainty. The form of H
will be recognized as that of entropy as defined in certain formulations of

114 Heat, information, and geometry

statistical mechanics where pi is the probability of a system being in cell i
of its phase space. H is then, for example, the H in Boltzmann’s famous H
theorem. We shall call H = − ∑

pi log pi the entropy of the set of probabilities
p1, . . . , pn.

So here we get a critical result: information and entropy are the same.

5.7 Landauer’s limit

Information is not a disembodied abstract entity; it is always tied to a physical
representation. It is represented by engraving on a stone tablet, a spin, a
charge, a hole in a punched card, a mark on paper, or some other equivalent.
This ties the handling of information to all the possibilities and restrictions
of our real physical word, its laws of physics and its storehouse of available
parts.

(Landauer, 1996).

We discussed earlier how difficult it was to get rid of the heat generated
by current CMOS circuits. That argument was based on currently
existing techniques for building logic gates. Human ingenuity being
what it is, we should expect that novel designs of gates will arise in
the future that allow components to be even smaller, and to use less
energy.

The decisive factor in cooling is the number of watts per square
centimetre of heat released. Provided that the shrinkage in area proceeds
as fast as, or faster than, the shrinkage in power consumption, we will
be OK. The most obvious step is to reduce the voltage at which the
chip operates—and this has indeed been done over time. But there
is an interaction between gate voltage and reliability. As you shrink
gate voltages, the reliability of the gate in the face of thermal noise
declines.

5.7.1 Thermal noise

The thermal fluctuations of voltage on a capacitor in a CMOS chip give
rise to a thermal noise voltage (Kish, 2004), which has the form

Un =

√
kT

C
(5.26)

As the capacitance of the gate falls, the thermal noise rises. Note the
similarity of this to the distribution discussed on page 85. The discrete
nature of charge lies at the base of the thermal noise, as it does with
shot noise. If we assume that gate oxide layers have hit an effective lower
limit at about 1 nm, then capacitance is going to scale proportionately
to λ2, where λ is the minimum feature size on a chip. If we reduce λ
from 40 nm to 20 nm, the area of a gate capacitor will fall from 160 nm2

to 40 nm2. Thus, by Eq. 5.26, if we halve the feature size on a chip,

5.7 Landauer’s limit 115

we double the thermal noise voltage. To provide adequate protection
against the occurrence of errors, it is necessary for the operating voltage
level of the chip to be scaled with the thermal noise such that the voltage
difference between a 1 and 0 is about 11 or 12 times Un. From this, it
follows that if we keep shrinking our transistors, we will have to start
increasing the operating voltage of the chips to provide a sufficient noise
threshold.

This obviously has serious implications for power consumption per
unit area, since the power consumption is proportional to the square of
the voltage. It means that continual shrinkage of CMOS gates will hit a
noise-limited floor to power consumption per square centimetre that will
scale inversely with the square of the feature size. A halving of feature
size will lead to a quadrupling of power consumption at a given clock
speed. In effect, this sets a floor to the amount of energy that a CMOS
gate can use and still perform reliably.2 2See also Eq. 6.67.

But this seems tied to the particular properties of CMOS and raises
a more general question: Is there an ultimate lower limit to the amount
of power that a computer must use?

This was asked by (Landauer, 1961, 1991, 2002) and the answer he
gave was ‘yes’. His argument was based on an ingenious combination of
the theorems of Boltzmann and Shannon.

He first observed that two of the three basic gates from which we
build our digital logic (AND, OR, NOT) are information destroying
(Fig. 5.13). Whenever data goes into an AND gate, two bits go in but
only one bit comes out. Since information and entropy are equivalent,
this amounts to an entropy reduction operation. But entropy reduction is
prohibited in any closed system by the Second Law of Thermodynamics.

What happens to the entropy of the missing bit?
It can’t just vanish: it has to be turned into heat. If the entropy of the

logic goes down, the entropy of the environment must rise to compensate.
Using Boltzmann’s constant again, he derives the minimum energy that
is wasted by discarding a bit as kT ln(2) joules.3 3The ln(2) term arises because Boltz-

mann’s constant is defined in terms of
natural logarithms and information is
defined in terms of log2.

We can fit this into our previous calculation of the power used by
a K10 processor and find out what would be the minimum power
that it could use. We make the same assumption about the number

NOT gate

AND gate

OR gate

Inputs Bits lostOutputs

1 01

2 11

2 11

Fig. 5.13 The basic gates used in
modern computers. All but the NOT
gate destroy information.

116 Heat, information, and geometry

of active gates as before, and assume that it is working at room
temperature:

k = Boltzmann’s constant 1.38× 10−23

T = temperature 300 K
ln(s) 0.693
e = kT ln(2) = energy per gate 2.87× 10−21 joules
n = number of active gates 50 000 000
f = frequency 1 GHz
p = fne = power 1.43× 10−4 W

This is a very small amount of power. The actual K10 uses about
a million times as much power (p. 94). So there is plenty of room for
improvement before we hit the ultimate limit of thermal efficiency for
our computers!

So there is a limit. Why worry? Be happy! It is far away!
There are several reasons to worry.
We have to consider first that Landauer’s limit is very much a lower

bound for a gate. A gate dissipating energy at this rate so close to
the thermal noise level would be too unreliable for practical use. But
if we ignore that for now, and pretend that we really could have a
computer using only the Landauer energy, the rate of improvement
in computer technology has been such that we would soon reach
even that limit. The first computers used triode valves, which used
about 5 W for each gate. The Manchester Mk I machine on which
Turing worked as a programmer was the first programmable general-
purpose electronic computer. It had about 4000 valves and used 25 kW
(Lavington, 1975, 1978, 1980). It operated at a clock speed of 85 kHz,
so that to perform one logical operation with a triode it was using
about 6 × 10−5 joules. The calculations on page 94 indicate that the
gates on the K10 use about 2.6 × 10−15 joules per logic operation.
So over a 60-year period, gate efficiency has improved by a factor of
about 1010.

Efficiency has been improving by tenfold every six years. If this trend
continues, then by around 2045, gate efficiency will hit its ultimate
thermodynamic limit.

But that only takes the question of efficiency into account. We also
have to consider the growth in processor power. This can be bounded
by the product of the clock speed and the number of logic operations
performed each clock cycle. In practice, due to the increasing complexity
of logic to achieve a given instruction mix, this upper bound is not met,
but let us use the optimistic measure for now. Since between the 1949
Mk I and the 2007 K10 the gate count of a machine has risen from
4 × 103 to 5 × 108, a factor of 105, and the clock speed has risen by
a factor of about 104, the number of logic operations per second has
been growing by a factor of 10 every 6.5 years. If this growth were
to continue, how long would it be before even a machine working at

5.8 Non-entropic computation 117

maximal Landauer efficiency would be generating too much heat for us
to keep it cool?

The K10 generates about 200 W per square centimetre. It can be
cooled, but the limit of what can be done by conductive plus air cooling
is probably of the order of 1 kW per square centimetre. Suppose that we
envisage a future 1 cm by 1 cm computer chip, operating at maximum
Landauer efficiency and putting out 1 kW. Let us call this the Last Chip.
How many logic operations per second could it do?

Clearly, the answer is

103joules
2.87× 10−21joules

= 3.48× 1023 (5.27)

Since we have estimated that our K10 is doing around 5×1016 logic
operations per second, this allows our Last Chip to be about 10 million
times more powerful than anything we have today. Given the current
growth in processing power, this level of performance could be attained
in about 40 years—say, in around 2050.

These very crude calculations imply that, if the historical trends were
to continue, we would reach 100% Landauer efficiency by about 2045;
and that about 5 years later, even chips running at this efficiency level
would become thermally limited. So although the Landauer limit is some
years away, it can be expected within the working careers of students
reading this book.

5.8 Non-entropic computation

The discovery of the Landauer limit prompted research into whether it
was possible, in principle, to build computers that would use less energy.
One approach was that put forward by (Fredkin and Toffoli, 1982), who
invented a new class of logic gates that they called conservative logic.
They made the ambitious claim that:

The central result of conservative logic is that it is ideally possible to build
sequential circuits with zero internal power dissipation.

(Fredkin and Toffoli, 1982, p. 3).

The key idea was to get round what they saw as the limit in conventional
logic technology, that it was not reversible. We have seen how the AND
gate takes in two bits and outputs only one. If one could devise a new
family of logic gates, which met the conditions that:

• they had the same number of outputs as inputs
• their logic functions were reversible—that is, from the output of

the gate you could determine what the inputs must have been

then there would be no loss of information as the gates operated. If
there was no loss of internal information or internal entropy, then there
would be no need to shunt entropy into the external environment as heat.

118 Heat, information, and geometry

Hence, given a suitable reversible gate family, one could in principle build
zero-power computers. They set out to answer four questions:

Question 1. Are there reversible systems capable of general-purpose
computation?

Question 2. Are there any specific physical effects (rather than mere math-
ematical constructs) on which reversible computation can in principle be
based?

Question 3. In Section 4, we have achieved reversibility of computation at
the cost of keeping garbage signals within the system’s mechanical modes. In
a complex computation, won’t garbage become unmanageable if we cannot
dissipate it? And won’t the need to dissipate garbage write off any energy
savings that we may have achieved by organizing the computation in a
reversible way?

Question 4. Finally, without damping and signal regeneration, won’t the
slightest residual noise either in the initial conditions or in the running
environment be amplified by an enormous factor during a computation, and
render the results meaningless?

(Fredkin and Toffoli, 1982, p. 13).

The came up with adequate responses to the first three questions but,
in our opinion, failed on the last one. Whether or not we consider their
proposal to be plausible, it certainly remains instructive.

A number of such gates would be possible, but they gave as an example
the so-called Fredkin gate, shown in Fig. 5.14. They showed that if one
fed 0 or 1 into appropriate inputs, one could emulate the classical AND
and NOT gates with Fredkin gates. The fact that no bits were being
thrown away did mean that you would have to keep hold of a series
of garbage bits generated in the calculation. This might seem to offer
no advantage over old-style logic gates, since we have merely postponed
discarding entropy by encoding it in the garbage bits. What happens to
these bits at the end of the calculation?

a

x1

x2

a x1 x1 b y1 y2
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

y1

y2

b

Fig. 5.14 The the Fredkin gate with
its input output table.

If you just put them into a bit sink, you generate heat and have gained
nothing by using Fredkin gates. Their ingenious solution was to do the
calculation in three stages:

1. Put the input variables V and the required constants C into the
gates and compute the boolean result R plus the garbage G.

2. Perform a copy of the result into a final register F . This operation
is destructive and liberates lF kT of energy, where lF is the length
in bits of the result register.

3. Send the information in < R, G > back through the logic in the
reverse direction, restoring the original V and C.

Since the same C is used every time you do the calculation, the only
cost of the whole operation is pre-setting V and setting F , so the bit
cost in terms of entropy is just the sum of the input variables plus the
output variables. The energy cost no longer depends upon the number
of logic steps performed, only on the size of the question and the size of
the answer.

5.8 Non-entropic computation 119

q

p

q and not p

p and q

p and not q

q and p

c

c

x and not cx

x and c

Mirror

Mirror

(b)(a)

Fig. 5.15 Billiard ball interaction
gates: (a) elementary collision; (b) the
switch gate. The descending bit C
switches the bit X between two possible
paths and then continues on its way.
Note that the logical output bit C may
not be the original ball.

They had now answered their first and third questions, but what about
physical realizability?

For this, they proposed billiard ball logic as shown in Fig. 5.15.
They argued that spheres of radius 1/

√
2 moving with unit velocity

along a grid and then undergoing elastic collisions can be thought of
as performing logic operations. By inserting reflectors at appropriate
positions, it is possible to get the switch gate shown in Fig. 5.15(b).
By appropriately routing four of these switch gates in sequence, they
showed that one can logically realize the Fredkin gate.

Fredkin and Tofoli argued that they had good precedents for the model
that they proposed:

In the past century, a satisfactory explanation for the macroscopic behavior
of perfect gases was arrived at by applying statistical mechanical arguments
to kinematic models of a gas. The simplest such model represents molecules
as spheres of finite diameter. Both molecules and container walls are perfectly
hard and elastic, and collisions are instantaneous.

(Fredkin and Toffoli, 1982, p. 18).

This is true historically. In his Lectures on Gas Theory, Boltzmann
(1995) did indeed assume that molecules were spheres of the sort used
by Fredkin and Tofoli, but he also paid considerable attention to the
scattering properties of collisions between molecules (Boltzmann, 1995,
Chapter 1.4). If we look at Fredkin and Tofoli’s proposals from this
standpoint, we have to conclude that their gate model is non-viable
even within the theoretical framework of rigid perfectly elastic spheres.
The problem lies with the exponential instability of collision paths.

Consider Fig. 5.16. In this diagram, the two balls should meet in the
middle, on the vertical ingoing and outgoing paths shown as dashed lines.
In the Fredkin model, the balls should approach at 90 degrees rather
than 180 degrees, but by choosing our frame of reference appropriately
we can ignore all but the vertical component of the intended approach.
The ingoing path of ball B is shown as being perturbed to the right,

120 Heat, information, and geometry

Fig. 5.16 In the event of a perturbed
collision between two balls, the devia-
tion of the outgoing path from the cor-
rect path is greater than the deviation
of the incoming paths.

Correct path of ball B

Correct path of ball A

Correct collision of balls

Actual collision
tangent

Perturbed
input path
of ball B

Perturbed output
path of ball B

A

B

resulting in an off-centre collision. The consequence of this is that the
outgoing path is perturbed by a greater amount than the ingoing one.
The perturbation shown is quite large, but even for a small initial
perturbation a similar growth in perturbation occurs with each collision.
A system of colliding spheres is chaotic; the behaviour of the whole
system quickly becomes randomized.

Perturbations are unavoidable. Collisions with the reflectors will give
a thermal component to the energies of the balls equivalent to kT , which
will become amplified with each collision. After a few layers of logic, the
output of the gates will become completely non-deterministic and you
will be left with what you should have expected from the kinetic theory
of gases, ‘molecules’ bouncing about in a maximally entropic fashion.

For the billiard ball logic to work, we have to postulate the complete
isolation of the information encoding degrees of freedom from all thermal
noise. For a mechanism operating classically, this is impossible. Fredkin’s
model did, however, prepare the way for Feynman’s proposal to use
quantum mechanics to implement reversible gates (Feynman 1986,
1999).

5.8.1 Adiabatic CMOS gates

We said when discussing power consumption in CMOS (pp. 93–94) that
CMOS circuits used power because they were charging and discharging
capacitances every cycle. Let us look at this a little more closely.

5.8 Non-entropic computation 121

Vdd Vdd

(a) (b) Fig. 5.17 (a) A CMOS gate uses
energy charging and discharging its
capacitor through the resistance of the
circuit that connects it alternately to
power and ground. (b) If we place an
inductance in the path, we can reduce
the potential across the resistance and
thus reduce resistive losses at the cost
of slower operation.

Figure 5.17 shows a conceptual model of a CMOS gate, which is
alternatively charged and discharged through the resistance of the path
leading between the gate and either the power supply or ground. In
practice, the resistance to ground and to high would not be the same,
but that is not important for what follows. Earlier, we estimated the
energy loss used by the gate by considering the energy dissipated as the
charge on the gate is allowed to fall in potential from Vdd (the supply
voltage) to ground. What actually happens is that the potential energy
on the capacitor is turned into heat overcoming the resistance of the
resistance on the path to ground.

The power consumed by a resistor is the product of the voltage across
the resistor and the current flowing. Initially, when the switch connecting
the capacitor to ground is thrown, the voltage across the resistance is
Vdd; but as the capacitor discharges, the voltage falls, so the rate of
power dissipation peaks and then falls off. Suppose that we could reduce
the voltage across the resistor to less than the full power supply drop
from the start. In principle, this can be done by placing an inductance in
the path. The initial voltage drop will now be split between the inductor
and the resistor, and in consequence the resistor will heat up less, leading
to a more efficient overall operation. This mode of operation of CMOS
gates is called adiabatic.

It is in principle possible to integrate inductors on to chips (Burghartz
et al., 1996), but the cost in area of doing this is relatively high.
Researchers in the area have instead adopted the approach of globally
ramping the power supply up and down using external inductors in
the power supply path to the chip. The Charge Recovery Logic family
designed by Knight and Younis (1994) works that way, and also requires
a considerable growth in the number of transistors used for each logic
gate in order to accommodate the fact that the operations are now
done using AC rather than DC power. Younis (1994) gave a design for
a NAND gate that involved 32 transistors. A normal CMOS NAND
requires four transistors. There is thus an eightfold increase in the
components required.

The other down side is that the speed at which we can discharge or
charge the gates decreases, so we have to operate the circuit at a slower
rate. This would seem to defeat the purpose of the exercise, since heat
generation is only a problem in high-speed circuits. But it turns out

122 Heat, information, and geometry

that if we slow the discharge down significantly, then the power losses
through the resistor become proportional to the square of the frequency
at which we operate the circuit. Suppose that as a result of using using
adiabiatic operation, we reduced the clock speed of a 100 W processor
chip from 1 GHz to 100 MHz. Using a conventional circuit, the power
would drop to 10 W. But if we used an adiabatic circuit, the power loss
on each transistor would have fallen to only 1% of what it originally was.
Allowing for having eight times as many transistors, we could expect the
adiabatic circuit to be using 8 W at 100 MHz. But, of course, if we had
simply reduced the clock speed of the original chip to 100 MHz, the
power would also have fallen to 10 W without the extra manufacturing
cost of using eight times as many gates.

But the number of transistors that you can fit on a chip is a function of
your manufacturing process. At any given time, the maximum transistor
budget is fixed. An adiabatic computer using eight times as many
transistors for each primitive logic gate would have fewer logic gates
and thus would need to be of a simpler architectural design. It might
have to be a 32-bit processor instead of a 64-bit one; and it might have
less internal parallelism, no dual-instruction issue, and so on. This means
that our 100 MHz adiabatic chip would have less computing power than
the conventional CMOS chip slowed down to 100 MHz.

If we essay more drastic cuts in frequency, the adiabatic technology
begins to show some advantages. At 25 MHz the adiabatic chip is using
0.5 W. To cut the conventional chip’s power down this low, we would
have to run it at 5 MHz. It is plausible that the adiabatic chip would now
be doing more computing work for the same energy as the conventional
one. So for some applications—for example, where battery usage has to
be kept to an absolute minimum, and where the computing requirements
are modest—adiabatic circuits have arguable advantages.

It is harder to see them competing with mainstream processors. In
principle, by throwing in enough slow adiabatic processors running in
parallel we might be able to do the computing work that can be done
with a current 3 GHz processor chip and still use less electrical power.
But the cost of buying 50 CPUs instead of one would be prohibitive,
to say nothing of the impossibility of getting the 50 CPUs to run
software that is currently designed to run on one processor. It is true that
levels of parallelism are expected to rise anyway, but this is parallelism
accompanied by an increase in performance. It is unlikely that people
would be willing to spend a lot of money and effort on parallelism at the
same level of performance just to save modest amounts of electricity.

5.9 Interconnection

We argued above that there were strong economic and physical reasons
why two-dimensional layouts have been favoured for computing hard-
ware: circuit boards, chips, disk surfaces, and so on. We will now look
at the implications of this for interconnection. Any electronic computer

5.9 Interconnection 123

is a mass of wires. These are necessary to transmit information between
different parts of the machine. Real processors are dauntingly complex,
so it is best to start with something simple, the finite state automaton.
These were introduced these in Section 2.3.2, in the discussion of
counting. They constitute the simplest abstract computing machine and
all practical processor chips can be thought of as finite-state automata
connected in some way to some sort of external memory.

Suppose that we have a finite state machine capable of entering at
12 distinct states. It is clear that we can’t build a binary machine like
this unless we have at least 4 bits of binary storage, since 4 bits would
allow us to encode 16 states, and 3 bits would only encode eight states.
So every finite state machine with n possible states requires a binary
state vector of length l, where 2l−1 < n ≤ 2l. We can illustrate this in
tabular form:

States Bit vector

1 0
10 4

100 7
1 000 10

1 000 000 20

What does this imply when we come to wire up the machine? How
many wires would we need for a ten-state machine, how many for a
100-state machine, and so on?

Since each the next state of any one bit is potentially affected by the
current state of all of the other bits, we need, in principle, wires going
between all of the bits.

It helps to look at some diagrams. Figure 5.18 shows that as the
number of bits goes from one to four, the number of wires grows in
the sequence 0, 2, 6, 12, which implies the formula l(l − 1). This is
approximately of order l2.

As the diagram shows, it becomes more difficult to fit the wiring in as
the number of bits increases. Indeed, once we have 5 bits, the wires start
to cross one another. Suppose that we were building this out of chips
on a circuit board, with each chip storing one bit plus the logic gates to
determine what the next state of the bit should be on the basis of inputs
from all of the other chips. Up to four chips could have been laid out
on a single-layered circuit board. Once you reach five full interconnected
chips, you start having to use two layers in the circuit board, so as to
allow wires to cross, Fig. 5.19.

The von Neumann computer architecture has been the classic way
of getting over the tendency for wiring in a fully connected machine to
increase with the square of the number of state bits. In von Neumann’s
approach, the state vector of the computer is divided into a small
number of bits within the CPU that can alter each clock cycle and

124 Heat, information, and geometry

Fig. 5.18 As the number of bits in a
finite state machine grows, the amount
of wires required grows as l(l−1) in the
length of bit vector l.

one
bit

one
bit

one
bit

one
bit

one
bit

one
bit

one
bit

one
bit

one
bit

one
bit

0 wires

2 wires

6 wires

12 wires

Fig. 5.19 Once we have 5 bits, all of
which must be fully interconnected, the
wires start to cross.

one
bit

one
bit

one
bit

one
bit

one
bit

an external memory, only one word of which can alter each cycle. The
number of wires required to connect the processor to an external memory
will tend to grow only as the logarithm of the number of bits in that
memory, so a 1 kb chip can use 12 wires (one data, one read/write,
and 10 address), a 1 Mb chip would use 22 wires (20 address in this
case). In practice, for larger memory chips fewer address wires are used,
with the most significant address bits being sent first, followed by the
least significant bits, to get a further economy. This economy in wiring
has been the fundamental reason for the success of the von Neumann
architecture. Without it, it would have been physically impossible to
construct machines with large numbers of memory bits.

Before whole processors were placed on a chip, the problem of the
increasing number of crossovers required to wire up a computer was
solved either by increasing the number of layers on the backplane or
using individual point-to-point wires, as in the Cray computer shown in
Fig. 5.20. On silicon, this option of intruding wires into a third dimension
is no longer available to designers. The number of wires used is no longer
an important measure of cost; designers are more concerned with the

5.9 Interconnection 125

total silicon area being used. But on silicon the designers also have the
ability to alter the shape of the logic blocks that they are connecting up.
Instead of just squares or relatively compact rectangles, they can make
them into much more elongated shapes.

Fig. 5.20 For larger numbers of con-
nected elements, crossovers can lead
to the sort of rat’s nest seen in the
backwiring of a Cray computer of the
1970s. Photograph due to ‘brewbooks’
under creative commons license.

Figure 5.21 shows a common layout paradigm. The logic circuits
driving individual bits are made in the form of elongated columns, with
the latched outputs going back up again. Horizontal crossbars, each
connected to one of the risers, then route the output signals to all of
the logic columns. This layout paradigm is well suited for arithmetic
and logic units, and the area tends to grow as the square of the number
of bits being operated on. But for fully general finite state machines, the
idea that the area will grow as l2 is an underestimate.

Suppose that we have a finite state machine that cycles between six
states. Clearly, we will need at least 3 bits for the state vector. It is
necessary for the machine to recognize each of the states that it can
enter. For example, state 5 could be encoded in binary as 101. Suppose
that we label the bits of the state vector as B1..3. Then to recognize
that we are in state 5 we have to compute the logical function B1
AND NOT B2 AND B3. For each state, there will be a corresponding
AND term.

Thus the number of AND terms will be proportional to the number
of states in the state machine. Figure 5.22 shows a schematic layout
for this kind of AND logic arranged in array format. For some state
machines, it is possible to optimize the logic and leave out some of the
transistors in the matrix, but we can see from the layout that the area
of the matrix will tend to grow as n log(n), where n is the number of
states in the state machine. This is much worse than the l2 suggested by
Fig. 5.21, since l ≈ log(n). This implies that for a densely coded finite
state machine the silicon area will grow exponentially with the number
of state bits. The power used will tend, to first approximation, to be

N
ex

t s
ta

te
 lo

gi
c

one
bit

register

one
bit

register

one
bit

register

one
bit

register

N
ex

t s
ta

te
 lo

gi
c

N
ex

t s
ta

te
 lo

gi
c

N
ex

t s
ta

te
 lo

gi
c

Fig. 5.21 The arrangement of an FSM
in array form. This layout paradigm
is well suited for arithmetic and logic
units, and the area tends to grow as
the square of the number of bits being
operated on.

126 Heat, information, and geometry

Fig. 5.22 The arrangement of a folded
array logic. Here, the A lines stand for
AND lines. Line A1 will be high if B3
is high and B2 is low, so it implements
the equation A1 = B3 AND NOT N2.
The vertical feeds to the registers are
termed OR lines. Line O3 for example
will be high unless A2 or A3 are high, so
it implements O3 = NOT(A1 OR A2).

one
bit

register

one
bit

register

one
bit

register

more horizontal rows in here

B1 B2 B3

A1

A2

An

An−1

t4

t7

t8t5t3

t2 t6

t1

O1 O2 O3

proportional to the area being charged and discharged each cycle, times
the square of the operating voltage, times the clock frequency. Since the
area and thus the power are exponential in bit-vector length, it pays
to limit finite-state machines to comparatively short bit-vectors. They
tend to be used for things like control logic, instruction decoding, and
bus protocol handling.

For certain specialized applications, it is possible to construct very
large state machines on silicon, ones with hundreds or thousands of state
bits, all updated each cycle. Areas in which this can be done include
road traffic simulation (Milne et al., 1993; Russell et al., 1994; George,
2005; Tripp et al., 2005) and the simulation of two-dimensional lattice
gases (Shaw et al., 1996). In these applications, the physical system that
is being simulated is both two-dimensional and operates by means of
local interactions. In a road traffic simulation, for example, a car has to
respond only to the car ahead of it. One can thus lay out simulated roads
on the silicon, with each road segment having a state bit to indicate if
there is a car on it. Relatively simple boolean logic connects this state

5.9 Interconnection 127

bit to those immediately ahead and behind—or in the case of a junction,
to those to the left and right. The resulting finite state automaton
uses local wiring and has a wiring cost that is linear in the size of the
physical system being simulated. Because all state bits in a finite state
automaton can be simulataneously updated, this sort of architecture can
be millions of times faster than a von Neumann computer performing
the same task. The acceleration comes both from overcomming the von
Neumann bottleneck and because transition rules encoded in logic gates
can operate much faster than those implemented in software.

Although these approaches are theoretically promising, they have not
been widely used. The rather specialized areas of application have meant
that they have remained high cost. Without the mass production that
has driven down the cost of standard von Neumann chips, they have not
proven competitive.

6 Quantum computers

6.1 Foundations of
quantum theory 128

6.2 The quantum rules 136
6.3 Qubits 142
6.4 Entanglement and

quantum registers 146
6.5 Quantum computers 153
6.6 Quantum algorithms 155
6.7 Building a quantum

computer 157
6.8 Physical limits to real

number representations 167
6.9 Error rates in classical

and quantum gates 171

6.1 Foundations of quantum theory

There is an often-related story that in an address to the British
Association for the Advancement of Science in 1900, Lord Kelvin said:

There is nothing new to be discovered in physics now. All that remains is more
and more precise measurement.

In fact, the supposed quote is completely unsubstantiated, but it has
gained traction in popular lore because, at the end of the nineteenth
century many scientists genuinely believed that physics was almost
complete, excepting only a small number of anomalies that would soon
be cleared up. It is arguable that, in any era, some scientists have
a tendency to overestimate the ratio of the known to the unknown.
However, such hubris at the turn of the twentieth century is particularly
remembered because it was proved so spectacularly ill-conceived so very
soon afterwards, by the advent of two ground-breaking assaults on the
classical worldview: relativity and quantum mechanics.

Of the two, quantum mechanics proved the greatest threat to the
‘commonsense’ scientific and metaphysical concepts that reached full
fruition in the eighteenth and nineteenth centuries. Relativity does
require a reconsideration of the nature of time and space, but the
general philosophy of science is perturbed only a little. True, the physical
realism of Galileo, Newton, and their successors must be modified so
that the fundamental constituents of the external world are seen to
be ‘events’ rather than particles and fields, but the basic concept of a
mathematically describable mind-independent objective world is never
thrown into doubt. In quantum mechanics, however, even this most
cherished of ideas is questioned in a way that blurs the very notion of a
unique objective reality. Niels Bohr (1885–1962), one of the individuals
most deeply involved in the birth and early development of the theory,
famously declared:

Anyone who is not shocked by the quantum theory has not understood it.

Like relativity, quantum theory has its origins in the apparently minor
anomalies mentioned above which, at the dawn of the new century,

6.1 Foundations of quantum theory 129

remained stubbornly unresolved, resisting the otherwise apparently inex-
orable explanatory advance of classical physics. In particular, classical
electromagnetic theory was unable to account for the way in which
hot bodies emit radiation. Without going into details, the problem
was solved by Max Planck (1858–1947) who, in 1901, postulated that
electromagnetic waves could only be emitted in quantized form, with
allowable energies that are integer multiples of hν, where ν is the
frequency (in hertz) and h is a fundamental constant of nature, now
called Planck’s constant , with a value of about 6.6 × 10−34 joule-
seconds. Planck’s was a revolutionary proposal, since it suggested that
electromagnetic energy is constructed in a discrete, and not continuous,
manner.

The idea that radiated energy might be formed from discrete particles
was not entirely without historical precedent. Newton famously held
that light was composed of a stream of ‘corpuscles’, but his theory had
been unable to account for the phenomena of interference and diffraction
and was soon overtaken by the explanatory power of the rival notion,
championed by Huygens, that light was a wave disturbance. Although
Newton remained convinced that the particle model was correct, arguing
that light could travel through a vacuum, where no medium existed to
be disturbed, his ideas fell into disfavour. The argument seemed settled
for good when James Clerk Maxwell (1831–79) showed mathematically,
in 1865, that light was indeed a wave disturbance, obeying the same laws
as electric and magnetic fields.

A conceptual problem was perceived, however, which can be viewed
in retrospect as a result of the deep-seated desire of the scientists of the
time to see the objective physical world in strongly material terms. The
very idea of immaterial fields capable of generating forces at a distance,
although having great explanatory power, was in something of a conflict
with the metaphysics of the age and many physicists, including Maxwell,
believed that some invisible material medium must permeate all space
in order to carry the fields and their disturbances: this undetected
element of objective reality was called the luminiferous aether . It was
the failure of all attempts to detect this elusive substance that started
the sequence of events that led Einstein to propose the Theory of Special
Relativity in 1905.

In the same year, Einstein also adapted Planck’s quantization concept
to explain the otherwise mysterious photoelectric effect, whereby light
above a certain threshold frequency could liberate electrons from certain
materials, regardless of how low the intensity was. Einstein proposed that
light was indeed quantized into particle-like units that he called photons.
At a given frequency, ν, a photon would always have energy hν, and
light at that frequency could never manifest energies other than integral
multiples of this basic unit. Einstein’s solution is well known nowadays,
but perhaps because it is so completely accepted, it is often forgotten
just how strange it is. Unlike Newton’s corpuscles, Einstein’s photons
do not eschew wave behaviour. The twentieth-century solution to the
old Newton–Huygens conundrum is therefore quite peculiar: apparently,

130 Quantum computers

light is somehow both particle and wave, but curiously it never exhibits
the two character traits at the same time. Thus was born the concept
of wave–particle duality and with it the first challenge laid down by
quantum theory to classical realism.

Comprehending what it means to say that something can be both
particle and wave is key to attempts to sustain a mental picture of
objective reality. One obvious approach is to suggest that each photon
is a small indivisible packet of waves. Unfortunately, this visualization,
while perhaps comforting to the classical realist, does not agree with
observations. To see this, it suffices to consider a variation of one of the
most famous empirical demonstrations of all time, originally performed
around 1801 by Thomas Young and known as the double-slit experiment .
In the words of Richard Feynman et al. (1963), this reveals:

. . . a phenomenon which is impossible, absolutely impossible, to explain in
any classical way, and which has in it the heart of quantum mechanics. In
reality, it contains the only mystery.

In the double-slit experiment, light from a monochromatic source (one
wavelength only) is shone through two parallel narrow slits, A and B and,
on emerging, allowed to fall on a screen placed some distance behind (see
Fig. 6.1). As is well known, if one of the slits, say A, is covered and the
other left open, a simple bar of light will appear on the screen opposite
the other, B, the edges of the bar made fuzzy by diffraction (Fig. 6.2(a)).
If slit B is covered, with A open, an identical bar appears behind slit
A. On the other hand, if both slits are uncovered, the screen displays
the familiar interference pattern of alternately light and dark stripes,
stretching between the positions formerly occupied by the diffraction
bars (Fig. 6.2(b)). So far, this is unremarkable: in essence, it is the form
of the experiment that Young used to demonstrate that light is a wave.

If we decrease the intensity of the light source, the brightness of the
interference bands and the diffraction bars fades, eventually becoming
too dim to see with the unaided eye. Now replace the screen with some
mechanism for accumulating the sum of all the light hitting each point
in its plane: sufficiently sensitive detectors would be able effectively to
count the number of photons hitting them while the experiment runs.

Fig. 6.1 The double-slit experiment.

Light source

Barrier

Screen

Light intensity

6.1 Foundations of quantum theory 131

Light source

Screen

(b) Both slits open

A
B

Light source

Screen

(a) One slit open

Fig. 6.2 Interference and diffraction.

For convenience, we will continue to call our array of photon detectors
the ‘screen’. The final step is to decrease the light intensity to the point
at which the source is emitting just one photon at a time. Consider
this for a moment. If photons are indeed particles of light then, given
what we normally mean by a ‘particle’, we would expect each photon
to go through one slit or the other, but not both. Sending photons one
at a time, therefore, might be expected to eliminate any possibility of
interference. Sure enough, each individual photon does impact at exactly
one spot on the screen, but as the cumulative effect of the photons
is counted at that plane, surprisingly, the interference bands begin to
reappear. If one of the slits, say A, is blocked, the interference patterns
again disappear and are replaced with an accumulated diffraction bar
opposite B.

In fact, if any measurement is made to determine which slit a photon
goes through, the interference pattern disappears. This remains true
even if all the photons going through both slits are allowed to proceed to
the screen, although there are now two diffraction bars, one behind each
slit. It is possible to detect which opening a photon has gone through
while still allowing it to proceed to the screen; for example, by placing a
beta barium borate (BBO) crystal behind each slit. Such a crystal acts
to split a single photon into two identical offspring, each with half the
energy of the original and able to be sent in different directions: one,
usually called the signal photon goes to the screen, while the other, the
idler goes to a detector that is possibly much further away. The splitting
process is called spontaneous parametric down-conversion (SPDC) and
the photons created are said to be entangled (something we will have
more to say about later). With clever use of geometry and polarizers,
it is possible to perform measurements on the idler photon from a pair

132 Quantum computers

Incident laser Glan–Thompson prism separates signal
and idler photons

BBO crystal

Polarized signal photons

Polarized idler photons

Optical arrangement (beam-
splitters and mirrors) targets
idlers at alternate detectors

A

B

Detectors
Detects B only

Coincidence counter

Detects A only

Detects A and B
(no path info)

Screen: photon detector
capable of identifying

interference pattern

Lens

Fig. 6.3 The delayed choice quantum eraser experiment.

that indicate exactly which slit the corresponding signal photon has gone
through. In an ingenious experiment called the delayed choice quantum
eraser (Fig. 6.3), it has been shown (Kim et al., 2000) that if the idler
photons are measured to discover the ‘which path’ information, the
signal photons will not show an interference pattern; if, however, they
are not measured, the pattern reappears. Strangest of all, the choice of
whether or not nto measure the ‘which path’ information need not be
made until after the signal photon has hit the screen!

How can this behaviour be rationalized? Photons behave like particles
when they are detected, but like waves when left to their own devices. In
an unattended double-slit experiment a photon apparently goes through
both slits at once and interferes with itself. It seems to know what
is happening to its entangled partner, however far away, and it is
even able to anticipate the decision an observer will make about its

6.1 Foundations of quantum theory 133

partner in the future! What, we feel compelled to ask, is going on
behind the scenes, when nobody is looking, when no observation is
being made? In short, nobody knows! However, that has not stopped
many physicists and philosophers from speculating—and, indeed, there
has been a minor industry in the invention of interpretations, models
of a possible underlying reality that might allow us to visualize what is
‘really’ going on in the objective unmeasured world.

It was soon realized that it is not just light that is affected by the
paradoxes of wave–particle duality. The quantum ideas of Planck and
Einstein were adapted by Bohr to explain another previously intractable
phenomenon, the energies of the light emitted by heated hydrogen gas.
Bohr’s model of the structure of the hydrogen atom assumed that
‘orbital’ electron energies are also quantized and was thus able to predict
the spectrum of the emitted light correctly. Unfortunately, the model
only worked for hydrogen, and even Bohr himself realized that it was
ad hoc and messy in nature. However, the idea that electrons also
obeyed quantization principles was soon generalized: in 1924, Louis de
Broglie advanced the idea that matter, just like light, exhibited wave-
like properties, but that these were not normally observed because the
wavelengths involved were usually so short. The de Broglie hypothesis
suggested that any particle of matter of momentum p has a wavelength,

λ =
h

p
(6.1)

where, as usual, h is Planck’s constant. This equation is exactly the same
as that for a photon, remembering that photon energy and momentum
are related by E = pc with c the speed of light in a vacuum and, of course,
that the wavelength λ and frequency ν obey the familiar relationship
λν = c. Some quick experimentation with Eq. 6.1 will show the reader
that the wavelengths of particles of anything other than the tiniest mass
will be so small as to be effectively unmeasurable. However, in 1927,
Davisson and Germer were able to demonstrate experimentally that
electrons do indeed exhibit diffraction and have a wavelength exactly
as predicted by de Broglie. Subsequent investigation has confirmed this
beyond all doubt: at the microscopic level, all matter exhibits exactly the
same wave–particle duality as does light. Electrons too can be subjected
to double-slit experiments and they demonstrate the same behaviour in
all its peculiarity. At the microscopic level at least, it seems that the
whole world is quantum!

What was lacking after all these developments was a coherent theory
paralleling the role of Newton’s mechanics or Einstein’s relativity in
the classical arena. In a spectacularly successful burst of activity in
the late 1920s, the physics community delivered just such a theory
via the independent work of two of the most outstanding scientists
of the twentieth century, Erwin Schrödinger (1887–1961) and Werner
Heisenberg (1901–76). Schrödinger’s theory was formulated around the
concept of mathematical waves and is now referred to as wave mechan-
ics. Heisenberg’s version, matrix mechanics, was more mathematically

134 Quantum computers

abstract and less amenable to helpful pseudo-physical visualizations.
However, it was soon demonstrated that the two approaches are
mathematically equivalent and following the work of, among others, Max
Born (1882–1970), Pascaul Jordan (1902–80), Paul Dirac (1902–84) and
Jon von Neumann (1903–57), the modern form of quantum mechanics
had emerged by the early 1930s from a unification of the two approaches.

In the 80 or so years since its inception, quantum mechanics has
proved itself the most successful scientific theory of all time. It has
never been shown to be incorrect in its predictions, despite these
often being in stark conflict with common sense. It is also, as far as
anybody has been able to determine, a complete framework. This claim
is succinctly summarized by Stapp (1972) in what is sometimes known
as the Weak Completeness Hypothesis: ‘no theoretical construction can
yield experimentally verifiable predictions about atomic phenomena that
cannot be extracted from a quantum theoretical description’. A counter-
example to this statement has never been demonstrated. So, although
nobody knows how reality conspires to produce the results discussed
above, we have a predictive theory that is so staggeringly accurate and
successful that the question of what is really going on is, arguably,
relegated to the philosophical domain.

To summarize, quantum mechanics provides impeccable tools for
predicting the results of observations, but says nothing whatsoever about
what really exists independently of the observer. It is disconcerting,
to say the least, that the theory that lies at the foundation of the
whole of science (after all, atomic theory proposes that all macroscopic
entities are composed of particles that obey quantum laws) makes no
assumptions whatsoever about ontology, excepting only the observer
and the information obtained by measurement. This is a very important
point that is often ignored in popular discourse, even by physicists
who will talk about an electron, say, as if it was like a small classical
object moving through space along some trajectory. But according to
quantum theory, a particle is only a particle when it is observed and
at any other time its nature is indeterminate. Counter-intuitively, even
the linear tracks left in cloud chambers by elementary particles are not
evidence of classical behaviour, as convincingly demonstrated by Mott
(1929). But neither are such particles waves. The wave associated with
an electron or a photon is not a material thing, but a function that yields
the probability of the particle being detected at a given point in space
and time, if somebody were to look.

Reactions to this odd state of affairs can be divided loosely into two
broad camps. The first, often claimed to be the official view, follows
Bohr into a revolutionary but disconcerting philosophy, sometimes said
to be inspired by positivism, that the theory should be seen as an
instrumentalist tool for making predictions about future observations.
The instrumentalists generally claim that the nature of objective reality
is a metaphysical matter and, if quantum mechanics is indeed complete,
it is meaningless to speculate on what can never be decided by
experiment.

6.1 Foundations of quantum theory 135

The second camp, however, is committed to the belief that not only
is the concept of objective reality meaningful (this is not itself in
conflict with an instrumentalist view) but, crucially, that it is possible to
visualize that reality in some mathematically accurate way. Of course,
if quantum mechanics is complete, its predictions cannot be augmented
by any additional theory of reality—and therein lies the problem. For,
in fact, numerous interpretations can generate the quantum predictions,
but while some are more visualizable than others, it is fair to say that
all include concepts that are alien to classical thought. For example,
building on an idea proposed by de Broglie to explain wave–particle
duality, that particles are in some sense guided by ‘pilot waves’, David
Bohm postulated a holistic non-local element of reality that he called the
quantum potential , which is generated simultaneously by all particles in
the universe. Bohm’s model (Bohm, 1952a,b) is detailed and technically
impressive and reproduces the quantum predictions, but it adds no new
ones and it is not unique. Unless completeness can be disproved and
an experimental difference demonstrated between interpretations, realist
models will always be vulnerable to the accusation from instrumentalists
that, in their desire to keep hold of the classical idea that science
reveals reality, they are postulating entities that are as imaginary as
the luminiferous aether that led the thinkers of the nineteenth century
so spectacularly astray.

Quantum mechanics was applied extensively in the decades after its
development. In the early 1980s, Richard Feynman examined the prob-
lems associated with the simulation of many-body quantum-mechanical
systems on conventional computers, as this can become infeasible for
more than a very few particles. He suggested the possibility of creating
a quantum computer, using components directly exhibiting quantum-
mechanical behaviour, which he believed might be able more efficiently
to simulate quantum systems (Feynman, 1986). The idea was further
developed over the following years by several physicists, culminating
in a description by David Deutsch (1985) of a universal quantum
computer that can simulate any Turing Machine, and hence is capable
of performing any computing task that is possible on a conventional
computer. Although the inverse is also true (a quantum computer
is not able to perform computations that a classical machine cannot
undertake), it can, in principle at least, exploit what Deutsch called
quantum parallelism, allowing certain probabilistic tasks to be performed
much faster. In 1989, Deutsch made another key contribution to what
then became a very active field, when he showed how a quantum
computer could be built up using multiple copies of the most elementary
quantum systems, called qubits (which are such that each measurement
has only two possible outcomes), in conjunction with simple quantum
operations known as quantum gates (Deutsch, 1989).

Deutsch’s proposals were, of course, entirely theoretical at the time,
and a great deal of effort has since gone into establishing to what extent
it might be practical to implement them. There are two key issues.
First, how might a functioning and usable quantum computer be built?

136 Quantum computers

Secondly, how are useful algorithms to be designed offering a worthwhile
speed-up over conventional machines? The first problem requires usable
qubits and quantum gates to be fabricated in some physical technology
and, it has to be admitted, this is a very hard problem that has not yet
been workably solved. On the second issue, some progress has been made
and a number of interesting quantum algorithms have been discovered,
the most famous of which is Shor’s (Shor, 1999), that would allow
an integer to be factored on a quantum computer in a time that is
exponentially faster than any known conventional approach. However,
the design of useful quantum algorithms is not easy either, and progress
in this area has also been slow.

In order to understand the theory behind quantum computers and
algorithms, it is necessary to have a basic knowledge of the details of
quantum mechanics, and this is the task to which we now turn.

6.2 The quantum rules

Quantum mechanics is a fundamentally epistemological theory. It is
arguable that all of science is of this nature, but classical physics
can be stated in strongly objective language (d’Espagnat, 2006); that
is, its statements describe a world whose attributes are independent
of the community of observers. Since all science begins with sentient
investigation, some have contended that strong objectivity is an illusion
but, whatever the case, in the quantum theory it is not present. All
statements of the latter concern not what is, but what will be observed
when someone looks. On what occurs between observations the theory is
silent, providing only a calculus for determining the constantly evolving
probabilities of the outcomes of the next observations.

Quantum theory is also inherently non-deterministic, although this
claim requires some elaboration. When a measurement is made of a
quantum system, we can typically enumerate the set of possible results
(which may be infinite), but we cannot in general say in advance
which value will be obtained. The theory does, however, allow us
to compute probabilities for each such possible result and, while no
prediction can be made in an individual case, when the measurement
can be repeated on multiple identical systems, the relative frequency
of the outcomes is observed to converge to these probabilities. When
no observation is being made, however, the measurement probabilities
themselves evolve deterministically with time according to the famous
Schrödinger equation, given knowledge of the nature of the system and
its environment, specifically via the system’s total energy. The energy of
a system is in part due to its motion (kinetic energy) and in part due to
the environmental forces acting on it (potential energy), and is usually
formally summarized in a function of the system’s physical parameters
(position, momentum, and so on) called the Hamiltonian, after the
nineteenth-century Irish mathematician William Hamilton (1805–65).
So although the outcomes of quantum measurements are random, the

6.2 The quantum rules 137

evolution of the probabilities associated with these measurements is
deterministic.

To reiterate, then, quantum mechanics is concerned purely with
predicting the outcomes of observations yet to be made. A quantum
system is typically of atomic dimensions and assumed to be isolated
from interaction with the environment, excepting that there may exist,
in its Hamiltonian, a description of any fields in which the system may
be located and that may endow it with potential energy. These are
idealizations, of course, and they can be relaxed in order to extend the
domain of the theory, but for the moment they will be accepted without
further discussion. An observation involves making a measurement of one
or more physical quantities associated with the system, and ideally we
would like to have a quantum-theoretic description that would allow us
to predict the outcome of any measurement. However, such a description
can usually only be arrived at by knowing something of the history of
the system; and since quantum mechanics is non-deterministic, it only
allows us to predict probabilities of obtaining possible outcomes, not the
actual outcomes that will in fact occur. Further, once a measurement
of a quantum system is made, that measurement itself may change
the system and our quantum-theoretic description of it must then
change too.

In quantum mechanics, the quantities that we measure and that
can change with time are called dynamical variables or observables. In
the non-relativistic theory, mass is considered to be conserved and is
treated as a constant, but all the components of position, momentum,
energy, angular momentum, and so on are dynamical variables. When
we conduct a measurement, possible outcomes are always considered to
be real numbers, but the set of possible results for a given observable
in a given system may be finite, countably infinite, or uncountably
infinite. In most of what follows, we shall restrict ourselves to situ-
ations where the set of possible outcomes is finite, since this is the
scenario applicable in quantum computation. As observed above, for
a qubit system, there are no more than two possible outcomes for each
observable.

Given that the quantities listed above (position, momentum, etc.) are
all normally considered to take any value in some bounded subset of the
real numbers, the fact that there are finite scenarios may seem surprising.
In reality, of course, no measurement can be made with anything more
than limited precision, so the set of outcomes of a measurement is,
strictly, always finite; however, typically, when measuring quantities such
as position, it is convenient to dismiss this awkward fact and assume,
for analytical purposes, that real arithmetic is applicable. Even if we
ignore the question of limited precision (as we shall), quantum systems,
unlike classical ones, often exhibit inherently discrete behaviour. We
have already seen this in the behaviour of electromagnetic radiation,
which always manifests as an integral number of photons. As another
example, if we consider the energy levels that an electron can take in an
atom of, say, hydrogen, it has been clear since before quantum theory

138 Quantum computers

Fig. 6.4 The Stern–Gerlach experi-
ment.

Furnace

Silver atoms

Customized magnetic field

Screen

Spin-up atoms

Spin-down atoms

was formulated that only a countable set of characteristic values are
possible.

When studying a quantum system, it is also often convenient to
restrict the system so that only certain observables are relevant and those
have finite sets of possible outcomes. A very well-known example of such
a system is electron spin. As early as 1922, the famous Stern–Gerlach
experiment (Fig. 6.4) showed that if electrons are passed through an
appropriate magnetic field, half of them will be deflected upwards and
the other half downwards (in fact, Stern and Gerlach used silver atoms,
which each have a single outer electron but are electrically neutral
and thus easier to study). This was interpreted as showing that if a
measurement is made relative to some chosen direction in space (an
axis), electrons will exhibit a component of angular momentum relative
to that direction which is either ± 1

2� (joule-seconds) where � = h/2π,
with h being Planck’s constant. (� is a quantity often encountered in
quantum theory and is known as the reduced Planck constant : its value
is very close to 10−34 J-s.) This component of angular momentum was
later labelled spin, and the two allowable values became called spin-up
and spin-down. Such labelling is analogously helpful, but even in a realist
picture it must be admitted that it is misleading if taken too literally:
an electron has no internal structure nor extension in space (indeed, it
only has a particle nature when being measured), and it does not make
sense to talk of it spinning in the way a macroscopic sphere might spin
on its axis.

Perhaps a word of explanation is in order as to why the spin
phenomenon causes electrons (or more accurately, silver atoms) to be
affected differently by a magnetic field. Not only does an electron or
silver atom have a measurable intrinsic angular momentum (its spin)
but, associated with this, it acts as a tiny magnetic dipole, which may
be either N–S or S–N depending on whether its spin is up or down. When
a beam of such entities is passed through a uniform magnetic field, half
of them will be deflected one way and half the opposite way, just as
Stern and Gerlach observed.

6.2 The quantum rules 139

In general, what we call a particle is a quantum system with
many potential dynamical variables. For example, it can have position,
momentum, and energy as well as spin. When modelling such a system
quantum mechanically, it may be, however, that some of these variables
are of no interest in a given situation, and it is then possible to
restrict the quantum descriptions to those aspects that are contextually
relevant. Thus, for example, in quantum computing, an observable such
as electron spin, which has only two allowable measurement results, is
extremely useful and we can try to set the system up so that observables
such as position and linear momentum can be ignored. Indeed, a confined
particle with just two spin states is, at least in principle, an ideal way
of implementing a qubit .

Suppose that a quantum system is subjected to a measurement of
some observable, A, and a value, a, is obtained. If the same observable
is immediately measured again, the same result, a, should be obtained
with probability 1. If another observable, B, is now measured and A is
then measured yet again, even if this is done immediately, in general the
outcome of the A measurement is no longer certain. Sometimes, however,
B is such that the perfect predictability of A is not lost: we then say that
the observable B is compatible with A.

In certain circumstances (e.g. by measuring compatible observables),
a maximal description of the aspects of the system in which we are
interested can be obtained and this description is then called a (pure)
quantum state. In quantum theory, each possible state of a given system
is associated with a vector in a Hilbert space over the field of complex
numbers. A Hilbert space is a vector space with an inner (scalar) product
defined and which is also topologically complete (this means that all
sequences of elements of the space that converge do so to a limit that is
also in the space). The dimension of the Hilbert space in question may
be finite or infinite, depending on the aspects of interest in the quantum
description.

In the case of electron spin, a Hilbert space of dimension 2 is generated
and this is the basic space used in quantum computing. It is perhaps
worth mentioning that all real or complex finite dimensional inner-
product vector spaces are topologically complete and so are automati-
cally Hilbert spaces. In Schrödinger’s wave mechanics, on the other hand,
a special case of the general theory, which was devised to handle position,
momentum, and energy, the Hilbert space involved is the set of all
complex-valued square-integrable functions and is infinite-dimensional;
the state vector associated with a system is then known as a wave
function. In what follows, we will only require finite-dimensional spaces.

Recall that a vector space is a set, V, of entities called vectors, which
are related to another set, F, of distinct entities called scalars that obey
the mathematical properties of a field. In what follows, the set of scalars
will always be the complex numbers, C. In a vector space of dimension n
over C, each vector can be represented as an ordered array of n complex
numbers called ‘components’ of the vector. Such an array may be written
down as an 1×n row matrix (components are indexed starting from

140 Quantum computers

the left) or as a n×1 column matrix (components are indexed starting
from the top). For a three-dimensional vector, these alternatives would
look like

[a1 a2 a3]

and ⎡
⎣ a1

a2
a3

⎤
⎦

respectively. It can be shown that all vector spaces of dimension n
over the same field have the same structure (they are said to be
isomorphic); so, for example, there is really only one complex vector
space of dimension 3, which is usually denoted by the symbol C

3. Vectors
may be summed (by adding corresponding components) or multiplied by
a scalar (multiplying all components by the same number). In an inner
product space, they may also be combined via scalar multiplication (the
inner product), which is a mapping, V × V → F , that obeys certain
rules. The standard scalar product on C

n of two vectors a and b is
often denoted as a · b or (a , b) and is defined as follows:

a · b =
n∑

i=1

āibi (6.2)

where the overbar denotes the complex conjugate operation.
The essence of the above ideas can be encapsulated in a small number

of quasi-axiomatic rules, which we will now review briefly. These rules
are most commonly stated using the mathematical formalism of vector
spaces and we will adhere to this approach here.

Rule 1. The first quantum rule is just that we can associate, with any
quantum system of which we have a complete description, a state that is
an element ψ of some Hilbert space,H, defined by the scope of our model.
Dirac called such an element a ket vector and used the notation |ψ〉. The
way in which kets are used is outlined by the other rules, but it is worth
noting a couple of points at this stage. First, multiplying a ket by any
scalar (complex number) does not change the information it contains
and so, in fact, each description is associated not with one vector, but
with an entire one-dimensional subspace or ray in H. Because of this, we
often choose as a representative of the ray a normalized ket of length 1,
derived from |ψ〉 by dividing it by its length or norm (conventionally
denoted by ‖|ψ〉‖).

As an aside, in a Hilbert space, the length of a vector is the square
root of the scalar product of the ket with itself. In Dirac notation, the
scalar product of two vectors |ψ〉 and |ϕ〉 is denoted by 〈ϕ | ψ〉. For any
vector, |ϕ〉, we can define a linear mapping, f called the dual of |ϕ〉,
from the Hilbert space H into the complex numbers, C by

fϕ(|ψ〉) = 〈ϕ | ψ〉 (6.3)

6.2 The quantum rules 141

In Dirac notation, the dual is consistently and elegantly denoted as 〈ϕ|
and is called a bra (operator). We can thus write

‖|ψ〉‖2 = 〈ψ | ψ〉 (6.4)

Rule 2. The second quantum rule states that each observable is
associated with a hermitian linear operator that maps the Hilbert
space into itself. The outcome of a measurement of the observable
associated with the operator A, is always one of its eigenvalues. After
a measurement has occurred, if a value, a, has been obtained, the
system will be forced into a state that is an eigenvector associated with
eigenvalue a. If the system is initially in a state that is an eigenvector of
eigenvalue a when the measurement is carried out, then the value a will
be obtained with probability 1. This is the only case in which we can be
certain in advance what the outcome of a measurement will be.

The adjoint of a linear operator, A, is another operator, usually
denoted A†, which is such that, for all kets |ψ〉 and |ϕ〉,

〈ϕ| (A† |ψ〉) = (A 〈ϕ|) |ψ〉 (6.5)

Note for future reference that in Dirac notation it is customary to write
〈ϕ| (A† |ψ〉) as 〈ϕ|A† |ψ〉. The existence of an adjoint is assumed without
proof. A hermitian or self-adjoint operator is simply one where A = A†.
It is straightforward to show that the eigenvalues of a hermitian operator
are always real, which is just as required for the outcome of a physical
measurement. Also, it can be shown (the so-called spectral theorem) that
the eigenvectors of the different eigenvalues of a hermitian operator form
an orthonormal basis of the space. This means that each ket in H can
be expanded in the basis defined by A, thus:

|ψ〉 =
∑

k

〈ak | ψ〉 |ak〉 (6.6)

where the ak are a complete set of eigenvalues of A and |ak〉 are
corresponding normalised eigenvectors. Strictly, this assumes that none
of the eigenvalues are degenerate, where they have two or more linearly
independent eigenvectors (these would therefore generate an eigenspace
of two or more dimensions). The theory can easily cope with situations
in which an operator has degenerate eigenvalues, but it complicates the
notation and we will avoid further discussion here.

Rule 3. The third rule explains what happens in the case in which
a system in a state |ψ〉 (which we will assume to be normalized) is
subjected to a measurement associated with the observable operator A.
We assume here that A has a discrete set of eigenvalues (the following can
be generalized to the continuous case, but this is not discussed further
here). Let the eigenvalues of A be a1, a2, . . . , an, so that these are
(as stated in Rule 2) the only possible results of a measurement of A.
Further, let the normalized eigenvector associated with ak be |ak〉. Rule
3, which is commonly known as the Born Rule, says that the probability,
wk, that the measure outcome will be ak is given by

wk = |〈ak|ψ〉|2 (6.7)

142 Quantum computers

Note that the probabilities are the squares of the coefficients of
the spectral expansion in terms of A’s eigenvectors. It can easily be
established from this that if A is measured many times on identical
systems in the same state |ψ〉, the mean value of the results that will be
obtained, denoted < A >, is given by

< A >= 〈ψ |A|ψ〉 (6.8)

Rule 4. The fourth rule is that the state vector of a system subject
only to external forces will change deterministically in time according to
the time-dependent Schrödinger equation:

H |ψ(t)〉 = i�
∂

∂t
|ψ(t)〉 (6.9)

where H is the Hamiltonian, the energy observable, of the system. This
rule obviously defines explicitly how an undisturbed quantum system
will evolve in time and states clearly that the evolution is dependent
only on the energy operator.

Rule 5. The fifth rule, to which we will return later, says that if two
systems, S1 and S2, can be described by kets from the Hilbert spaces H1
and H2, respectively, then the composite system composed of S1 and S2
together is described by kets from the tensor product space H1 ⊗ H2.
The tensor product is a space constructed out of its constituents and
whose dimension is the product of those of the two spaces. An example
will be given in Section 6.4.

Although the above can be cast somewhat more generally, the five
rules stated here encapsulate the basic operation of quantum theory
and will suffice for our purposes in the remainder of this chapter. We
now proceed by restricting attention to the simplest quantum systems;
namely, those that can be described by the two-dimensional Hilbert
space over the complex field. All two-dimensional Hilbert spaces over
C are isomorphic to C

2, which means that the vectors can always be
represented as a pair of complex values once an orthonormal basis has
been chosen.

6.3 Qubits

Consider a quantum system that can be described by the space C
2. All

observables on such a system can have only two possible measurement
outcomes (this is obviously assumed acceptable to the observer’s require-
ments for the given system, since it is implicit in the choices made to
restrict the model to two dimensions).

If we now select one observable, the two normalized eigenstates,
conventionally labelled |0〉 and |1〉, or sometimes |↑〉 and |↓〉 , form an
orthonormal basis of the space. As a result, any other state of the system,
|ψ〉, can be represented in the form

|ψ〉 = a |0〉+ b |1〉 (6.10)

6.3 Qubits 143

where a and b are complex numbers with a = 〈0|ψ〉 and b = 〈1|ψ〉. If
|ψ〉 is normalized, then we must have

|a|2 + |b|2 = 1 (6.11)

|ψ〉 is often represented as a 2×1 column vector, thus:(
a
b

)
(6.12)

As is well known from elementary linear algebra, once a basis of an
n-dimensional vector space over a field F has been established, all linear
operators on the space can be represented as n×n matrices. If the basis is
the set |ei〉, then the elements of the matrix, A, representing the operator
a in that basis are given by

aij = 〈ei| a |ej〉 (6.13)

Further, the set of all such operators is itself a vector space of dimension
n2 isomorphic to the space Fn. Thus the set of all linear operators on
C

2 is a four-dimensional vector space isomorphic to the set of all 2×2
matrices over C, which we will denote C2×2.

The elements of C2×2 can, of course, be added or multiplied by a
scalar, as in any vector space. However, matrices can also be multiplied
by each other, an operation that is associative and has an identity, but
is not in general commutative.1 1As an aside, bringing this multi-

plication operation into play endows
the vector space with the additional
structure of what mathematicians call
a non-commutative ring, forming a
mathematical entity called an associa-
tive algebra.

It is trivial to show that the matrices

P↑ =
(

1 0
0 0

)
, P↓ =

(
0 0
0 1

)
, S+ =

(
0 1
0 0

)
, S− =

(
0 0
1 0

)
(6.14)

form a basis for this vector space. Less obviously, but still easily verified,
so do the matrices

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(6.15)

X, Y , and Z are called the Pauli matrices and all have eigenvalues
+1 and −1. Z in particular has as its eigenvectors the basis states |0〉
and |1〉. This again is easy to verify (using matrix multiplication). The
eigenvectors of Z are often referred to as the standard or computational
basis of C

2.
The original physical motivation for the study of quantum mechanics

in C
2 was just the investigation of the phenomenon of electron spin

mentioned earlier. Spin behaves as an angular momentum, for which
a general quantum-theoretic treatment was worked out early in the
history of the subject. Any angular momentum can be thought of as
a vector in three-dimensional space with, therefore, three components.
However, interestingly, the observables for these components in quantum
mechanics are not compatible, so it is not possible to know values
for more than one at a time; it is, however, possible to know the

144 Quantum computers

total magnitude of the vector at the same time as exactly one of the
components. It is conventional to label the default direction along which
the chosen component will be measured as z. Thus it is possible to
measure simultaneously the total angular momentum, L, and its z -
component Lz, but if an attempt is now made to measure, say, Lx, the
z -component information is no longer valid. In the context of electron
spin, the total spin, S (a specific manifestation of L), is always

√
3

2 �

for every electron (we will omit the units, joule-seconds, from now on)
while, as discussed above, the value of the z -component, Sz, is either
± 1

2�. In the basis defined by the Sz operator, the eigenstates |0〉 and |1〉
are, respectively, called spin-up and spin-down and, in that basis, the
operator itself is represented by the matrix 1

2�Z. Without further proof,
we simply note that the matrices for the observables representing the x
and y components of spin are, respectively, 1

2�X and 1
2�Y .

If an operator is hermitian, then the matrix representing it in any basis
is self-adjoint (also called hermitian). A matrix is said to be self-adjoint
if it is equal to its adjoint (the complex conjugate of all the elements in
its transpose). It follows that X, Y, and Z, as the matrices of observables,
must be self-adjoint (as can be easily verified). It is also the case that

X2 = Y 2 = Z2 = 1 (6.16)

so that each of the Pauli matrices is its own inverse as well as its own
adjoint. Any operator or matrix whose inverse is its adjoint is said to be
unitary .

Most unitary operators are not, however, hermitian and so do not
represent observables, although the spin operators are clearly exceptions.
Nonetheless, unitary operators are extremely important because they
represent reversible transformations of a Hilbert space. It is easy to
see that unitary operators preserve scalar products and thus vector
lengths (norms). This also means that a unitary transformation preserves
orthogonal relationships between vectors. Unitary operator eigenvalues
always have modulus 1, although these eigenvalues need not be real (the
general form is eiθ). However, as with hermitian operators, eigenvectors
corresponding to different eigenvalues are orthogonal and, furthermore,
form a basis of the space.

If U is a unitary transformation of C
2, then it is easy to prove that

U |0〉 and U |1〉 are also an orthonormal basis. Conversely, if the set
{|f0〉 , |f1〉} is any other orthonormal basis, then the operator mapping
{|0〉 , |1〉} on to {|f0〉 , |f1〉} is a unitary transformation, u , with a matrix
in the {|0〉 , |1〉} basis given by:

U =
(〈0|f0〉 〈0|f1〉
〈1|f0〉 〈1|f1〉

)
(6.17)

This is a linear mapping of the space on to itself, which maps the old
basis elements on to the new ones and so carries every vector x on to ux.

All this theory can be generalized in a fairly obvious way to n-
dimensional spaces, but is most easily illustrated in the two-dimensional

6.3 Qubits 145

case. For example, another basis of C
2 is given by the pair of vectors

|ψ0〉 =
1√
2

(|0〉+ |1〉) , |ψ1〉 =
1√
2

(|0〉 − |1〉) (6.18)

which are eigenvectors of X. The unitary transformation that carries the
standard basis to this one is (expressed as a matrix in standard basis
components):

H =
1√
2

(
1 1
1 −1

)
(6.19)

This operator will play an important role in some of what follows and
is called the Hadamard transformation. The Hadamard operator is also
hermitian and unitary, being its own inverse.

An interesting question arises as to whether the transformations
described by unitary operators could be implemented in practice on
a physical qubit system. In the real world, as discussed in Rule 4, any
change in a quantum system is driven by its Hamiltonian according to
the Schrödinger equation. Now if the Hamiltonian is time-independent,
it can be shown that the evolution in time of a state known at t = 0 to
be, say, |ψ(0)〉, will be given at time t by

|ψ(t)〉 = U(H, t) |ψ(0)〉 (6.20)

where U (H,t) is a unitary operator called the propagator, which is
dependent only on the Hamiltonian and time. Thus, in such a system,
evolution in time is not only deterministic, but can be described entirely
by a unitary operator acting on the time-independent initial state. If a
unitary transformation is to be implemented in the real world, this is
how it must be done: a suitable Hamiltonian must be found and applied
for a specified time. In a single qubit system this might be achieved by,
for example, applying an external magnetic field to a system composed
of an otherwise isolated spin ± 1

2 particle such as an electron (as we have
seen, an electron has magnetic properties associated with its spin and
will respond to such a field in a predictable way).

Real-world implementations of unitary transformations on a quantum
system are, however, very difficult to implement in practice. Nonetheless,
the success of such an enterprise is central to any attempts to build a
quantum computer and, in this context, unitary transformations of C

2,
particularly any physical implementations thereof, are usually referred
to as one-qubit quantum gates. Thinking in these terms, we can easily
see, for example, that the X operator acts on the standard basis as

X |0〉 = |1〉 , X |1〉 = |0〉 (6.21)

and for this reason is often referred to as the quantum NOT gate.
Quantum gates can be represented on a quantum circuit diagram
(Fig. 6.5), where each gate is drawn as a box with one input and
one output. Quantum ‘wires’ connect the boxes indicating a sequence

146 Quantum computers

Fig. 6.5 A quantum circuit.

H X

Uf

H

|0

|0

of unitary transformations applied in succession, denoting function
composition. The wires should not normally be imagined as real material
entities in any sense, but rather as a sequence of operations to be applied
to a single qubit system in situ (although this is not always the case).
Crucially, because any composition of unitary operators is itself unitary,
quantum circuits based on single qubit gates are always unitary in their
overall operation.

It has to be admitted that one-qubit transformations are not a great
deal of practical use on their own or to do any significant quantum
computation; multiple qubit systems and their unitary transformations
must be considered. This is the subject of the next section.

In closing, observe that unitary transformations have another con-
ceptually distinct but related use, in that they can recompute the
components of vectors and matrices relative to a new basis, thus
engineering a change of basis rather than a transformation of the space.
In this case, the task is as follows: given a column vector or matrix
expressed in components relative to the first basis, find the components
of the same vector or matrix relative to a new basis. A little algebraic
manipulation shows that components of a column vector, W, or an
operator matrix A expressed in the old basis, can be expressed in the
new one if transformed thus:

W ′ = U†W, A′ = U†AU (6.22)

Note that in this picture it is the basis that has changed. The vectors
and operators have not changed, but their matrix representations now
record their components relative to the new basis.

6.4 Entanglement and quantum
registers

When a system is composed of two component subsystems, Rule 5 says
that the compound system is described by state vectors drawn from the
tensor product of the state spaces H1 and H2 of the components. But
what is a tensor product of two spaces?

The motivation is to create product vectors composed of any state,
|ψ〉, from H1, simply placed alongside any state, |ϕ〉, from H2. Unlike
scalar products or the vector products from elementary vector geometry,
these tensor products of vectors or product states, as they are called in
quantum theory, denoted |ψ〉⊗|ϕ〉 or often just |ψ〉 |ϕ〉, are not elements
of either H1 or H2, nor of the field C over which the spaces are defined.

6.4 Entanglement and quantum registers 147

Instead, they belong in a new, bigger space, which we call the tensor
product of H1 and H2, denoted H1⊗H2 and also defined over C.

However, there is a problem. A vector space has to be closed under
addition and multiplication by scalars and if H1 ⊗ H2 were only the
set of all product states, it would not satisfy this requirement and so
would not qualify as a vector space at all. To resolve this issue, a tensor
product space must include, in addition to all possible product states,
all possible linear combinations of these. So elements such as

|Ψ〉 = λ |ψ1〉 |ϕ1〉+ μ |ψ2〉 |ϕ2〉 (6.23)

where ψ1, ψ2 ∈ H1, ϕ1, ϕ2 ∈ H2, and λ, μ ∈ C, must also lie in the space
and can also describe states of the compound system. For consistency,
incidentally, we must have that tensor products of vectors are linear in
both elements; that is,

(λ| ψ1〉+ μ| ψ2〉)⊗ | ϕ1〉 = λ| ψ1〉 | ϕ1〉+ μ| ψ2〉 | ϕ1〉 (6.24)

and

| ψ1〉 ⊗ (λ| ϕ1〉+ μ| ϕ2〉) = λ| ψ1〉 | ϕ1〉+ μ| ψ1〉 | ϕ2〉 (6.25)

It is now easy to show that although some such linear combinations can
be expressed as product states, many cannot be. An element of H1⊗H2
that cannot be expressed as a tensor product of two vectors is called an
entanglement state.

It can also be shown relatively easily that if we choose a basis of H1
and a basis of H2, then the product states of the two bases form a basis
ofH1⊗H2. It follows, as mentioned above, that the dimension ofH1⊗H2
is the product of the dimensions of H1 and H2. Further, to be a Hilbert
space, H1⊗H2 needs a scalar product and, fortunately, one can be easily
defined using the existing scalar products on H1 and H2. Thus:

〈ψ1 ⊗ ψ2|ϕ1 ⊗ ϕ2〉 = 〈ψ1|ϕ1〉H1
〈ψ2|ϕ2〉H2

(6.26)

Physically, quantum mechanics predicts that a compound system
composed of two components can be described by a product state or by
an entangled state. In a product state, it is clear that each component
system can be considered independently as if it can be described by
a state of its own. In the state | ψ〉 | ϕ〉, for example, system one is
described by state | ψ〉 and system two by | ϕ〉. In this situation, the two
component systems are said to be separable. However, in an entangled
state no individual state assignment can be made to the component
systems at all, and they are said to be entangled . Further, it follows
fairly simply from the nature of the Schrödinger equation that once an
entangled system is created, it will continue to be entangled until it is
subjected to a suitable measurement. In general terms, this means that,
in a sense, the two components can no longer be considered to have a
physically meaningful independent identity unless a measurement can be
made that separates them. Curiously, the quantum theory predicts that

148 Quantum computers

this will be the case even if the two components are permitted to travel
light years apart. If a measurement is then made on one component that
forces it into a state of its own, the other component is also forced into
a corresponding state, regardless of how far away it is. Now if states are
only descriptions, this sudden change, or reduction as it is called, may
be considered of merely epistemological significance, with no physical
implications. However, states do contain information about probabilities
of measurement outcomes and the implication is that such probabilities
may be affected for a very distant observer by the actions of a local one.
Despite this rather disturbing conclusion, now experimentally confirmed,
it was quickly realized that such influences would not permit any form
of superluminal signalling and so would not cause any conflict with
relativity.

As we have observed, those with a metaphysically realist mindset
usually like to identify the elements of a scientific theory with elements
of some ontological model of physical reality, and one of the most
sophisticated champions of this outlook was Einstein. Despite the ruling
out of superluminal signalling, he objected to the fact that, due to
its treatment of entanglement, quantum mechanics seems to suggest a
form of instantaneous influence across arbitrary distances, even if the
nature of that influence extends no further than a change in probabilities
of measurement outcomes. Along with Boris Podolsky and Nathan
Rosen, he devised a thought experiment which has become known
as the EPR paradox , wherein the authors tried to demonstrate that
quantum mechanics could not be a complete theory. We will return
to this issue later, but for the moment we will merely observe that
the EPR conclusion is dependent on assumptions about reality which,
while apparently obvious to a classical thinker, are in fact potentially
unwarranted. It is, in truth, a realist paradox and, even amongst realists,
requires resolution only by those who insist on metaphysical models of
a certain type.

As observed earlier, simple entangled systems can easily be created by
a number of physical processes. If, for example, two entangled photons
are produced, they will continue to be entangled until the system is
subjected to a measurement. However, tensor product spaces and Rule
5 can be extended to more than two components. Indeed, n systems
can be described by an element of the appropriate tensor product
space of the n Hilbert spaces involved. Further, if one system interacts
with another, quantum theory predicts that the result will be further
entanglement, which will be described by the Schrödinger equation
evolution under the Hamiltonian of the interaction. Clearly, unless a
system is isolated from all such interaction, it will gradually become more
and more entangled with surrounding systems, until our simple state-
vector description of it has become impossibly lost in the complexity
of its environment. This process occurs to any non-isolated quantum
system and is called decoherence; however, it happens faster the larger
and more complex the isolated system and, while it may be possible
to isolate a single-particle quantum system from interaction for some

6.4 Entanglement and quantum registers 149

time, there is absolutely no hope of doing so for anything approaching
macroscopic dimensions.

Decoherence has some interesting implications. It can be shown that
if local measurements are made on a distributed entangled quantum
system, the observed part of the system may appear to behave classically
(e.g. interference effects will disappear) even although, if sufficiently
precise measurements were made on the system as a whole, its quantum
nature would be apparent. If a qubit, for example, is left alone for a while
and is not adequately isolated from its environment, it will experience
decoherence and will apparently lose its quantum nature, at which point
any computation it is involved in will fail. What has happened, in fact, is
not that the qubit has stopped being a quantum system; it is simply that
it has become so entangled with the environment that its local behaviour
appears classical, and only impossibly complex measurements on it and
its environment as a whole would reveal any quantum behaviour at all.
Interestingly, this phenomenon casts some light on an curious puzzle: if
the entire universe is composed of entangled quantum systems, why do
we perceive objects at the macroscopic level which appear to be localized
and classical? In a fascinating investigation, Joos and Zeh (1985) have
shown that the classical world emerges because its observers are localized
and only capable of making limited measurements on partial systems
subject to quantum decoherence. It is arguable (d’Espagnat, 2003) that
the classical world appears as it does merely because of our limitations
as observers, and that therefore what we consider to be ‘objective’ in
the classical sense is as much a function of us as of any underlying
reality. This argument applies even to realism, with which it is entirely
compatible, and points the way to something quite alien to pre-quantum
notions of what is in fact real: the idea that the objective world may, in
fact, be of a quite different character from the reality that we perceive
through ordinary experience. Realist notions of this type are sometimes
described as far realist to distinguish them from the more conventional
classical ideas (near realism), which generally assume that what we see
is a more-or-less good reflection of what really is.

Now, however, returning to the matter at hand, as discussed, a single
qubit is not much use for implementing quantum algorithms and so
quantum circuits with many qubits are of much more interest. Often,
a group of n qubits will be employed together, and the full power
of such an arrangement relies on us allowing these qubits to become
entangled with each other while isolating the entire assembly, or quantum
register , from the environment, as we subject it to appropriate quantum
gate (unitary) transformations. Fortunately, the mathematics needed to
describe a quantum register is exactly that needed to model entangled
systems, namely that of tensor product spaces.

Beginning with a register of just two qubits, the fifth quantum rule
says that the descriptive state vectors will be elements of the four-
dimensional tensor product space C

2 ⊗ C
2, which is isomorphic to C

4.
Some states in this space are product states, but many are entangled.
When the two-qubit system is in one of these entangled states, the

150 Quantum computers

individual qubits are not in definite states of their own at all. From the
general discussion above, if we take the standard basis of each space,
the product states | 0〉 | 0〉, | 0〉 | 1〉, | 1〉 | 0〉, and | 1〉 | 1〉 are a basis of
C

2 ⊗ C
2. The state | i〉 | j〉 is usually written | ij〉, so that any state of

the two-qubit system can be written as

| Ψ〉 = a00 |00〉+ a01| 01〉+ a10| 10〉+ a11| 11〉 (6.27)

or, equivalently, as a four-dimensional vector with the components
aij ; again, if | Ψ〉 is normalized, the squares of the magnitudes of the
coefficients must sum to 1. The set of | ij〉 is, unsurprisingly, generally
called the computational basis of C

2 ⊗ C
2. For even greater conciseness

(especially when we go beyond the two-qubit case), Eq. 6.27 is often
written as follows:

| Ψ〉 = a0 |0〉+ a1| 1〉+ a2| 2〉+ a3| 3〉 (6.28)

where a subscript 2 can be added to the kets if there is ambiguity about
the dimension of the space under consideration.

A general vector in the space C
2⊗ C

2 can be represented using a 4×1
matrix as discussed above: ⎡

⎢⎢⎣
a00
a01
a10
a11

⎤
⎥⎥⎦ (6.29)

Being a Hibert space, a tensor product space such as C
2 ⊗ C

2,
defined in the quantum context, has hermitian observables and unitary
transformations just like its constituents. If A and B are single qubit
operators, then we can define a tensor product operator, A ⊗ B, on
C

2 ⊗ C
2 in the obvious way by

A⊗B| Ψ〉 =
∑

i,j=0,1

aijA |i〉 ⊗ B|j〉 (6.30)

Further, if A and B are hermitian (unitary), then A ⊗ B is also
hermitian (unitary). This immediately allows us to construct two-qubit
unitary operators such as X ⊗X or H ⊗ I. Such operators would take
the 4×4 matrix forms (verification is straightforward but a little fiddly)[

0 X
X 0

]
and

[
I I
I −I

]
(6.31)

As an example, consider the action of the operator H⊗H on the basis
product state | 0〉 | 0〉. The effect of this is as follows:

H ⊗H| 0〉 | 0〉 = H| 0〉 ⊗H| 0〉 =
1√
2

(| 0〉+ | 1〉)⊗ 1√
2

(| 0〉+ | 1〉)
(6.32)

=
1
2

(|0〉| 0〉+ |0〉| 1〉+ |1〉| 0〉+ | 1〉 | 1〉) (6.33)

Note that this is still a separable (product) state; in fact, it should be
obvious that a product operator such as this will always carry a product
state to another product state.

6.4 Entanglement and quantum registers 151

However, not all two-qubit unitary operators are products of single-
qubit operators. As in the single-qubit case, we can contemplate trying
to implement such operators in physical systems as two-qubit gates but,
perhaps unsurprisingly, these are even more difficult to construct. Since
compositions of unitary operators are always unitary, however, we can
try to build up some transformations from quantum circuits and here
an interesting result comes to the rescue.

It can be shown that a small set of quantum gates can be used to build
any unitary operator on C

2 ⊗ C
2 and, curiously, the set needs only one

two-qubit gate, an operator called the controlled NOT or CNOT and
defined by the matrix [

I 0
0 X

]
(6.34)

or, in fully expanded form, ⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ (6.35)

This gate ignores the basis states | 00〉 and | 01〉, but flips | 10〉 and
| 11〉. The effect is sometimes expressed as

Cij | i j〉 = | i, i⊕ j〉 (6.36)

for which reason it is sometimes called the quantum XOR gate (Fig. 6.6).
CNOT is not a product operator and does entangle its inputs. Note that
the first qubit is never altered and is known as the control qubit. Clearly,
a CNOT gate with the second qubit as the control is equally valid and
may be denoted Cji.

The ideas applied here to two-qubit registers can easily be generalized
to n bits where the space involved would have dimension 2n. However,
it turns out that any unitary operator on an n-qubit register can also
be constructed out of the two-qubit CNOT and a suitable selection of
one-qubit gates, so that these, in essence, are the only components that
we need—with one final exception.

Unitary operators define all the transformations that can be under-
gone by a quantum register if it is allowed to evolve without interacting
with another system. There are two ways in which such interaction can

ji⊕

i

j

i

Cij Fig. 6.6 The CNOT gate.

152 Quantum computers

happen: one is unwanted interference from its surroundings—that is,
decoherence—while the other is deliberate measurement. Recall again
that in quantum theory all time evolution operations are unitary and
reversible, whereas measurement causes a discontinuous irreversible
change in the state vector. Once a quantum register has been trans-
formed by all the unitary operations (gates) desired, it must be
understood that its final state merely gives probabilities of what will
be observed if someone looks at the state of the qubits. When a
measurement is made of any qubit, the result will either be 0 or 1, the
eigenvalues of the Z operator, which we used to determine the original
standard computational basis: a superposition will never be observed.
When a qubit is measured, that qubit’s state will thereupon be either
| 0〉 or | 1〉. However, if only one qubit is measured, the others will still
be in a superposed state and may continue to be processed if desired. To
complete the set of components necessary for a usable quantum register,
therefore, we need a device that can measure a single qubit relative to
the computational basis. In quantum circuits, we denote such a device
as a special gate called a measurement gate.

A measurement gate uniquely does not represent a unitary operation
and is not reversible. Applying Z, which is unitary, to a qubit flips its
second component but does not reduce the state to an eigenvector | 0〉 or
| 1〉. There is, however, an important class of operator that does perform
this task. For any vector | ψ〉 in a Hilbert space H, there exists a linear
operator Pψ that takes any vector | ϕ〉 in H and projects it on to the
ray defined by | ψ〉, thus:

Pψ| ϕ〉 = 〈ψ | ϕ〉 | ψ〉 (6.37)

a

b

Pb a b a b

Pb

Fig. 6.7 Visualization of the projec-
tion operator.

Pψ is called a (one-dimensional) projection operator or projector, and in
a sense it measures how much of | ψ〉 ‘is in’ | ϕ〉 (see Fig. 6.7). In Dirac
notation, it is often denoted thus:

Pψ = | ψ〉 〈ψ | (6.38)

for reasons that are apparent from the above.22Note that the Dumaresq shown in
Fig. 3.10 computes by analogue means
a projection operation of this type.

Projection operators are hermitian, but they are not invertible and so
not unitary. They are, however, idempotent , which means that P 2 = P ,
or applying the operator twice is just the same as applying it once.
They always have two eigenvalues, 0 and 1: the eigenspace for 1 is the
ray defined by | ψ〉, while that for 0 is the set of all vectors perpendicular
to | ψ〉. Projectors are not measurement gates, but they are related: if a
qubit | ψ〉 is measured and the eigenvalue 1 found, the post-measurement
state will be the projection of | ψ〉 on to | 0〉; if −1 is found, the post-
measurement state will be the projection on to | 1〉. Of course, a projector
is deterministic while a measurement is not, and so a measurement of an
observable, A, is effectively a random application of one of the projectors
on to the eigenvectors of A.

6.5 Quantum computers 153

6.5 Quantum computers

Without concerning ourselves at this point about how a physical
quantum computer might be implemented, let us examine a general
model of quantum computation. There are actually several such models
that are ultimately computationally equivalent, but here we focus on the
one that has gained the most widespread prominence and was used to
design the first quantum algorithms. In this quantum circuit model , a
quantum computer is assumed to have at its disposal a number of qubits
arranged in two quantum registers: an input register of, say, n qubits
and an output register of m qubits. The input register can ‘contain’ any
n-bit binary word or any superposition thereof in the sense that it can
be described by a state vector that is an element of C

2n. Likewise, the
output register can contain any m-qubit value that can be described by
an element of C

2m.
Now suppose that we wish to compute some chosen function f (x) of

x, where x and f(x) are n-bit and m-bit binary integers respectively:
this is ultimately a completely general computational task. The idea is
that we initialize the input register to x and the output register to some
selected value y (often | 0〉m) and then design a quantum circuit that can,
through normal unitary time evolution, transform the combined input
and output registers to a form where the value of f (x) can be extracted.

The quantum circuit must be an implementation of some unitary
operator (this is how all quantum systems transform, via the Schrödinger
equation), Uf say, and so it must be invertible. However, not all
functions are invertible (think of constant functions, for example), so we
use a simple technique that allows us to map any function, invertible or
not, on to a unitary operator and so a quantum circuit. This is achieved
by having the operator act on all the m + n input and output qubits
as follows. The input register is left unchanged by Uf , while the output
register is described by the state y ⊕ f(x), where the ⊕ symbol denotes
bitwise exclusive-OR. So we have

Uf | x〉n| y〉m = | x〉n| y ⊕ f(x)〉m (6.39)

There are two points of immediate interest: first, if we initialize y to
| 0〉m, the output register contains f (x) as desired; secondly, it is easy
to check that Uf is its own inverse (this follows from the fact that y ⊕
(y ⊕ f (x)) = f(x)).

Of course, this all glosses over how a circuit can be designed to
implement Uf for a given f but, in fact, this can be done for functions
of interest by using networks of quantum gates, or even by customizing
Hamiltonians as discussed earlier. If the above arrangement is used with
x set to a product state from the standard basis, the quantum computer
will deliver f (x) for the chosen value just as a classical machine would.
In fact, since this is a general model of computation, it follows that a
quantum computer can compute any function that a classical computer
can. The real power of quantum computation, however, is only revealed
when x is set to a superposition of states from the standard basis.

154 Quantum computers

From Eq. 6.33 above, it is clear that in the two-qubit case if each qubit
is set to | 0〉 and then a Hadamard operator is applied, the result is
a balanced superposition of all the standard basis elements. Do note,
however, that this is still a product state: there is no entanglement yet.
This technique extends in the obvious way to the n-qubit case as follows:

H⊗n| 0〉n =
1√
2n

2n−1∑
i=0

| i〉n (6.40)

where H⊗n = (H ⊗H · · · ⊗H), n times. So if we augment this n-qubit
Hadamard operator with the m-qubit identity operator H⊗n ⊗ Im and
apply this to the input and output registers initialized to | 0〉m+n, the
input register is placed into the balanced superposition of Eq. 6.40 while
the output remains at | 0〉m. If Uf is now applied, then the final state of
the registers is as follows:

Uf (H⊗n ⊗ Im)| 0〉n| 0〉m =
1√
2n

2n−1∑
i=0

| i〉n| f(i)〉m (6.41)

This looks as if the output register is in a quantum superposition of all
the function evaluations for all possible n-bit values of i and that the
feat of simultaneously computing 2n values of f has been achieved in
the time for Uf to operate once (Fig. 6.8). This is ultimately the source
of what is called quantum parallelism. However, there is a problem!

Although, in principle, the 2n values of f have been computed
simultaneously, there is no way of retrieving all the results. If we subject
the m qubits of the output register to a measurement (pass the final state
of the output register through an array of m measurement gates), exactly
one result, f (i), will be returned with the single value of i involved being
entirely random. Furthermore, once such a measurement is made, the
system is left in a state | i〉n|.f(i)〉m, which is no longer a superposition
of the other results and gives us only one value of f. An obvious trick
might be to try to make many copies of the output state before passing
them through measurement gates, but it turns out that such a thing is
impossible because of a result called the no-cloning theorem. This is not
hard to prove (see, e.g., Mermin, 2007) and, in the quantum computing
context, it states that there is no way of copying the state of one set of
n qubits to another similar set in some other initial state. Fortunately,
however, by manipulating the input and output registers in various clever
ways both before and after application of Uf , it is possible to extract
useful information about the function f much more rapidly than could

Fig. 6.8 Generalized function compu-
tation.

H
n

Uf

0 n

m
i

nn ifi)(
2
1 12

0=
Σ

−

n n

mm

⊗

0 m

6.6 Quantum algorithms 155

be done on a classical computer. We shall see an example of this in the
next section.

6.6 Quantum algorithms

A number of clever quantum algorithms have been found, of which
the most famous is the one discovered by Peter Shor in 1994 which
is capable—given a quantum computer, of course—of factoring an
integer exponentially faster than any known classical equivalent. Shor’s
algorithm is relatively involved and a discussion of the details too lengthy
to include here. Instead, we will look at a more concisely describable, and
almost equally famous, algorithm discovered shortly afterwards by Lov
Grover (Grover, 1996), who proved that a quantum computer could also
be used to speed up certain search operations beyond anything possible
by classical means.

Consider a function f (x), where x ∈ {0,1,..,N } such that f (x) = 0
except at some unknown value of x—say, x = a—where f (a) = 1. Here,
we assume there is only one value for which f is non-zero, although that
constraint can be relaxed in more generalized versions of the algorithm.
However, nothing else is assumed to be known about the function except
that there is a computational means available, which we will call an
oracle, that will compute it for any selected input value of x. The problem
is quite simply to find the value of a.

If we can assume nothing except the above about the function, then
the only classical approach is to search through the possible values of x,
applying the oracle once for each one, until a is found. On average, a
will be discovered after N/2 invocations by a classical search, but Grover
showed that a quantum search can be done much more efficiently, with
only an average of

√
N calls. For a large search, this is a very useful

gain (although not as overwhelming as that in Shor’s algorithm). For
example, if N = 1 000 000, a classical search will require on average
500 000 evaluations of f, while a quantum search only needs 1000.

The details of the algorithm are reasonably easy to describe. We will
assume that N = 2n−1 for some n, in which case the quantum computer
required will have an input register of n qubits; an output register of
just one qubit is also needed. The input register is initialized to | 0〉n.
We assume that f is available in the form of a unitary operator O (the
oracle) that acts on the quantum registers as described in Eq. 6.39:

O| x〉n| y〉m = | x〉n| y ⊕ f(x)〉m (6.42)

Now, if instead of setting the output qubit to zero it is initialized to
H| 1〉 = (| 0〉 − | 1〉)√2 then, when we apply O, we get

O| x〉nH| 1〉 = O| x〉n
(| 0〉 − | 1〉√

2

)
= (−1)f(x)| x〉nH| 1〉m (6.43)

This means that every time O is applied it leaves the output register
unchanged; if the input register is in the basis state | a〉n, its phase is
changed; in any other basis state it is unaltered.

156 Quantum computers

The first step is carried out just once and involves applying an n-qubit
Hadamard operator to the input register as described in Eq. 6.40. After
this, the algorithm enters an iterative stage, each iteration consisting of
four steps as follows:

1. O is applied.
2. H⊗n is applied to the input register.
3. A special phase shift operator, P, is applied, that changes by

π the phase of all standard n-qubit basis states (equivalent to
multiplying them by −1) except | 0〉n, which it leaves unchanged.

4. H⊗n is applied to the input register again.

This sequence is repeated an integral number of times, R, where R ≤
π
4

√
N , and then the input register is measured. The algorithm does not

guarantee that the measurement will yield a, but it will do so with a
high probability (this can be checked with a final invocation of O). If
it does not, the entire sequence must be run again. This probabilistic
nature is a general feature of quantum computation and repeated runs
of most algorithms may be needed to obtain a solution.

We now make a few observations that will explain why Grover’s
algorithm actually works. First, note that the operator P can be
expanded as follows:

P = −In + 2| 0〉n〈0|n (6.44)

The application of the four operators in the order given is sometimes
called the Grover operator, G, so

G = H⊗nPH⊗nO (6.45)

Remembering that H is its own inverse, it is now easy, via some trivial
operator algebra, to prove that

H⊗nPH⊗n = 2| Φ〉n〈Φ|n − In (6.46)

where

| Φ0〉n = H
⊗n| 0〉n (6.47)

which we note is the state the input register starts out in after
initialization phase. Now we know that this state is an equally weighted
linear combination of all the | x〉n, one of which is | a〉n. We can thus
write | Φ0〉n as

| Φ0〉n =
1√
2n

2n−1∑
i=0

| i〉n =
1√
2n

2n−1∑
i=0

(1− f (i))| i〉n +
1√
2n
| a〉 (6.48)

=
1√
2n
| φ〉+

1√
2n
| a〉 (6.49)

where | φ〉 =
∑2n−1

i=0 (1− f (i))| i〉n contains all the terms that are not
a and is therefore orthogonal to | a〉 (remember that the | i〉n form an

6.7 Building a quantum computer 157

orthonormal basis of the product space): note, however, that although
| a〉 is normalized, | ϕ〉 is not. By the Born Rule, the probability of
obtaining the desired value, a, if we measure the input register at this
stage, is just the square of the amplitude of | a〉.

What the Grover operator does now is to transform | Φ0〉n to a new
vector | Φ1〉n = G| Φ0〉n, then | Φ2〉n = G2| Φ0〉n, and so on. The crucial
point is that, at each stage, the amplitude of | a〉 is boosted (in the sense
that its magnitude gets larger) from its initial very low value (1/

√
2n),

at the expense of the amplitudes of everything else. It can be shown that
after R iterations, the magnitude of the amplitude of | a〉 has become
close to 1 and all the other amplitudes are correspondingly close to 0.
At this point, a measurement of the input register will yield | a〉 with
a very high probability. Note that if iterations are continued beyond R,
the amplitude of | a〉 will begin to decrease again, so it is important to
terminate the process at the right time.

The method can easily be extended to search a list where there is
more than one solution to f(x) = 1. If there are M solutions in a
space of N elements, the process is terminated after R steps, where
R ≤ (π/4)/

√
N/M . The algorithm is computationally optimal in the

sense that any algorithm that searches using the oracle operator O for a
function, as specified above, will need to apply O at least as often as here
(Zalka, 1999). Grover’s approach provides just a quadratic speed-up over
classical counterparts and while this is invaluable if N is large, other
quantum algorithms, such as Shor’s, provide a much more significant
advantage. Space precludes us from considering any further examples,
but the interested reader is referred to Mermin (2007) for a more detailed
exploration. Here, we will close this brief examination of this fascinating
area by looking at the practical obstacles facing implementation of
a real quantum computer, and the philosophical implications for our
understanding of the nature of the world.

6.7 Building a quantum computer

Grover’s algorithm suggests that the key to a successful quantum
algorithm is to ensure that the result of the computation is encoded
in a suitable weighting of the amplitudes of the basis elements in the
final resultant state of the quantum registers. It also shows, incidentally,
that obtaining the result may well involve measuring the input rather
than the output register. However, when that final measurement is
made, a quantum computer will, in general, yield a correct answer
only with a certain probability, and to retrieve it may well require
multiple runs.

As might be suspected from this, successful quantum algorithms are
hard to design. To be useful, obviously, a quantum algorithm must offer
some significant advantage over an equivalent on a classical machine
and to engineer this is not a trivial exercise. Notable examples such
as Grover’s and Shor’s algorithms are still relatively few, and in fact

158 Quantum computers

Shor himself has expressed disappointment at the limited success so far,
examining possible reasons (Shor, 2004).

In terms of computational complexity, factoring is in complexity class
NP, but it is not NP-complete and, despite much effort, nobody has been
able to demonstrate that quantum computers can solve problems in the
latter category in polynomial time. We have already seen that a quantum
computer cannot search a space of size N in less than O(

√
N) time. As for

hypercomputation, attempts have been made to use quantum computing
to solve Hilbert’s Tenth Problem (Kieu, 2003): the famous challenge to
construct a general method for deciding whether a given Diophantine
equation has an integer solution. It is known that this problem can
be solved if and only if the halting problem can be solved, so success
would herald the potential creation of a hypercomputer. However, Kieu’s
solution, which harnesses the quantum adiabatic theorem, has been
convincingly challenged by various authors (see, e.g., Smith, 2006a).

But design of algorithms is not the major problem: that, rather, is
the question of how to build the hardware. Quantum digital computers
depend on the controllable entanglement of many qubits and, as we have
seen, this can only be achieved if the entire system can be prevented
from experiencing decoherence for long enough to allow a computation
to complete. Yet interaction with the environment is inevitable for any
quantum system and even if every effort is made to minimize the effect,
it will introduce noise and thus error into the process. Bounding this
error is one of the key issues that must be confronted if quantum
computing is to become a practical proposition. Several technologies are
being extensively researched as potential candidates for such practical
implementation and it is not yet clear which will prove the most
successful. DiVincenzo (2000) has listed the requirements that any such
technology must meet in a commendably succinct list: a scalable physical
system with well-characterized qubits; the ability to initialize qubits;
long decoherence times; a universal set of implementable quantum gates;
and a qubit-specific measuring capability.

Many technologies have been investigated with a view to attaining
these goals. Some, such as liquid nuclear magnetic resonance (NMR),
are easier to use at present for very limited experiments with only a
few qubits, but are believed to have poor scope for scaling to practically
useful sizes (realistically, at least thousands of qubits will be needed);
others may scale much more successfully but are harder to get working
in the first place. It has to be admitted that at present, although there
are many promising avenues, it is unclear either when or along what
technological path the first seriously usable quantum computers will
emerge. Here there is only scope, briefly, to list, with no pretence at full
inclusivity, some of the approaches that have been tried or proposed:

1. Liquid NMR, mentioned above, uses the spin contributed by
the nuclei of carefully chosen isotopes embedded in customized
molecules to implement qubits. The system is operated in liq-
uid state at room temperature and the qubits are manipulated

6.7 Building a quantum computer 159

(addressed and operated on) using external magnetic fields. How-
ever, measuring a single qubit is not possible and so ensembles
of qubits have to be assembled together and averages taken. This
would not be problematic if all the copies of a qubit could be
described by the same pure quantum state but, in fact, this level
of control is not available and the copies are therefore a mixture
of different states requiring adaptation of quantum algorithms
to produce results. Liquid NMR has successfully been used to
create systems of about 10 qubits, but the addressing technique
used makes scaling beyond this very difficult. Even worse, thermal
noise is too great to allow the qubits to be controllably entangled
and it seems therefore that, although small machines have proved
relatively easy to construct, thanks to the maturity of NMR
technology, they do not satisfy the full requirements for universal
quantum computing and their true nature is really semi-classical
(Menicucci and Caves, 2002).

2. Ion traps use the ground and first excited states of electrically
confined ions, instead of spins, to implement qubits. Here, lasers
can be used to effect changes of qubit state as well as implementing
a set of quantum gates. Genuine single-qubit implementations are
possible and coherence times are good, but gates are relatively slow
and, as more ions are added to a trap, they become more difficult
to address individually: a possible solution might be multiple traps
coupled by photons, but this remains under investigation.

3. Solid-state NMR may avoid some of the limitations of the
liquid-state approach, but is harder to pursue. Here, the nuclei
implementing qubits are impurity ions embedded in a matrix of
silicon 28 (which has no nuclear spin of its own). The whole system
is operated at low temperature (∼ 1–2 K), where coherence times
are good. There is also, in principle, more scope for individual
addressing of many qubits using small electrodes. However, place-
ment of the impurity atoms requires atomic precision and readout
of the individual spins is still a difficult problem.

4. Superconducting systems of various types have been proposed,
one with a qubit design based on the magnetic flux passing
through a superconducting ring containing a Josephson junction.
In this design, the ring is arranged to have a double-well potential,
with the two minima corresponding to the two states of the
flux qubit . Magnetic fields are again used to implement gates,
while measurement relies on the use of SQUIDs (superconducting
quantum interference devices). Flux qubits are only one proposal
for the use of superconductive technology to implement quantum
computers, but all rely on low-temperature implementation. In
each case, however, there are great difficulties to be overcome
before any prospect of reasonable scaling might be envisaged.

5. Qubits can also be based on quantum dots, structures that can
be grown on certain semiconductor materials and which confine
electrons in traps that then quantize their allowed energy levels.

160 Quantum computers

Either energy levels, via so-called excitonic states, or electron spin
can be used to implement qubits within dots and control can
be arranged via lasers or magnetic fields. Electron spins have
longer decoherence times than excitons, although not as long as
those of nuclei. However, electron spins do respond more strongly
to magnetic fields than in the nuclear case and, consequently,
gates implemented this way will be faster. Nonetheless, there are
significant difficulties with measurement of individual dots that
remain to be solved before any such scheme might be practical.

6. A proposal that is strikingly different from all of the above is linear
optics quantum computing (LOQC), which uses photons as qubits,
relying on polarization along two orthogonal axes (say, horizontal
and vertical) to implement the two standard basis states. The
difference here is that photons move and so quantum gates and
wires are more like those of a familiar classical machine, although
composed of optical rather than electronic elements. There are
some advantages: photons are easy to create and initialize and have
great resistance to decoherence. Inevitably there are difficulties
too: first, this very resistance to decoherence makes it very difficult
to entangle multiple photons; secondly, photons are destroyed
as soon as they are measured, and while apparently ideal for
processing (given suitable optical gates), are not well suited for
storage. While these difficulties are not necessarily insurmountable,
they make the construction of a quantum computer on these
principles especially challenging.

Whatever the technology that ultimately succeeds, and regardless of
how long the average decoherence time that it may allow, a quantum
computer will face a familiar general problem, in that random errors
can affect any calculation at any time. Just as in a classical machine,
these errors may occur during storage or gate operation and, if not
fixed, will become cumulative. In the classical case, things are relatively
simple, in that an error always amounts to one or more bits being
accidentally flipped and this can be protected against by the expedient
of adding redundancy bits to enable error detection and correction for
all syndromes with probabilities of occurrences above some acceptable
threshold. For example, instead of storing or transmitting one copy of a
bit, we can store or transmit three. The only allowable representations
are then 000 and 111, so any single-bit error can be not only detected
but corrected (with maximum likelihood, by choosing the legal word
with the closest Hamming distance).

Of course, replicating bits twice is a very crude and inefficient error-
correcting code compared to those used in practice but, in effect, they
all work on the same principle and it serves to illustrate a key point;
namely, that this approach does not work for qubits! A qubit will in
general, at any time, be described by a state that is a superposition of
| 0〉 and | 1〉, as in Eq. 6.10. However, it is much more vulnerable than
a classical bit because, while the latter can only be flipped, a qubit can
suffer a number of different types of error: for example, in addition to a

6.7 Building a quantum computer 161

bit flip, which would take

a| 0〉+ b| 1〉 to a| 1〉+ b| 0〉 (6.50)

there might be a phase error such as

a| 0〉+ b| 1〉 to a| 0〉 − b| 1〉 (6.51)

Other possibilities include continuous, as opposed to discrete phase,
errors and even accidental measurements that effectively collapse the
superposition to one of the basis states.

Note immediately that the classical trick of making multiple redun-
dant copies is not available in the case of qubits because of the no-cloning
theorem. At first sight, the constraints appear to militate against any
scheme of effective quantum error correction but, surprisingly, all the
above errors can be successfully protected against, admittedly at some
cost in additional qubits. The general approach is to entangle the qubit
to be protected with some additional redundant qubits, using CNOT
gates and then take measurements to see whether or not an error has
occurred to any of them, applying a correction to any one affected. To
see how this works, we will examine here a simplified version of the idea,
which corrects only bit flips using a total of five qubits, two to carry
copies of the original and two to allow measurements to be taken.

To protect a qubit in the state | ψ〉 = a| 0〉+ b| 1〉 from bit flip errors,
two additional qubits are initialized to | 0〉 and then passed through
the y inputs of two CNOT gates controlled by the original qubit. The
three-qubit system is now in the state

| ψ1〉 = a| 000〉+ b| 111〉
Note immediately that this is an entangled state and not a cloned version
of | ψ〉 (which would be a product state). If a bit flip occurs on any one
of the three qubits (which we will label 3, 2, and 1 from left to right),
the corrupted state will be of a form such as

| ψe〉 = a| 010〉+ b| 101〉
Note that to flip the ith qubit is equivalent to operating on it with an X
(NOT) gate while leaving the other qubits alone: in the above example,
the operator required is just I ⊗X ⊗ I, which we can denote simply as
X 2 (X applied to the second bit).

Now introduce two further ancillary qubits, | a1〉 and | a2〉, both
initialized into the | 0〉 state (Fig. 6.9). Pass | a1〉 through two CNOT
gates controlled, respectively, by qubits 1 and 2 and pass | a1〉 through
another two CNOT gates controlled by qubits 2 and 3. Then measure
| a1〉 and | a2〉 to determine their states. If they are both | 0〉, there has
been no bit flip. If | a1〉 is | 1〉 and | a2〉 is | 0〉, then qubit 1 has been
flipped, and so on. Once it has been determined that there has been
a bit flip and to which qubit it applies, that qubit can be selectively
corrected with an X (NOT) gate. Of course, the ancillary qubits must
now be reset if they are to be used again.

162 Quantum computers

Fig. 6.9 Basic error correction.

a1a2

a1a2

a1a2

a1

a 000

a2M

M

X

X

X

0

0

b 111 a 000
b 111

+
+

This illustrates the principle of quantum error correction, but is, in
reality, a clumsy and restrictive scheme, which is not able to rectify errors
other than bit-flips. It turns out that just as a bit-flip can be represented
as an X operator, the most general type of error is a linear combination
of I, X, Y, and Z operators, and the above ideas for tackling X can
be adapted to correct the other syndromes as well. The first code that
was capable of achieving this was discovered by Peter Shor (1995), but
required nine physical qubits per logical one and has been significantly
improved upon since. It is now known that the most efficient code
capable of correcting all single-qubit errors needs five qubits; however,
although this is the theoretical minimum, it is cumbersome to implement
and a more practical scheme is the seven-qubit code discovered by
Andrew Steane (1996).

The existence of these codes is in a sense quite surprising and
makes the prospect of workable quantum computers much more likely
if the technological hurdles to qubit and gate implementation can be
successfully negotiated. It is worth pointing out that the quantum
circuit model is not the only approach to quantum computing under
investigation. In over two decades since Deutsch’s key paper, other
models such as the quantum adiabatic computer have also been shown
to be computationally equivalent to the circuit model (Aharonov
et al., 2007, Mizel, 2007) to within polynomial overhead. The adiabatic
approach (Farhi et al., 2000), based on controlled adiabatic Hamiltonian
evolution, has been the subject of some effort. It is the basis not
only for Kieu’s hypercomputation claim, but also for the technology
behind the controversial announcements of quantum computer imple-
mentations by the Canadian company D-wave. More speculative still is
topological quantum computing (Freedman et al., 2003), which is based
on the use of ‘anyons’(Wilczek, 1982), two-dimensional quasi-particles
channelled through gates which are formed from braids of world-lines
in a three-dimensional space–time. Quasi-particles are pseudo-physical
mathematical constructs, of which the commonest examples are the
‘holes’ of semiconductor physics and the ‘phonons’ of solid-state physics;
braids are a topological generalization of the familiar twisted-string
forms of the same name. Theoretically, a topological quantum computer
would be much more resistant to decoherence than one based on
quantum circuits. However, at present this line of investigation remains

6.7 Building a quantum computer 163

at an even more hypothetical level of development than the rest of a
discipline that is still some way from bearing practical fruit.

Finally, we may ask whether quantum computing sheds any light
on how the quantum theory should be interpreted. Recall that the
theory is a mechanism for predicting probabilities of the results of
future observations, and that it has no ontology of its own beyond that
of the observer and the information. It can be viewed as an entirely
instrumentalist tool and is consistent with an anti-realist metaphysics—
although, of course, any anti-realist position needs to address the
question as to the nature of the ‘something that says no’ (d’Espagnat,
2006), to many elegant human theoretical constructions. For a realist,
however, quantum mechanics does clearly place constraints on any
prospective model of observer-independent reality, since such a model
must make the same observational predictions; however, the theory itself
is of little help beyond this point. It does, of course, predict inter-
subjective agreement between different observers (weak objectivity), but
this in no way implies that a strongly objective description of nature is
attainable.

Bohr was willing to stop there. In his opinion, if the concept
of objective reality (that which exists entirely independently of all
observing minds) makes sense at all, its ontological nature could
only ever be accessible via its epistemological interface and so it is
scientifically meaningless to ask questions that can never be answered
about what, so to speak, lies beneath. Whether Bohr’s personal belief
was truly anti-realist, or more a Kantian view,3 is hard to tell, for 3Immanuel Kant accepted that objec-

tive reality, the noumenal world as
he called it, does exist, but that we
can never determine its nature from
phenomenal experience. He was in this
sense a far realist.

the consequences of these metaphysically divergent positions are not
really distinguishable at the level of scientific investigation. In any
case, his highly influential view of quantum mechanics—succinctly,
if not entirely accurately, encapsulated by David Mermin’s famous
phrase, ‘Shut up and calculate’—is commonly referred to, in honour
of Bohr, as the Copenhagen interpretation. It emphasizes the theory
as a means of human investigation and eschews the prospect of using
science to uncover any objective reality that may (or may not) underlie
our experiences. However, as ‘interpretations’ of quantum theory are
normally characterized by their models of an axiomatically presumed
objective reality and Copenhagen explicitly denies that such models have
any scientific validity, some who take the Bohrian view claim that the
title is a confusion. Rudolph Pieiris puts it thus (Davies and Brown,
1993):

I object to the term Copenhagen interpretation . . . because this sounds as if
there were several interpretations of quantum mechanics. There is only one
. . . when you refer to the Copenhagen interpretation what you really mean is
quantum mechanics.

There is an element of definitional ambiguity here for sure (it all
depends on what we mean by an interpretation), but the complaint is
perhaps not unlike that of an atheist or agnostic accused of being, him
or herself, an adherent of just another religion.

164 Quantum computers

For many scientists and philosophers, however, the weakly objective
nature of quantum theory is deeply troubling, especially given its
foundational position in the entire scientific realm, to say nothing of
its overwhelming empirical success. Indeed, it is hard to overestimate
the significance of its, so far unrefuted, Completeness Hypothesis, on
the ambitions of modern science fully to understand the world: it is, in
effect, the philosophical equivalent of a ‘no-go theorem’. In d’Espagnat’s
view (d’Espagnat, 2006), a change from the classical worldview to one
based on a weakly objective quantum mechanics is a process that is
comparable to the Copernican revolution and, like the latter, will take
decades, perhaps even centuries, fully to establish its influence across
the scientific domain— especially in areas where the objects of study
are macroscopic and, on the surface, classical in aspect.

When all is said and done, a key motivation for those who choose to
study science, at least as it has been seen since The Enlightenment, is
not merely manipulation of the human environment, but insight into the
true nature of the world. To be forced to accept that this goal is either
meaningless or inaccessible to scientific method would be a bitter pill to
swallow, and the response to this philosophical threat has been exactly
what typically occurs in the absence of information: speculation and the
adoption of positions of faith. We have already mentioned the work of
David Bohm, who built upon ideas originally proposed by de Broglie
concerning pilot waves, but his model seems contrived and unattractive
to many, even among those who find Copenhagen unsatisfactory.

In 1957, Hugh Everett III proposed a striking interpretation that
attempted to reconcile the awkward fact (for proponents of strong
objectivity) that measurement appears in the quantum theory as a
quite distinct process from the deterministic unitary evolution of an
unmeasured system. This dichotomy is entirely unsurprising if the
epistemological nature of the theory is accepted at face value, since
measurement is then associated with a discontinuous change in the
knowledge of the observer, but, to many, the idea that the best science
can do is to describe the experiences of observers is unappealing, to put
it mildly. To rescue the notion of a knowable, mind-independent world
requires something in the way of additional metaphysical assumptions.
Bohm tackled this by introducing a new hidden ontological element,
the quantum potential ; Everett instead proposed accepting the quantum
formalism at face value and then taking the further step of reifying it—in
other words, claiming that it is a direct description of objective reality.
As the short discussion below will demonstrate, this is not a scheme
without many philosophical and pragmatic difficulties, but it does have
some immediate benefits. One of these is that it naturally gives meaning
to the concept of a quantum state for the entire universe, an idea that
makes no sense in a weakly objective context, since there are no observers
outside the universe, and yet that is a necessary assumption of much
current cosmological speculation.

Unfortunately, the device of reifying the quantum state, called the rel-
ative states approach by Everett, brings with it considerable ambiguity,

6.7 Building a quantum computer 165

and he himself did not succeed in resolving this. When a measurement
of a superposition of eigenvectors takes place, rather than one outcome
occurring at random, the relative states interpretation holds that all
outcomes occur and the state vector does not undergo any discontinuous
irreversible change such as that suggested in Rule 2 (as imposed by a
measurement gate, for example). But this is puzzling since, as observers,
one outcome is exactly what we experience. What, ontologically (and
remember that relative states is an ontological interpretation), has
happened to the other possibilities?

Since Everett’s published work left this question open, a number
of suggestions have been put forward, of which the best known is
that popularized later by Bryce DeWitt and called the Many Worlds
Interpretation (MWI). Here, all outcomes occur, but each happens in a
different universe. The world thus splits or branches at each such point—
and so objective reality, in fact, consists not of a single universe, but of a
multiverse that is constantly growing at every instant as new quantum
splits occur. Of course, this solution raises many questions. What exactly
causes the universe to split? Since the aim is to reduce measurement to
the status of a quantum interaction, by definition there can be nothing
special about the former and, frankly, given the nature of entanglement,
it is hard to identify a clear definition of the latter. Also, as a quantum
state can be written as a superposition of vectors from different bases
generated by incompatible operators, which basis governs the split?

MWI enthusiasts have struggled with these issues for many years (and
have claimed some success), but the difficulty of achieving answers that
are convincing in the context of the original aims of the interpretation
(observer-independence key among them), has led others to suggest that
relative states should be interpreted as implying that just one universe
exists, but that it evolves directly in accordance with the Schrödinger
equation and so is always in a macroscopic superposition of eigenstates of
every observable. The problem here is then to explain why an observer,
whose brain must be similarly in a superposition, experiences a single
outcome when a measurement is made. Following d’Espagnat (1976),
we merely note here that, given these assumptions, the two obvious
ways out of the conundrum are: to accept that consciousness is, in some
sense, special, so that uniquely it attaches to one branch even though
everything else remains superposed; or that the consciousness itself also
enters a superposition—yet either one element of the superposition is
favoured, as the observer still seems to perceive a single definite outcome,
or we assume that the consciousness really does split even though
nothing else does. These variants are sometimes referred to as Many
Minds interpretations and it has to be said that none of them is without
some conceptual difficulties. Deutsch invokes MWI as, in his view, the
only convincing explanation as to why quantum parallelism is possible.
In his key paper Deutsch (1985), explicitly adopts Many Worlds language
and justifies it thus:
In explaining the operation of quantum computers I have, where necessary,
assumed Everett’s ontology. Of course the explanations could always be

166 Quantum computers

‘translated’ into the conventional interpretation, but not without entirely
losing their explanatory power. . . . The Everett interpretation explains well
how the computer’s behaviour follows from its having delegated subtasks to
copies of itself in other universes. On the days when the computer succeeds in
performing two processor-days of computation, how would the conventional
interpretations explain the presence of the correct answer? Where was it
computed?

Many MWI enthusiasts agree, but not everybody is convinced. David
Mermin, who has philosophical objections to what he describes as
the ‘reification of abstractions’ (Mermin, 2009), observes tellingly that
quantum parallelism is not all it seems. When a unitary operator is
applied to an input register initialized to a Hadamard superposition,
it appears (Eq. 6.41) that the function is evaluated at all domain
points simultaneously, but—and it is a major ‘but’— there is no way
of accessing the information except, underwhelmingly, for one random
element of the set of inputs. In the words of Mermin (2007):

If there were a way to learn the state of such a set of Qbits, then everyone could
join in the rhapsodic chorus. (Typical verses: ‘Where were all those calculations
done? In parallel universes!’, ‘The possibility of quantum computation has
established the existence of the multiverse.’ ‘Quantum computation achieves
its power by dividing the computation among huge numbers of parallel
worlds.’) But there is no way to learn the state. The only way to extract
any information from Qbits is to subject them to a measurement.

Who is right? Deutsch’s Many Worlds is perfectly consistent with
quantum mechanics but, when all is said and done, it has to be
an arbitrary choice. Preference of interpretation is not driven by the
quantum theory itself, nor by empirical results, but rather by the
metaphysical leanings of the chooser. For this reason, arguments about
interpretations, like most philosophical debates, can go on and on. For
anyone who finds the open realism of Copenhagen too hard to swallow,
a rich array of interpretative positions is available to choose from, all
compatible with the predictions of quantum mechanics. Ironically, one
position that is no longer on offer, at least while maintaining logical
consistency, is the one that has shaped the world of the past 300 years
and that dominated unchallenged at the time of Lord Kelvin’s supposed
remark: classical materialism.

Since the time of Copernicus and especially since the Enlightenment,
progressive thought has gradually but inexorably demoted the observer
from the central role occupied in ancient philosophies, to a position
of almost total insignificance when placed against the enormity of
cosmological space and time. Ironically, quantum mechanics threatens
to bring this diminished character back to centre stage once again,
and the struggle for a strongly objective theory is seen as crucial by
those who, perhaps perspicaceously, sense a serious threat to what has
become known as ‘modernist’ thought. That such theories are possible,
in multiplicity, is without doubt; whether they have any basis in reality is
entirely unproven and, if Completeness holds, unprovable. It is perhaps

6.8 Physical limits to real number representations 167

fitting to close with a famous quote attributed to the great quantum
physicist John Wheeler:

At the heart of everything is a question, not an answer. When we peer down
into the deepest recesses of matter or at the farthest edge of the universe, we
see, finally, our own puzzled faces looking back at us.

6.8 Physical limits to real number
representations

In Section 7.5, we discuss some objections to the idea of infinite precision
reals. In this, we had recourse to the argument that the theory of
relativity in conjunction with quantum theory implies a granularity
to space that undermines the notion of the divisible real number
line. However, all other considerations aside, the idea of being able
to represent real numbers physically to any desired degree of accuracy
turns out to be in direct contradiction with quantum mechanics alone.
To understand the significance of this statement, it is important to
recognize that quantum theory and its extension, quantum field theory,
render obsolete and replace classical physics, and that this has been so
comprehensively demonstrated empirically that it is beyond reasonable
doubt. In its fundamental (micro-)nature, the world is not classical,
and classical models can never be more than approximations applicable
in a limited domain. Recent developments in quantum theory suggest
that the classical appearance of the world is, in fact, an artefact of
decoherence, whereby the state vector of a quantum system becomes
entangled with the environment (Joos and Zeh, 1985; Omnes, 1994), and
that consequently quantum mechanics can indeed be seen as a universal
theory governing macroscopic as well as microscopic phenomena. In
what follows, we use only the basic axioms of standard quantum
theory (d’Espagnat, 1976); in particular, those governing the deter-
ministic time-evolution of an undisturbed quantum system according
to Schrödinger’s equation and the discontinuous change of state vector
experienced when a system is measured. From these principles, it is
easy to demonstrate that there are fundamental limits on the accuracy
with which a physical system can approximate real numbers. Suppose
that we wish to build an analogue memory based on setting, and later
retrieving, some property of a material body, A. To be suitable for
analogue representation of real values to arbitrary accuracy, any such
property must be continuously variable and so, according to quantum
theory, can be represented as a Hermitian operator with a continuous
spectrum of real eigenvalues. The most obvious approach to storing a real
number in analogue fashion would be to use a positional coordinate of A,
with some appropriate degree of precision, as the measurable property.
Since only one coordinate is required, in what follows we will assume
that A moves in only one dimension and that the value stored is given
by its x coordinate, an eigenvalue of the x-position operator X.

168 Quantum computers

It is clear that any such system will have limits imposed by quantum
mechanics: the aim here is to establish just how those limits would
constrain any conceivable technology. As a first approximation, assume
that A is a free body and is not therefore placed in a potential field.
A natural scheme might store a real value, say, xV , at time t0, by
placing A at a point, at distance x = xV ± Δx from some origin. Δx
is the acceptable limitation on the precision of the analogue memory,
determined by the physical length of the device and the number of values
it is required to distinguish. If 10R real values (R × log2 10 bits) are
allowed and the maximum value is L (the length of the device), then

Δx =
L

2× 10R
(6.52)

We will denote the interval [xV −Δx, xV + Δx] by IV .
In quantum-mechanical terms, just prior to t0, A is described

by a state vector |ψ0〉 (Dirac’s formalism). Placing A at the cho-
sen point involves ‘collapsing’ |ψ0〉 into a new state confined to a
positional subspace spanned by the eigenkets |x〉, with x ∈ I0 =
[xV −Δx0, xV + Δx0] . Δx0 represents the accuracy of the measuring
device and it is essential that Δx0 < Δx so that I0 ⊂ IV . Define K > 1
by K = Δx/Δx0.

This process of ‘state preparation’ is entirely equivalent to performing
a measurement on A that leaves it somewhere in the required subspace.
Unfortunately, any actual measurement has a non-zero probability of
failing to yield a result in I0. In fact, the probability of success is given by

P (xV −Δx0 < x < xV + Δx0) =
∫ xV +Δx0

xV −Δx0

|〈x|ψ0〉| dx2 (6.53)

It is reasonably easy, however, to circumvent this problem. Since the
store operation, being a measurement, returns a positional value, it is
easy to tell at once if it has failed (if the value lies outside I0) and we can
assume that any number of further attempts can be made until success is
achieved. For the sake of simplicity, suppose the store operation succeeds
on the first attempt at time, t0, whereupon the new state vector of A
is given by

|ψs〉 =
1
N

∫ xV +Δx0

xV −Δx0

|x〉 〈x|ψV 〉 dx (6.54)

where N is a normalization constant. In wave-mechanical terms, this
describes a wave packet confined to the region I0. From the postulates
of quantum mechanics, at a time immediately following t0, a second
measurement on A will also retrieve a value within I0; however, if
left undisturbed, |ψs〉 will evolve deterministically, according to the
Schrödinger equation and a later measurement will have no such
guarantee. The Schrödinger equation can be solved analytically for
certain shapes of wave packet, such as the Gaussian, but a more general
argument is presented below, applicable to a packet of any form. The
conclusions are universal and the argument can be extended easily

6.8 Physical limits to real number representations 169

to a packet in a locally constant potential field (e.g. generated by
neighbouring atoms). The key point is that, as soon as the wave packet is
formed, it begins to spread (dispersion) outside I0. So long as it remains
inside the interval IV , a retrieve operation (measurement) will yield a
result in IV , but once components outside IV develop, the probability
of a read error becomes non-zero and then grows rapidly. Let Δt be
the maximum time interval after t0 during which a measurement is
still safe. The analogue memory must be refreshed by performing a new
measurement before or an erroneous result may be generated. Note that
any real measurement on an interval of length xV will take at least
2xv/c, where c is the speed of light in a vacuum, since a light beam
must travel to and from A to perform the measurement. It follows that
if Δt < 2xv/c, then the memory will not be feasible.

Since momentum and position are conjugate observables, their x-
dimensional operators X and Px obey the commutation relation

[X,Px] = i� (6.55)

where � is Planck’s constant divided by 2π. From this, it follows that the
uncertainties (root mean square deviations over a quantum ensemble of
identical systems) in the initial (time t0) values of x and the px satisfy
the so-called ‘Uncertainty Relation’

Δpx.Δx0 ≥ �

2
(6.56)

Since the mass of A written mA, after the ‘store’ measurement at t0,
A is moving with an expected velocity of Δpx/mA away from the
prepared position. Naively, therefore, we might expect that at time
Δt, A will have travelled a distance of (Δpx.Δt)/mA away from its
prepared position. This, however, is a quasi-classical argument and it
underestimates the problem, as we might suspect from noting that the
Uncertainty Relation is an inequality and �/2 a lower bound. The actual
positional uncertainty, Δx, after the critical time Δt (at which the
spreading wave packet exceeds its safe bounds), can be obtained via
an application of Ehrenfest’s Theorem from which it can be concluded
(Cohen-Tannoudji et al., 1977, p. 342) that

Δx2 =
(

Δpx.Δt

mA

)2

+ (Δx0)2 (6.57)

In order to determine the theoretical limitations of this system, we
can now place an upper bound on Δt. Since

• Δx = KΔx0
• 2× 10RΔx = L, and
• Δpx ≥ �

2Δx0

it follows that the maximum value Δt after which the memory becomes
unsafe is given by

Δt ≤
√

K2 − 1
K2 × L2

4× 102R
× 2mA

�
(6.58)

170 Quantum computers

It is easy to verify that

max

(√
K2 − 1
K2

)
=

1
2

(6.59)

Approximating � � 10−34 gives

Δt ≤ 0.25× 1034−2R × L2mA (6.60)

For viability, Δt ≥ 2xV /c so, since c ≈ 3× 108 (m s−1),

mA >
8× 102R−42

3L
× xV

L
(6.61)

This depends on the value being stored. However, the memory must
work for all values of xV , so we can set xV = L. We now have a final
result:

mA × L > 2.6× 102R−42 (6.62)

or, alternatively,

mA ×Δx > 1.3× 10R−42 (6.63)

The limitation is is applicable to any scheme that relies on the physical
position of an object to store a real number. To increase the range of
a positional analogue representation by 1 bit of precision requires the
mass × length product to increase by approximately a factor of four. It
is very easy to see that a system of this type cannot scale unless allowed
to grow arbitrarily in physical size, with consequent implications not
only for the feasibility of construction but also for the speed at which
stored data might be retrieved.

In contrast to a digital machine, where the resources used to perform
higher-accuracy computation grow linearly with the number of bits
of accuracy, the resources needed by the analogue machine grow
exponentially with the accuracy of the calculation.

The following table gives approximate values for the parameters
required for one-dimensional analogue positional memories at several
values of precision (in bits), where possible, for L = 10 m. The 32-bit
example requires masses of the order of a few atoms of uranium placed
to an accuracy of 2.5 nm, technically not an outrageous scenario:

Precision (R log2 10) Length Approx. mass 2Δx

32 10 m 5× 10−24 kg 2.3× 10−9 m
64 10 m 10−4 kg 5.4× 10−19 m
128 5 km 6× 1031 kg 1.4× 10−35 m

However, above 32-bit precision, the systems become increasingly
implausible, even with exotic technologies. For the 128-bit example,

6.9 Error rates in classical and quantum gates 171

L is chosen to ensure that Δx exceeds the Planck Length, Lp (∼
1.6×10−35 m), which is the minimum precision possible in any physical
measurement of position. However, even accommodating this funda-
mental constraint, mA is of the order of 50 solar masses and must
occupy a space at least equal to its Schwarzschild radius, SA. As this is
given by

SA = mA × 1.48× 10−27 (6.64)

A would be at least several kilometres across, even if it was a black
hole. When dealing with objects with sufficient gravitational fields, the
Uncertainty Principle has to be modified to take account of gravitational
forces and, while the detail is still not fully settled, in most current
theories of quantum gravity it is believed (Scardigli, 1999) to take a
form such as

Δx ≥ �

2Δp
× kL2

p

Δp

�
(6.65)

where k is a constant. This inequality (the so-called Generalized
Uncertainty Principle) is interesting because it predicts that when
dealing with massive objects, the Δx associated with a given Δp may
be significantly higher than in the non-gravitational case. The GUP
also confirms that the uncertainty in position can never be less than
Lp regardless of how imprecise the momentum knowledge is: this is in
agreement with the claim that Lp is the smallest measurable quantum
of length. We conclude as follows:

1. Any physically buildable analogue memory can only approximate
the reals and there are very definite limits as to the accuracy
achievable.

2. Analogue storage of reals will, for high precision work, always be
outperformed in terms of device economy by digital storage.

3. Physically buildable analogue computers cannot rely upon the
availability of exact stored real numbers to outperform digital
computers.

6.9 Error rates in classical and
quantum gates

We will discuss quantum computing in greater depth in Chapter 6, but
this is an appropriate place to look at the power-consumption limits of
quantum computing.

Both classical and quantum computer gates are subject to stochastic
errors. In the classical case, these are thermodynamic in character; in
the quantum gates, they are due to vacuum or zero-point noise.

Banacloche (see Gea-Banacloche, 2002; Gea-Banacloche and Kish,
2003) shows that for a quantum logic gate, the error rate εq is given by

εq >
fh

E
(6.66)

172 Quantum computers

Fig. 6.10 The comparative power
used in CMOS and quantum gates as
a function of the error rate.

Error rate

Quantum gate
CMOS gate

CMOS gate 3 GHz
CMOS gate 20 GHz
Quantum gate 3 GHz
Quantum gate 20 GHz

10−31

10−25

10−22

10−19

10−16

10−13

10−10

10−7

10−4

10−1

102

105

10−26 10−21 10−16 10−11 10−6 10−1
P

ow
er

 u
se

d
in

 w
at

ts
 o

f a
 s

in
gl

e
ga

te

where f is the frequency of operation, h is Planck’s constant, and E is
the energy used to operate the gate.

For a classical gate, the error rate is given by

εc >
2√
3
e

−E
kT (6.67)

where T is the gate temperature and E is the minimum energy dissipated
in the classical circuit in the course of the operation. The exponential
increase in the error rate with rising temperature is why cooling is so
important.

If we consider clock frequencies in the GHz range, we can look at the
minimal power dissipated by CMOS and quantum gates as a function
of their error rates. These are shown in Fig. 6.10, which is derived from
Kish (2004). At any error rate below 10−6 the CMOS system has a lower
energy requirement. Current CMOS technology can achieve error rates
of the order of 10−25. To achieve this error rate, the quantum gate would
require around 100 joules for each switching operation. A single quantum
gate operating in the GHz range would be using of the order of 100 MW
of power (Kish, 2004).

Whilst quantum computing does hold promise as a means of reducing
the complexity of algorithms, it seems unlikely that it will allow us to
escape from the power-consumption limits posed by classical computing.

Beyond the logical limits
of computing? 7

7.1 Introduction 173
7.2 Oracles, complexity, and

tractability 174
7.3 Beyond the Turing

Machine? 176
7.4 Numberology 177
7.5 What is real about the

reals? 180
7.6 Real measurement 181
7.7 Back to Turing 184
7.8 Reservations about

Cantor 185

7.1 Introduction

In Chapter 4, we quickly surveyed how the formal foundations of math-
ematics undermine themselves through the complementary mechanisms
of self-reference and substitution. Now, self-reference, and the paradoxes
it engenders, have the feel of a dodgy sleight of hand. We humans
are able to formulate and identify paradoxes, so perhaps TMs—and
maybe even meta-mathematics itself—are just not powerful enough to
capture our meta-reasoning abilities. Indeed, Nagel and Newman (1959)
argued precisely that Gödel’s paradoxes show the superiority of human
reasoning over formalism and mechanism.

TMs have a number of obvious restrictions. First, they only have one
tape. Perhaps allowing TMs to manipulate multiple tapes would expand
their computational powers. After all, human brains are made up of
multidimensional networks of cells.

However, for any multi-tape TM it is straightforward to build an
equivalent single-tape machine that simulates it. One approach is to
interleave alternate cells of the tapes, as shown, for example, in Fig. 7.1.

Conceptually, a multi-tape TM is no different to a RAM, where each
byte consists of eight bits that are manipulated in parallel.

Perhaps a multi-tape TM is actually a poor simulacrum for a
human brain where several brain cells may be accessed at the same
time. A better analogue might be a TM with multiple tape heads all
manipulating the same tape.

Once again, for any multi-head TM, it is straightforward to construct
an equivalent single-head machine that simulates it. Given that a multi-
head TM must necessarily access different tape cells at each stage in a
computation, then the equivalent single-head TM may be arranged to
perform the operations for each head in turn. One way is to use cells
on the single tape to record the positions of the multiple head, just as
the UTM used tape cells to record information about the TM being
simulated.

Conceptually, a multi-head TM is the same as a multi-core CPU,
where each core shares the same memory, but only one core can access
a single memory location at a time.

174 Beyond the logical limits of computing?

Fig. 7.1 Multi-tape and single tape.

T1C1 T2C1 T3C1 T1C2 T2C2 T3C2

T1C1 T1C2

T2C1 T2C2

T3C1 T3C2

Tape 1

Tape 2

Tape 3

Finally, human brains are non-deterministic in that cells fire simul-
taneously and in what appear to be unpredictable orders. In contrast,
a TM is deterministic in executing instructions in a highly predictable
manner depending on the current state and tape symbol. Thus, we might
make TMs non-deterministic by relaxing the requirement that there is
at most one instruction for each possible state/symbol combination and
allowing multiple instructions for the same state and symbol. Then, at
each stage in a computation, an arbitrary matching instruction may be
chosen.

And once again, it turns out that every non-deterministic TM
has a deterministic equivalent. Note that a successful run of a non-
deterministic TM—that is, one that halts having found a solution
to a problem—involves the execution of a finite sequence of specific
instructions. As a TM is controlled by a program with a finite number
of instructions, it is possible to enumerate all the different finite paths
through them, in order of path length, starting with single instruction
paths. Each path is then executed in turn. If path execution fails, as
it contains an illegal state/symbol requirement, or ends without having
solved the problem, then the next path is tried. Thus, if the original
non-deterministic TM halts having solved the problem, then so must
one of the explored deterministic TM paths.

Non-deterministic TMs have an equivalent in parallel computers; for
example, multi-core CPUs or multi-processor clusters, where alternative
instruction sequences may be applied to the same problem at the
same time.

7.2 Oracles, complexity, and
tractability

While Turing explicitly thought that the notion of effective procedure
was fully captured by TMs, he also briefly explored what it would mean
to be more powerful than a TM. Thus, in Turing (1939), he discusses
the possibility of augmenting a TM with an oracle that is somehow able
to solve arbitrary number-theoretic problems, noting that:
We shall not go any further into the nature of this oracle apart from noting
that it cannot be a machine.

(Davis, 1965, pp. 166–7).

7.2 Oracles, complexity, and tractability 175

Unsurprisingly, Turing then deftly shows, by self-application contradic-
tion, that the termination of TMs with oracles is itself undecideable.

While oracles have no physical reality, they remain important in
distinguishing between different complexity classes; that is, broad groups
of problems which are solvable but that take significantly different
amounts of time to find solutions. While it is often possible to make
very detailed analytic models of the behaviours of algorithms, their time
complexities are usually characterized as a bound rather than in precise
form, using ‘big O’ notation (Knuth, 1976). The idea here is to capture
how the time taken for an algorithm to process some data changes with
the size of the data.

For example, an ‘algorithm’ to turn a bank of lights on or off from a
central switch takes the same amount of time regardless of the number
of lights. This is characterized as O(1), where the 1 indicates that
the time is constant. In contrast, walking down a corridor turning
on each of an equally separated sequence of N lights in turn takes a
constant amount of additional time with each additional light. This is
characterized as O(N), where the N shows that the time is linear in the
data size.

For example, comparing two unordered lists of names, of lengths M
and N respectively, to see which entries are common to both takes time
proportional to the product of the list lengths: O(MN). For example,
finding all the pairs of names from a list of length N takes time
proportional to N ∗ N : O(N2). These are both examples of the more
general class of polynomial time algorithms.

In contrast, the time to construct a truth table for a propositional
formula doubles with each new variable. One variable has two possible
truth values; two variables have four possible combinations of truth
values; three variables have eight possible truth values; and so on. In
general, N variables have 2N possible truth values, so the complexity is
designated as O(2N). Such complexity is termed exponential.

Figure 7.2 shows how O(N2) and O(2N) complexities grow with N .
Note that O(2N) rapidly outgrows O(N2) for even small values of N .
In general, a time proportional to some sum of powers of the amount
of data is termed polynomial (P) and a P problem is said to be
tractable. And, in general, any complexity greater than polynomial is
termed non-polynomial and an non-polynomial problem is said to be
intractable.

There is a class of problems termed non-deterministic polynomial(NP)
that take non-polynomial time to solve, but whose alleged solution
algorithms could be checked against an answer in polynomial time by a
deterministic TM given an oracle to provide that answer.

Complexity N =1 N =2 N =4 N =6 N =8 N =10 N =12 N =14 N =16

2 4 16 64 256 1024 4096 16394 65576
1

O(2N)
O(N2) 4 16 36 64 100 144 196 256 Fig. 7.2 Growth rates for O(N2) and

O(2N).

176 Beyond the logical limits of computing?

7.3 Beyond the Turing Machine?

As discussed in Chapter 4, all models of computation since TMs and
the λ calculus have been shown to be equivalent in computational
expressivity. Nonetheless, there have been numerous attempts to propose
models that in some sense transcend the limits of the Church–Turing
thesis, termed variously super-Turing or hypercomputational.

In Cockshott and Michaelson (2007), we list what we see as require-
ments for a new system to demonstrably go beyond Turing Machines.
Before we rehearse these, we will recapitulate fundamental notions of
decidabilty.

A TM is said to encode the corresponding decision procedure. If that
TM will terminate with a solution after a finite number of execution
steps, then the problem is said to be decidable. If it is not possible to
construct such a TM, then the problem is said to be undecidable. If
a TM can be constructed but it cannot be determined by computable
means whether or not it will terminate, then the problem is said to be
semi-decidable. The halting problem has become a canonical exemplar
of undecidability: if any other problem is reducible to an instance of the
halting problem, then it must be undecidable.

In general, a demonstration that a new system is more powerful than
a Church–Turing system involves showing that while all terms of some
Church–Turing system can be reduced to terms of the new system,
there are terms of the new system that cannot be reduced to terms of
that Church–Turing system; in other words, the new system has greater
expressive power than that Church–Turing system and hence of any
Church–Turing system. Incidentally, it would be truly astonishing if
a new system were demonstrated whose terms could not be reduced
to those of a Church–Turing system; that is, the new system and
Church–Turing systems had incomparable expressive power.

More concretely, we think that requirements for a new system to
conclusively transcend the logical limits of Church–Turing are, in
increasing order of strength:

1. A demonstration that some problem known to be semi-decidable
in a Church–Turing system is decidable in the new system. That
is, there is some problem that has undecidable termination when
expressed as a TM, and has decidable termination when expressed
in the new system.

2. A demonstration that some problem known to be undecidable in a
Church–Turing system is semi-decidable in the new system. That
is, there is some problem that cannot be expressed as a TM, but
that can be expressed in the new system, albeit with undecidable
termination.

3. A demonstration that some problem known to be undecidable in
a Church–Turing system is decidable in the new system. That is,
some problem that cannot be expressed as a TM can be expressed
as a decidably terminating construct in the new system.

7.4 Numberology 177

4. Characterizations of classes of problems corresponding to (1)–(3).
That is, it is possible to identify the essential properties of the
sorts of problems that are semi-decidable or decidable in the new
system, but not as TMs, thus giving a handle on which class some
new problem corresponds to.

5. Canonical exemplars for classes of problems corresponding to (1)–
(3). That is, there are instances of each of these classes of problem
to which other members of the same class are reducable, as with
the halting problem for TMs.

7.4 Numberology

In Chapter 8, we will explore in some detail various attempts to go
beyond the limitations of systems that satisfy the Church–Turing thesis.
Many such attempts are based on arguments that the decidability lim-
itations of TMs are situated in their discrete and finitistic foundations,
and seek to elaborate novel machine constructions using properties of
infinity or the real numbers.

In this and the final section of this chapter, we will survey conceptual
difficulties with characterizations of infinity and real numbers. We will
first ground that discussion in a survey of epistemological attitudes to
the very notion of number.

7.4.1 Realism

There is a fundamental dichotomy between conceiving of numbers as
actually existing real entities as opposed to abstract mathematical
constructs. For Platonic realists, numbers have real existences as ideal
entities that are denoted by symbolic representations (Wilder, 1978).
The term ‘realist’ is confusing, as Platonists are philosophical idealists
who think that material reality is an illusion, at best a pale reflection of
some underlying universe of ideal forms.

Platonism is now a minority, if not uncommon, taste in Mathematics,
but is still prevalent in the Oxford school of Computer Science. Their
highly influential denotational semantics is based on the idea that the
meaning of computer programs is to be found in the idealized functions
from inputs to outputs that they denote (Michaelson, 1993).

7.4.2 Aristotle and infinity

Plato’s student Aristotle (2000) was much exercised by infinity and by
arguments from infinite regress, questioning whether infinity was in any
sense real:

. . . nothing infinite can exist; and if it could, at least the notion of infinity is
not infinite . . .

(Book II, part 2).

178 Beyond the logical limits of computing?

Unlike his teacher, who accepted the reality of some ideal infinity,
Aristotle drew an explicit distinction between potential and actualized
infinities:

But also the infinite and the void and all similar things are said to exist
potentially and actually in a different sense from that which applies to many
other things, e.g. to that which sees or walks or is seen. For of the latter class
these predicates can at some time be also truly asserted without qualification;
for the seen is so called sometimes because it is being seen, sometimes because
it is capable of being seen. But the infinite does not exist potentially in the
sense that it will ever actually have separate existence; it exists potentially
only for knowledge.

(Book IX, part 6).

An actualized infinity requires the entire infinity of entities to be
physically realized. That is, the infinity must be a completed totality.
One example is found in Post’s machine (Post, 1936), developed
contemporaneously with the TM, which has an infinite tape as an initial
condition.

In contrast, a potential infinity is one which is never actually fully
achieved. That is, a potential infinity may be approached by continuously
adding elements to some collection, but at each stage the collection
remains finite in size. Thus, a TM tape may have cells added to
it indefinitely by a non-terminating computation, but at each state
transition is of finite length.

As we shall see below, Cantor’s diagonalization argument depends on
an actualized infinity of reals.

7.4.3 Logicism, formalism, and intuitionism

Nearly 2000 years after Plato and Aristotle, Kleene (1952) identified
three main schools of thought on the foundations of mathematics:
logicism, formalism, and intuitionism current from the late nineteenth
to the mid-twentieth centuries.

The logistic school, typified by Russell, sought to reduce classical
mathematics, including by implication actualized infinities, to logic. As
Kleene notes:

Logicism treats the existence of the natural number series as an hypothesis
about the actual world (‘axiom of infinity’).

(p. 46).

The formalist school, typified by Hilbert, sought, as we have discussed,
to formulate classical mathematics as a consistent axiomatic theory.
Originally, it was thought that the consistency of axiomatized math-
ematics was to be found in a model from some other consistent theory:
this smacks of tautology or teleology. Instead, Hilbert proposed that a
theory for classical mathematics should be proved to be free of internal
contradictions using the meta-mathematical techniques discussed in
Chapter 4. Thus, for the formalists, the epistemological status of number
was not important.

7.4 Numberology 179

The intuitionist school, typified by Brouwer, entirely rejected argu-
ments that required the assumption of actualized infinities. That is, the
only mathematical objects of certain epistemological status were finite,
with properties that could be exhaustively examined. Note that this does
not exclude potential infinities.

Thus, intuitionism excludes the law of the excluded middle for
existence proofs over infinite sets. This axiom is usually expressed as
A ∨ ¬A; that is, something is either true or not true. This is the basis
of proof by contradiction, where one assumes something and derives its
negation. However, an existence proof by contradiction of, say, a number
having some property, by assuming the non-existence of a number with
that property, implicitly assumes that the infinite set of numbers exists
(Kleene, 1952).

Philosophically, intuitionism is not unproblematic. While it rejects
trying to ground mathematics in science or logic, it claims that
mathematics corresponds to ‘the exact part of out thinking’ (Kleene,
1952, p. 51, quoting Heyting, 1974). That is, intuitionism sees human
intuition as the ultimate arbiter of mathematical truth.

Nonetheless, there is much of value in intuitionism in trying to get to
grips with claims for hypercomputation based on appeals to infinity. In
particular, intuitionists favour constructive methods such as induction
for making mathematical objects, by augmenting base values a finite
number of times. This is actually less restrictive than might first appear.
As Kleene notes:

Most non-constructive existence proofs can be replaced by constructive ones.
(p. 52).

Contemporary variants of intuitionism include constructivism, and,
ultimately, finitism, which only accepts mathematical entities that can
be built in a finite number of rule applications from base entities (Tiles,
1989).

To conclude this brief survey of the philosophies of mathematics,
according to Cantor (Barrow, 2005), there were three sorts of infinity:
absolute infinity in the mind of God, mathematical infinity in the minds
of people, and physical infinity in the material universe. Barrow (2005)
provides a wry truth table, after Rucker (2004), of the attitudes of
different philosophers to infinity—see Table 7.1.

Table 7.1 Philosophers and infinities (Barrow, 2005, p. 94).

Philosopher Mathematical Physical Absolute

Abraham Robinson No No No
Thomas Aquinas No No Yes
Plato No Yes No
Luitzen Brouwer No Yes Yes
David Hilbert Yes No No
Kurt Gödel Yes No Yes
Bertrand Russell Yes Yes No
Georg Cantor Yes Yes Yes

180 Beyond the logical limits of computing?

7.5 What is real about the reals?

7.5.1 Origins

The concept of real numbers arose in Greek mathematics as a con-
sequence of the theorem of Pythagoras. The Pythagoreans had a
conception of the universe based on integers:

Contemporaneously with these philosophers and before them, the so-called
Pythagoreans, who were the first to take up mathematics, not only advanced
this study, but also having been brought up in it they thought its principles
were the principles of all things. Since of these principles numbers are by
nature the first, and in numbers they seemed to see many resemblances to the
things that exist and come into being—more than in fire and earth and water
(such and such a modification of numbers being justice, another being soul
and reason, another being opportunity—and similarly almost all other things
being numerically expressible); since, again, they saw that the modifications
and the ratios of the musical scales were expressible in numbers;—since, then,
all other things seemed in their whole nature to be modelled on numbers, and
numbers seemed to be the first things in the whole of nature, they supposed
the elements of numbers to be the elements of all things, and the whole heaven
to be a musical scale and a number.

(Aristotle, 1960, p. 9).

A problem with this conception arose with the theorem of Pythagoras
about the sum of the squares on the sides of a right-angled triangle.
Suppose that we have the triangle shown in Fig. 7.3 with two sides of
unit length; then the third side will have a length that, when squared,
will have an area of 2 square units. Its length will then be a number
that, when squared, will be 2.b = 1

c = √2a
=

 1

Fig. 7.3 A right-angled triangle with
two unit sides has third side

√
2.

Suppose that you set out such a triangle with sides of 1 m: the diagonal
will be measured, using a ruler graduated in millimetres, to be a bit
over 1414 mm. The question naturally arises as to what is the exact
measurement of the length of the hypotenuse?

If we choose some sufficiently small unit of measurement for each side,
will we get an exact measure for the hypotenuse?

For that to be the case, the length of the hypotenuse and the other
side have to would stand in a definite ratio q/p, with q, p being whole
numbers as in Fig. 7.4.

There are many proofs that this can’t in fact be the case. Here is one
example.

1. Let
√

2 = q/p: assume that p and q are mutually prime (numbers
with no common factors), since we want to express the factors in
the simplest way.

p

p
q

Fig. 7.4 A scaled version of the unit
right angle triangle with sides, p, q.

2. Their squares must still be mutually prime, for they are built from
the same factors.

3. Therefore, the fraction q2/p2 cannot cancel out. In particular,
q2/p2 cannot cancel down to equal 2.

4. Therefore, q2/p2 �= 2, so there can be no two integers p, q such that√
2 = q/p.

7.6 Real measurement 181

This appears to have, as a consequence, the infinite divisibility of
space. Suppose that we start with a right isoceles triangle with two sides
measuring 1 m and the third side

√
2. We then divide the equal sides into

p subdivisions; then there will be an integers r > p such that the length
of the hypotenuse, in these subdivisions, lies in the range r..r + 1.

Using our earlier example, divide into p = 1000 mm, then r =
1414 mm, and the hypotenuse is between 1414 mm and 1415 mm.

Now replace p with r, and recurse. The implication is that space will
be infinitely divisible. This is the basic intuition or metaphor that we
have for real numbers: the idea of a real number line that is infinitely
divisible, which itself is a metaphorical extension of the idea that a line
is itself arbitrarily divisible into smaller units.

7.6 Real measurement

Measurement using finer and finer scales requires that we have a finer
and finer ruler to do the measurement. For practical purposes, when we
wish to establish the length of the standard metre we do it by means of
optical interferometry, using light emitted by a particular type of atom
or molecule. The International Standards Organization specifies certain
transitions of I2 as having specified wavelengths in metres (Quinn, 1999).
By counting the number of wavelengths in a given distance, one can than
arrive at a measure of the distance.

Measurement of length thus requires the use of photons that allow us
to measure to an integer accuracy in terms of wavelengths.

We can envisage an experimental set-up that allows us to test
Pythagoras’ theorem in the real world. Look at Fig. 7.5. Suppose that
we have previously measured AB and AC by means of interferometry
to be the same integral number of wavelengths long. Clearly, if it is the
case that the optical path round the entire system is also an integral
number of wavelengths, then we would either have shown that

√
2 is a

Laser

Detector

Half-silvered mirror

A

B

C

Fig. 7.5 A possible experimental set-
up for testing Pythagoras’ theorem in
the physical world.

182 Beyond the logical limits of computing?

rational number or that Pythagoras’ theorem did not hold in the real
world.

But there appear to be big practical problems with performing such a
test. We can’t, with the same arrangement of mirrors, simultaneously
and independently measure all the lengths. In order to measure the
length AC, for example, we would have to rotate the mirror at C so
that it faces directly towards A, and likewise for measuring the distance
AB. But this would perturb the situation with respect to our final
measurement. How are we to be sure that our rotation of the mirrors
has not perturbed the position of point C so that after rotation of the
mirrors, the distance AC is no longer an integral number of wavelengths?

Further, even if this could be done, how do you ascertain that the
triangle is exactly a right-angle one?

If we assume initially that space does have a geometry such that
Pythagoras’ theorem holds, then we could initially set up an arrange-
ment such that the distance AC = 3

4AB and the distance BC = 5
4AB,

giving a 3,4,5 right-angled triangle. We could then extend AC until
AC = AB, returning to the situation shown in the figure. But there
is a logical problem with this. The means of setting up the right angle
assume the validity of the Pythagorean theorem in the real world, which
is what we are trying to test in seeing how close BC is to

√
2AB. But if

we can’t initially assume that the theorem holds physically, how can we
be sure that we have set up a right angle?

By very careful work, we might overcome all the practical if not the
logical problems, but we would then face another. There would be an
uncertainty in our measurement of any of the distances, an uncertainty
that is proportional to the wavelength of the light used.

The shorter the wavelength of the light we use, the more accurate our
measurement, since our unit of measure gets shorter and shorter. Hence
to measure the hypotenuse of a 1 m right-angled triangle more and more
accurately, we need shorter and shorter wavelengths of light.

Could we measure to an arbitrary degree of accuracy in this way, or
is there a fundamental limit?

It appears that there is. The predictions of quantum mechanics and
of relativity theory conspire to indicate that there is a smallest scale at
which measurement can be done.

7.6.1 The energy of a photon

The energy and wavelength of a photon are related by

E = hc/λ (7.1)

where E is the energy of the photon, h is Planck’s constant, λ its
wavelength, and c the speed of light.

Using E = mc2, we can express this energy as an equivalent
gravitational mass:

m = h/λc (7.2)

7.6 Real measurement 183

It is clear that as we reduce the wavelength of the light that we are
using, the gravitational mass of the photons increases. For practical
measurements at the scales we can reach today, this does not matter,
but if keep pushing the wavelengths down, we reach a point at which,
according to relativity theory, they will start to significantly distort
space with their own gravitational mass. As this happens, definitions
of distance start to break down.

The radius of a black hole The ultimate distortion of space occurs
when mass is sufficient to create a black hole. The radius of a black hole
is given by

rs = 2Gm/c2 (7.3)

where rs is the Schwarzschild radius, G is the gravitational constant, m
is the mass of the gravitating object, and c is the speed of light in a
vacuum.

Note that the radius is proportional to the mass of the hole—not, as
you might expect, to the cube root of the mass. If we look at Fig. 7.6,
we see the result of plotting Eqs 7.2 against 7.3. The two lines intersect
at what is known as the Planck length, 1.6163× 10−35 m.

The infinitely divisible space of Euclidean geometry is thus not ‘real’.
The theorem of Pythagoras applies in the model of space assumed by
Euclidean geometry, but is not well defined at very small scales around
the Planck length. In particular, Euclid’s assumption of points with posi-
tion but no magnitude is not well defined in physical reality. The geomet-
rical metaphor we are taught of the ‘real’ number line must be mistaken.

Mass in kilos

W
av

el
en

gt
h

in
 lo

g
m

et
er

s

−70
1.00E-040 1.00E-035 1.00E-030 1.00E-025 1.00E-020 1.00E-015 1.00E-010 1.00E-005

−60

−50

−40

−30

−20

−10

0

Fig. 7.6 A plot of the radius of a black hole of a given mass against the mass of a photon of a given wavelength. The vertical
axis measures the logarithm of the radius or the wavelength in metres, and the horizontal axis measures mass in kilograms. The
solid line is the wavelength of a photon of a given equivalent gravitational mass, and the dotted line is the black hole radius.
The length and mass at which they intersect are the Planck distance and the Planck mass.

184 Beyond the logical limits of computing?

7.7 Back to Turing

Turing (1937) defined a computable real as a number whose decimal
expansion can be computed to any degree of precision by a finite
algorithm. Clearly we can change this definition to one in which we say
that its binary expansion can be computed to any degree of accuracy
required without losing Turing’s meaning. If R is a computable real,
there is a function R(n) which when given an integer n will return the
nth digit of the number.

Any computer program can be considered as a binary integer, made
up of the sequence of bytes of its machine code. Most such integers are
not valid programs for computing real numbers. Most will produce no
output, or cause the computer to crash.

In mathematics, we assume that

Reals ⊃ Rationals ⊃ Integers

On the contrary, from a computer science perspective,

Integers ⊃ valid Programs ⊃ computable reals

A computable real has an encoding that is shorter than its output.
For any program, we can measure its length in bits. Suppose that
Length(R(n)) = k bits; then by setting n > k we can compute more
bits of the real than the program itself contains.

Chaitin (1999) defines a random bit sequence of length n as one for
which no program of length < n exists that will print it out. Hence any
non-computable real is random in Chaitin’s sense.

How many random reals really exist? Arguably, there are none.
A cavity at above background temperature can act as a random bit

source, as shown in Fig. 7.7. But in providing bits it cools down and
provides only a finite number of bits. As it cools, entropy is removed to
supply the bits. Thus any finite thermal system can only release a finite
amount of information and thus only a finite leading bit sequence of a
random real—a random integer, not a random real.

1 detector

0 detector

Half-
silvered mirror

Fig. 7.7 Using the thermal energy of
a black body radiation cavity as a
random bit source.

Note that what we have is the release of information as the subsystem
moves to thermal equilibrium. In principle, this argument can be
extended to the whole universe. The amount of the universe that is
within our event horizon is finite. That is, the volume within which
light setting off since the Big Bang can have reached us, and thus can
have a material influence on us, is finite. From this, it follows that
there can only be a finite—a vast, but finite—number of bits in the
universe. Lloyd (2002) carries this reasoning further to estimate the
total computational capacity of the entire universe. On the basis of
some, admittedly uncertain, assumptions about the resources available,
he estimates the universe to have entropy of about 1090 bits. Other
estimates (Sazonov, 1995; Kornai, 2003) suggest upper bounds of 2512

or 21000 bits, the latter figures being deliberately cautious.
It is clear, however, that not all this information is available to perform

arbitrary calculations. To perform a calculation, one has to prepare

7.8 Reservations about Cantor 185

one’s computing machine in a known state. Classically, this is a Turing
Machine with a specified programme at the start of the tape and the rest
of the tape set to zero. But if we consider the universe as a whole, such
a clearing operation is inconsistent with the laws of thermodynamics.
We have established in previous chapters that computation involves
the dissipation of heat, and that in consequence feasible computing
configurations have a power that is proportional to the surface area
through which they can get rid of waste heat—area, rather than volume,
is the crucial consideration. This emphasis on area rather than volume
is reinforced by the holographic principle (Beckenstein, 1981; Bousso,
2002) arising from quantum gravity, which shows that the information
content of a volume of space is a function of its surface area.

Whatever bound we set, there is a limit to the size of any integer
that could be represented in the largest physically feasible computing
machine. By extension, there is a limit to the precision with which
any real number can exist. For non-random reals, there exists a more
compact representation of the number in the form of their producing
algorithm, but even if we have a compact algorithm for a number, we do
not actually know much about it unless we have its complete decimal or
binary expansion. Kornai (2003) points out that although Ackerman’s
function gives us a compact notation for certain very large numbers, we
would powerless to even specify the first few digits of A(4,4) with the
computational resources of the entire universe.

7.8 Reservations about Cantor

In the light of this consideration we have, as computer scientists, to be
sceptical about Cantor’s results. The diagonal argument rests on the
assumption that all of the reals can be listed as completed infinities.
Suppose instead that we approach the Cantor argument from the view
of feasible computation.

Apply the Cantor argument to IEEE 32-bit floating point representa-
tions of the reals. In these, the number is represented by a 23-bit binary
fraction or mantissa multiplied by 2e, where e is the exponent part of
the number. We can list all the 223 possible mantissas in order:

Binary line number
.00000000000000000000000 1
.00000000000000000000001 2
.00000000000000000000010 3

... etc
.00000000000000000010001 17
.00000000000000000010010 18
.00000000000000000010011 19
.00000000000000000010100 20
.00000000000000000010101 21
.00000000000000000010110 22

... etc

186 Beyond the logical limits of computing?

We then apply the diagonal procedure, inverting bits on the diagonal:

Binary line number
.10000000000000000000000 1
.01000000000000000000001 2
.00100000000000000000010 3

... etc
.00000000000000000110001 17
.00000000000000000000010 18
.00000000000000000011011 19
.00000000000000000010000 10
.00000000000000000010111 21
.00000000000000000010111 22

... etc
.11111111111111111101010 8388587
.11111111111111111101011 8388588

.11111111111111111111100 8388589
... etc

.11111111111111111111011 8388604

.11111111111111111111100 8388605

.11111111111111111111101 8388606

.11111111111111111111110 8388607

.11111111111111111111111 8388608

and we obtain the number 11111111111111111101011 by going down the
diagonal—but this number is already included in our list in position
8388588, so the diagonal procedure fails to produce a new number.
Clearly, if we extend our precision to 24 bits the same situation will
apply, but the number on the diagonal will now be found about twice
as far down the list. Each time we increment the precision of the reals,
we again find the diagonal binary number further down the list, but
the distance down the list that we have to traverse to find it grows
exponentially. The Cantor argument relies for its plausibility on already
having a completed infinity of digits of all the binary fractions prior to
putting them in order. But if one takes the Aristotelian principle that
only potential infinities may sense—that is, computational processes
that are potentially unbounded provided that sufficient computational
resources are provided—then one can use a conventional argument
from induction, based on our example with the IEEE reals, to show
that however accurate our representation of the reals is (that is, with
potentially unbounded TM tapes), the number generated by the diagonal
algorithm is never new.

Hypercomputing
proposals 8

8.1 Infinite Turing
Machines 187

8.2 Infinitely precise
analogue computers 190

8.3 Wegner and Eberbach’s
super-Turing computers 201

8.4 Interaction Machines 202
8.5 π-Calculus 206
8.6 $-Calculus 211
8.7 Conclusions 214

There have been many attempts to articulate new systems for com-
putability that are claimed to transcend the limitations of Church–
Turing systems, this being termed, for example, hypercomputing or
super-Turing. Copeland (2002) provides a thorough summary. Our view
is that none of these proposals have yet made a convincing case for
dropping the fundamental theoretical basis on which computer science
has rested until now. In this final chapter, we will review some of the
alternative models of computation that have been put forward recently.
We will look at:

1. Proposals to use infinities in Turing Machines.
2. Proposals to use infinitely precise analogue computers.
3. Proposals to use black holes for computing.
4. Proposals to use new calculi.

8.1 Infinite Turing Machines

Universal Computers proposed by Turing are material apparatuses
that operate by finite means. Turing assumes that the computable
numbers are those that are computable by finite machines, and initially
justifies this only by saying that the memory of a human computer
is necessarily limited. By itself this is not entirely germane, since the
human mathematician has paper as an aide-mémoire and the tape of
the TM is explicitly introduced as an analogy with the squared paper of
the mathematician.

Turing is careful to construct his machine descriptions in such a way
as to ensure that the machine operates entirely by finite means and
uses no techniques that are physically implausible. His basic proposition
remained that: ‘computable numbers may be described briefly as the
real numbers whose expressions as a decimal are calculable by finite
means’.

Turing thus rules out any computation by infinite means. If infinite
computation were to be allowed, then the limitations introduced by the
TM would not apply.

Copeland (2002) proposes the idea of accelerating TMs whose oper-
ation rate increases exponentially, so that if the first operation were
performed in a microsecond, the next would be done in 1

2 μs, the third

188 Hypercomputing proposals

in 1
4 μs, and so on. The result would be that within a finite interval it

would be able to perform an infinite number of steps.
The machine could, for example, compute π exactly:

Since a Turing Machine can be programmed to compute π, an accelerating
Turing Machine can execute each act of writing that is called for by this
program before two moments of operating time have elapsed. That is to say,
for every n, the accelerating Turing Machine writes down the nth digit of the
decimal representation of π within two moments of operating time.

(Copeland, 2002, p. 284).

Another supposed advantage is that they make the halting problem
readily solvable. The accelerating machine simulates the specified TM
for an infinite number of steps within a finite period and gives a definite
answer as to whether or not it will halt.

This obviously evades Turing’s stipulation that computations must
be by finite means, and, in the process, evades all possibility of physical
realization. A computing machine must transfer information between its
component parts in order to perform an operation. If the time for each
operation is repeatedly halved, then we soon reach the point at which
signals travelling at the speed of light have insufficient time to propagate
from one part to another within an operation step. Beyond this speed,
the machine could not function.

In a hypothetical Newtonian universe without the constraint of a
finite speed of light, this particular obstacle would be eliminated, but we
would immediately face another. In order for the Newtonian machine to
compute infinitely fast, its (now presumably mechanical) components
would have to move infinitely fast and thus require infinite energy.
Given that the machine would be dissipative (Landauer, 1961), the heat
released would raise its temperature to an infinite extent, causing it to
disintegrate.

Hamkins (2002) discusses what could be computed on Turing
Machines if they were allowed to operate for an infinite time, but Turing
ruled this out, with obvious good reason.

8.1.1 Black hole computing

Etesi and Németi (2002) extend the idea of accelerating Turing Machines
by proposing a gravitational mechanism by which the acceleration can be
done. They suggest the use of a pair of computers with one (A) orbiting
and a mathematician, or another computer, (B) falling towards the event
horizon of a Kerr black hole. As the computer (B) approaches the event
horizon, its time is slowed down relative to the passage of time for (A).
The closer it gets to the event horizon, the slower its passage of time gets
relative to that of (A). They propose that computer (A) be made to work
through the infinitely many instances of some recursively enumerable set.
An instance they cite is running through the infinitely many theorems
of ZFC set theory to see if any are false. If among the infinite sets, one
is found to be false, a light signal is sent to (B) indicating this. Because

8.1 Infinite Turing Machines 189

of the slowdown of time for (B), things can be so arranged as to ensure
that the light signal arrives before the event horizon is crossed.

The idea takes advantage of the slowdown in time produced by intense
gravity fields. Suppose that, from a safe distance, we watch a blue LED
torch fall into a black hole. As it gets closer and closer to the event
horizon of the hole the light, from the torch will turn green, yellow,
orange, red, and then become invisible infra-red. As it climbs out of the
potential well caused by the black hole, the light loses energy and in
consequence shifts towards the red, less energetic end, of the spectrum.
Red light has a lower frequency than blue light, so an implication
of this is that a time interval equivalent to one cycle of blue light,
about 1.3 × 10−20 seconds, in the frame of reference of the torch has
become the time for one cycle of red light, 3.1 × 10−20 seconds, in
the frame of reference of the distant observer. From a distance, the
torch’s time, or that of anything else falling in, seems to slow down.
If we reverse the perspective, an unlucky observer falling into a black
hole will see the universe outside the intense gravity field of the black
hole speed up. The closer you get to the event horizon, the more the
time of the rest of the universe seems to accelerate. Eventually, just
as you pass the event horizon, the rest of the universe’s time becomes
infinitely fast.

Esti and Nemeti show remarkable ingenuity in working out the details
of this scheme. They have a plausible response to the most obvious
objection: that the light signal from (A) would be blue shifted to such
an extent that (B) could not detect it. They suggest that (A) computes
the degree of blue shift that the signal would experience and selects
a suitably long wavelength and modulation system to compensate.
This is not, however, an adequate response. There remain serious
objections.

Computer (B) is assumed, like any other TM, to operate with clock
ticks. The clock cycle is the smallest time within which the machine
can respond and carry out any action. There will, within (B)’s frame of
reference, be a finite number of clock ticks before the event horizon is
crossed. Consider the last clock tick before the horizon is crossed; in other
words, the clock cycle that is in progress as the horizon is crossed. Prior
to the start of this cycle, machine (A) will have only searched a finite
number of the theorems of ZFC set theory. During the final clock cycle
of (B), the entire infinite residual of the set of theorems are checked
by (A). But any message sent from (A) whilst processing the infinite
residual must occupy less than a clock cycle from (B)’s perspective. As
such, it will be too brief to register at (B).

Any signal that (B) can respond to will correspond to (A) only having
searched a finite part of the infinite set of theorems.

If we consider things from the standpoint of (A), what we are
demanding is that it continues to operate reliably, searching through
theorems, not just for millions of years, but for an infinite number of
years. The assumptions of infinite reliability and an infinite energy source
to keep (A) operating are clearly impossible.

190 Hypercomputing proposals

For A to orbit the black hole for an infinite amount of time, the black
hole would have to exist from now until infinity. If Hawking (1974) is
right, black holes have very long but still finite existences.

The proposal requires a computer so reliable that it will continue to
function not just for a few years, but for all eternity. No matter how
reliable you make the computer, if it has any probability of failure and
you sum that over an infinite period, then failure becomes a certainty.
So the computer would have to be constantly backed up and maintained
by an eternal civilization able to dedicate an infinity of time to this task.
Who but the immortals might venture it?

Even the gods or fairies would face problems. Infinite sets of theorems
involve individual theorems that are infinitely long. Zeus and Umbriel
would have to gather the entire universe to feed the computer’s memory.
Long before any answer came out, the computer would collapse under
its own gravitational mass to form another black hole, taking its secrets
with it.

Umbriel can avert this fate by spinning his computer memories from
ever lighter fairy stuff, to ensure that their density is so low that the
computer always stays larger than the memory’s Schwarzschild radius.
But we are talking eternity here. As Umbriel’s mega-computer toils
through the eons, the stars will wink out, depriving it of power, and
within a vast but still finite time, the black hole into which our intrepid
mathematician has dived will evaporate. He, along with the rest of the
black hole, will disperse across the universe as random thermal energy
long before the hour of the infinite strike.

The black hole is essentially irrelevant to the argument. Nemeti’s
proposed infinite computations still take place in our mundane finite
reality, in the world of death, decay and entropy. The black hole is the
fairies’ hall into which poor Tam Lynne is lured by their queen—a place
in which time stands still—only to emerge to find his world in ruins.

8.2 Infinitely precise analogue
computers

We have already discussed the limits that quantum measurement
imposes on the possibility of constructing computing machines that
would store information in an analogue mechanical fashion. Our example
was given in terms of a mass whose position encoded a number. The idea
of encoding numbers in mechanical positions is not absurd: machines
described in Chapter 3 used this sort of encoding. But we demonstrated
in Section 6.8 that there is an inherent limit to the accuracy of such
encoding.

A general motivation for the construction of such machines is given by
Da Costa in a paper ambitiously titled ‘How to build a hypercomputer’
(da Costa and Doria, 2009). The greater part of this account is given
over to a mathematical justification of why the construction of a
hypercomputer is feasible. Da Costa relies on the concept of an universal

8.2 Infinitely precise analogue computers 191

Turing machine Halting function
Analogue

hypercomputer
Polynomial Fig. 8.1 Da Costa’s proposal.

Diophantine polynomial. He cites Martin Davis (1973) as describing an
algorithmic procedure out of which, given a Turing Machine with input
a Mm(a), we obtain a polynomial pm(a, x1, . . .) so that it has roots if
and only if the Turing Machine converges (outputs some result). From
this, he then defines a real valued and real parametered halting function
such that the function will be less than 1 if the Turing Machine halts and
greater than one if it goes into an infinite loop. This function, it should
be noted, initially requires an integral over an infinite range, though he
later proposes to compactify this.

Given this mathematical solution it is, he says, just a matter of
engineering to build the machine: Fig. 8.1.

If we could have this halting function, surely we could just get a
conventional computer to evaluate it.

But we know we can’t do this, because were we able to do that
we contradict Turing’s proof. The problem is that we cannot compute
on a TM the required infinite integrals—these integrals substitute for
the potentially infinite time required to determine if a TM will halt.
Da Costa writes that building the hypercomputing machine from the
mathematical specification is just a matter of engineering.

Well, in that case it is a matter of engineering more suited to
Olympians than us mere mortals, since it requires, among other things,
encoding π in the machine to an infinite precision. Da Costa gives us no
clue as to how he proposes to achieve this degree of precision. Others
have rashly come forward with concrete proposals. It is rather easy
to come up with ideas for computing devices that have a superficial
plausibility, because they are expressed in terms of idealized physical
models in which some real-world constraints are absent. In this section,
we will look at a few such proposals. In every case we shall see that their
apparent plausibility rests on a judicious choice to ignore key features
of the physical world as understood today.

8.2.1 Newtonian computing

Newtonian mechanics is a particularly beguiling area for those exploring
the possiblities of infinitary computation. What we call Newtonian
mechanics is both that form of abstract maths originating in the calculus
of Newton, and a set of laws that allow us to use this mathematical
apparatus to make predictive models of reality. The abstract maths
was initially controversial, with its fluxions and infinitesimals (Wisdom,
1953). But its predictive powers proved to be so great that philosophical
doubts about the idea of infinite divisibility were put into abeyance.

When Newton’s laws are used in a practical sense, what they do
is stipulate a set of algorithms for making finite predictions about
things such as observed planetary positions. They specify at a relatively

192 Hypercomputing proposals

abstract level what a mathematician should do to compute the position
of, for example, Saturn on a particular day. The calculations may be
done by hand or they may be done on a computer.

Suppose that they are done on a computer. There are, then, a large
number of possible programmes, in various programming languages that
are valid applications of Newton’s laws to the problem. According to the
care with which the codes have been written, the numerical precision of
the floating point calculation, and so on, these will give results of greater
or lesser accuracy. But whatever we do, the predictions are always given
as computable numbers—to some chosen finite number of digits.

The fact that calculations are always to a finite precision is not a
fundamental problem. We can always choose a number of digits sufficient
for a given practical purpose—whether it is pointing a telescope or
navigating a probe to Jupiter. We can choose an algorithm in which the
numerical errors will be a lot less than our uncertainties in observation
and measurement of the actual angular position of Saturn or the actual
orbit round Jupiter that our probe takes up.

Because we can use Newton’s laws to write algorithms that compute
movements to an arbitrary degree of numerical precision, a temptation
arises to believe that in reality physical bodies do move with an infinite
accuracy.

It has been known since the early twentieth century that, whilst
Newtonian mechanics makes excellent predictions of a wide range of
physical systems, at extremes of velocity and density and on very small
scales, its success falters. Classical physics seems to falter at just the
places where a relentless pursuit of its logic would lead us to infinities.
Quantum theory was introduced in Einstein’s paper on the photo-
electric effect (Einstein and into English, 1965) in order to deal with the
paradox created for classical electrodynamics by one such infinity—the
so-called ultraviolet catastrophe. Einstein opened his paper by pointing
to the inadeqacies of a continuum approach, in this case the continuum
presupposed by Maxwell’s theory:

A profound formal distinction exists between the theoretical concepts which
physicists have formed regarding gases and other ponderable bodies and the
Maxwellian theory of electro-magnetic processes in so-called empty space.
While we consider the state of a body to be completely determined by the
positions and velocities of a very large, yet finite, number of atoms and
electrons, we make use of continuous spatial functions to describe the electro-
magnetic state of a given volume, and a finite number of parameters cannot be
regarded as sufficient for the complete determination of such a state. According
to the Maxwellian theory, energy is to be considered a continuous spatial
function in the case of all purely electro-magnetic phenomena including light,
while the energy of a ponderable object should, according to the present
conceptions of physicists, be represented as a sum carried over the atoms
and electrons. The energy of a ponderable body cannot be subdivided into
arbitrarily many or arbitrarily small parts, while the energy of a beam of
light from a point source (according to the Maxwellian theory of light or,

8.2 Infinitely precise analogue computers 193

more generally, according to any wave theory) is continuously spread an ever
increasing volume.

(Einstein and into English, 1965).

His response was to propose that light was quantized in the form of
photons, and from this eventually followed the rest of the quantum
theory.

If a modern paper suggests that some form of classical mechanics
allows certain forms of infinitary calculation, what does this mean?

1. That we can logically deduce that certain equations will produce
infinities in their solutions?

2. That certain real physical attributes can take on infinite values?

In the light of quantum theory, we have to answer ‘no’ to the last
question even if we say ‘yes’ to the first. If the maths you are using
to represent the material world gives infinities in your equations, then
that tells you more about the errors in your mathematical model than
it does about reality.

Smith (2006b) gives as an example of uncomputability in Newtonian
physics certain N -body problems involving point masses interacting
under gravity. Because these can approach arbitrarily close to one
another, at which point their mutual gravitational attraction becomes
arbitrarily high, he suggests that we could so configure a set of initial
conditions that the particles would move through an infinite number of
configurations in a finite time interval. He argues that no Turing Machine
could simulate this motion in a finite time. This could be interpreted
either:

• as a limitation on the ability of computers to simulate the world, or
• as a means by which, with suitable encoding, a physical sys-

tem could be used to determine algorithmically uncomputable
questions

But let us consider the very properties that would allow this infinitary
process—infinite velocities, point masses with position and no magni-
tude. These are the very points where Newtonian mechanics breaks
down and has to be replaced with relativistic or quantum mechanics.
The ability of a theory to produce infinities points to a weakness
in conceptualization. Smith concurs: he goes on to show that once
relativistic constraints on either velocity or density are introduced, the
equations of motion for the system give finite results, and in consequence
become algorithmically soluble.

The infinities in the initial differential equations thus emerge as a
consequence of the axiomatic structure of the calculus rather than a
property of the real world.

Beggs and Tucker (2006) also explore the extent to which Newtonian
mechanics would allow the hypothetical construction of infintely parallel
computing engines. They do not claim that such machines could actually
exist, but ask: what sort of mechanics would allow such machines to
exist?

194 Hypercomputing proposals

This is an interesting, if speculative, line of enquiry. But to pursue
it, we have to be consistent. It would be reasonable enough, when
investigating the hyothetical computational possibilities of a Newtonian
universe, to ignore constraints imposed by relativity theory and quantum
theory. But Newtonian mechanics imposes other constraints that may
not immediately be obvious.

Beggs and Tucker derive the ability to perform hypercomputation
from an infinite plane of conventional computers, which purport to use
tricks of Newtonian mechanics to allow infinitely fast transmission of
information.

They use two tricks. On the one hand, they propose to synchronize
the clocks of the machines by using infinitely long, rigid rods. The rod is
threaded through all the machines and a push on the rod starts all the
computers synchronously. They concede that for this to happen the rod
must not only be perfectly rigid, but it must either be massless or have
a density which exponentially tends to zero as we move away from the
starting point. This is necessary if the rod is to be moved by applying a
finite force.

It is not clear in what sense such rods can be said to be Newtonian.
There is an old technical term for rods like this: wands. When Turing

had recourse to ‘Oracles’ he deliberately used magical language to
indicate that this recourse was make-believe.

They propose that the infinite collection of computers will be able
to return results to an initiating processor using an ability to fire
cannonballs up and down along parabolic trajectories at arbitrarily high
velocities. The arrival of such a cannonball transmits a binary truth
value. They further propose that in a finite time interval an infinite
number of cannonballs can be projected, in such a way that at any
given instant only one is in flight.

Their argument is that given a projectile of mass m, we can project it
at arbitrarily high speed if we use enough energy. Given a distance b that
the cannonball has to travel, we can make the time of flight arbitrarily
small by selecting a sufficiently high velocity of travel. The proposal
is that we use cannons and an arbitrarily large supply of gunpowder to
achieve this. This argument contradicts Newtonian mechanics on several
points:

1. The immediate problem is that whilst there is, according to
Newton, no limit to the ultimate velocity that a particle subjected
to uniform acceleration can reach, this velocity is not reached
instantaneously. Let us suppose that we use perfect cannons,
ones in which the accelerating force f due to the combustion
of gunpowder remains constant along the length of the barrel.
Achieving this is very hard: it requires all sorts of constraints
on the way the powder burns. It was a sought-after but never-
achieved goal of nineteenth-century ballistic engineering: much
experimentation with powder grain size went into the quest (see,
e.g., Schenck, 1883). The acceleration of a ball of mass m will then
be a = f/m. A cannonball spends a period in the cannon v/a

8.2 Infinitely precise analogue computers 195

being accelerated that is proportional to the velocity ultimately
attained. Thus whilst the flight time b/v tends to zero as velocity
increases, total travel time (b/v) + (v/a) does not.

2. There is a further problem with assuming that cannons can
attain an arbitrary velocity. As we increase the charge in a gun,
an increasing amount of the work done by the powder consists
in accelerating the powder itself down the barrel. The limiting
velocity achievable is that of the exit velocity of the gas of a
blank charge. This, in turn, is limited by the speed of sound in
the driving gas. For a highly energetic hydrogen/oxygen explosion,
this sets a limit of about 2100 m s−1. Techniques such as hybrid
explosive and light gas guns can produce a limited improvement in
velocity (Crozier and Hume, 1957), but certainly not an arbitrary
speed. Rail guns (Rashleigh and Marshall, 1978) can achieve
higher velocities using electromagnetic acceleration. It is not clear
whether electromagnetic propulsion is permissible in Beggs and
Tucker’s chosen model of mechanics.

3. There is also a problem of the trajectory. Begg and Tucker further
assume parabolic trajectories to ensure that the cannonballs fly
clear of intervening obstacles such as other cannons prior to hitting
their targets (see Fig. 8.2). The balls will take a finite time for
gravity to retard their upward velocities.

Even on its own Newtonian terms, the proposed hypercomputer
is inconsistent. It is analogous to Fredkin’s billiard ball computer—
superficially plausible but, on examination, inconsistent.

8.2.2 Bournez and Cosnard’s analogue
super-Turing computer

An examination of a concrete example of another couple of proposed
super-Turing analogue computers (Bournez and Cosnard, 1995; Blakey,
2008) illustrates the sorts of errors that would vitiate its operation.
Bournez and Cosnard propose to use two real-valued variables cor-
responding to the x, y coordinates of particles (presumably photons)

Target

Incomming cannonball

Fig. 8.2 Cannonballs and their clearances.

196 Hypercomputing proposals

Fig. 8.3 An analogue computer pro-
posed by Bournez and Cosnard.

Translation

Translation

Plane P

yz

o x

x Dilation

c1,1

c2,1 f (x,y)

c1,2 (x,y)

y Dilation

p

passing through plane P in Fig. 8.3 (reproduced from Bournez and
Cosnard, 1995). The binary expansion of these real-valued coordinates
could then be used to emulate the left and right parts of a TM tape
(Koiran and Moore, 1999; Bunimovich and Khlabystova, Bunimovich
and Khlabystova). They argue that the machine could, in addition, be
used to simulate a class of two stack automata whose computational
powers might exceed those of TMs. The gain in power comes from
the ability of their proposed stack automaton to switch on the basis
of the entire contents of an unbounded stack, rather than on the basis
of what is directly under the TM head. They suggest that if we had
available iterated real-valued functional systems based on piecewise
affine transforms, such analogue automata could be implemented. In the
proposed physical embodiment given in Fig. 8.3, multiplication by reals
would be implemented by pairs of parabolic mirrors, and translation by
arrangements of planar ones.

The authors, in striking contrast to researchers active in the area 50
years earlier, fail to identify the likely sources of error in their calculator.
Like any other analogue system, it would be subject to parameter,
operator, and variable errors. The parameters of the system are set
by the positions and curvatures of the mirrors. The placement of the
mirrors would be subject to manufacturing errors, and to distortions
due to temperature, mechanical stress, and so on. The parabolic mirrors

8.2 Infinitely precise analogue computers 197

would have imperfections in their curvature and in their surfaces. All of
these would limit the number of significant digits to which the machine
could calculate. But let us, for the moment, ignore these manufacturing
errors and concentrate on the inherent uncertainty in the variables.

Because of the wave–particle duality, any optical system has a diffrac-
tion limited circle of confusion. We can say that a certain percentage
of the photons arriving from a particular direction will land within this
circle. The radius of the circle of confusion is inversely proportional to
the aperture of the optical system and directly proportional to the focal
length of the apparatus and to the wavelength of the photons used. The
angle to the first off-centre diffraction peak ΔΘ is given by

sin(ΔΘ) =
λ

A
(8.1)

where A is the aperture and λ is the wavelength.
By constraining the position of the photon to be within the aperture,

we induce, by Heisenberg’s principle, an uncertainty in its momentum
within the plane of the aperture.

To see what this implies, we give some plausible dimensions to the
machine. Assume the aperture of the mirrors to be 25 mm and the path
length of a single pass through the system from the first mirror shown
in Fig. 8.3 back to Plane P to be 500 mm. Further assume that we use
monochromatic light with wavelength λ = 0.5 μm. This would give us a
circle of confusion with a a radius Δf(x,y)Mirror ≈ 10 μm.

If plane P was one-tenth of a metre across, the system would resolve
about 5000 distinct points in each direction as possible values for f(x, y).
This corresponds to about 12 bits accuracy.

The dispersion Δf(x,y)Mirror accounts only for the first pass through
the apparatus. To begin with, let us look at the parametric uncertainty
in x, y.

We want to specify x, y to greater accuracy than f(x, y) so that
Δx,y < Δf(x,y). Assume that we have a source of collimated light
whose wavefronts are normal to the axis of the machine. A mask with
a circular hole could then constrain the incoming photons to be within
a radius < 10 μm. Any constraint on the position of the photons is an
initial aperture. If this aperture ≤ 10 μm, its diffraction cone would
have a ΔΘ ≈ 0.05 radians. Going through the full optical path, the
resulting uncertainty in position Δf(x,y)Mask(Δx,y) ≈ 25 mm. We have
Δf(x,y)Mask(Δx,y) >> Δf(x,y)Mirror.

The narrower the hole in the mask, the more uncertain will be the
result f(x, y). In other words, the lower the parametric error in the
starting point, the greater is the error in the result.

There will be a point at which the errors in the initial position
and the errors due to the diffraction from the mirrors balance: when
Δf(x,y)Mirror + Δf(x,y)Mask(Δx,y) ≤ Δx,y. From simple geometry, this
will come about when the ratio Δx,y/L ≈ λ/Δx,y so

Δx,y ≈
√

Lλ (8.2)

198 Hypercomputing proposals

where L is the optical path length of the computation. For the
size of machine that we have assumed above, this implies Δx,y =
500 μm. Its accuracy of representation of the reals is thus less than
8 bits (= − log2[(500 μm)/(100 mm)]), hardly competitive with existing
digital computers.

The evaluation of f(x, y) corresponds to a single step of a TM
program. If n is the number of TM steps, the optical path length is
nL. By Eq. 8.2, the optimal initial aperture setting Δx,y ∝

√
n. Each

fourfold increase in the execution length of the program, will reduce by
1 bit the accuracy to which the machine can be set to compute.

If we want to make an optical machine more accurate, we have to
make it bigger—the growth in the size of astronomical telescopes bears
witness to this. For every bit of accuracy we add, we double the linear
dimensions. If M is the mass of the machine and b its bit accuracy, then
M ∝ 23b.

For a conventional digital VLSI machine, M ∝ b and the mass of
the arithmetic unit grows as b log b. For any but the least accurate
calculations, this sort of optical analogue machine will be inferior to
conventional machines.

8.2.3 Optical prime factorization

The fame accorded to Shor’s prime factorization algorithm encouraged
another attempt at the use of interference as a mechanism for prime
factorization. Shor relied on quantum interference, whereas this proposal
relies upon optical interference. Blakey’s design for a prime factoriza-
tion machine (Blakey, 2008, Blakey) displays considerable geometric
ingenuity.

It addresses the problem of finding the prime factors of a large integer.
This problem is classically of order

√
n for an integer n. Basically, we

just try dividing all possible factors up to the square root, at which
point you will have found all the factorizations

√
n operations. Blakey

observes that if you have a grid in two dimensions as in Fig. 8.4, then a
hyperbolic curve y = N/x will pass through the prime factors of N .

He then asks whether we can set up a physical apparatus that
will generate the required grid and a hyperbolic curve. His suggested
equipment is shown in Fig. 8.5.

A point source of light S along with a group of three mirrors is used to
set up a grid pattern of constructive and destructive interference across
the plane between the mirrors M2, M3. The hyperbola is then created
as the plane intersection between the conic arc P , C, and the mirror
plane. Along the circle C that forms the base of the cone, there are
photo detectors.

The principle of operation is that:

Diminution of second-source radiation due to its having passed through an
integer (that is, maximally active) point in the first-source interference pattern
(which models the grid of integer points) is detected at the sensor; the

8.2 Infinitely precise analogue computers 199

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

Solution points

Fig. 8.4 The hyperbolic curve y =
N/x passes through the grid points
that are prime factors of N , illustrated
with N = 12.

z
y

GN

CN

M1

M2

B

S

M3

PN

S

x0

Fig. 8.5 Left, a plan view of the
machine, Mi mirrors, S light source.
Right, the apparatus to generate the
hyperbola as a conic section. P is
another light source, and C a circle arc
made up of detectors.

coordinates of points of such detection can, Turing-computationally trivially,
be converted into the coordinates of the sought integer points on the cone.
These latter coordinates are factors of n.

(Blakey, 2009, p. 4).

It is unclear why the interference caused by the standing wave pattern
in the mirror plane is supposed to impede the passage of light beams on
the path from P to C. Light beams pass through one another without
effect. We only observe interference if there is more than one possible
route that a photon can have taken between source and destination.
The photons arriving at the detectors on C can only have come from P ,
so there will be no interference between these and the photons emitted
from S.

200 Hypercomputing proposals

As described, the machine would not work. It can be modified in
a sympathetic way to make it work roughly as intended. Blakey does
not mention the use of any photosensitive materials. We could imagine
a modification of his design so that, during a first phase, an initially
transparent photosensitive plate is placed in the mirror plane. The light
from S could be used to expose the plate, darkening it at points of
constructive interference. There are of course a variety of other ways in
which we could lay out such a grid, but Blakey’s interference patterns
are one possible technique.

Given that we have a grid, is the rest of the design plausible?
The basic design seems to assume that a very fine grid will cast a

shadow pattern that will also be a very fine grid. But this is not so.
A grid with holes whose size is comparable to a wavelength will act as
a two-dimensional diffraction grating, which will split the original light
rays from P into a strong principal component and a several diffracted
components. There will be no shadows cast by the grid and hence the
desired effect on the detector will not be observed, since the principal
component will seem to pass directly through though with diminished
brightness.

To get a shadow cast, you would require a grid that was large relative
to the wavelength of the light and the focal length used. Figure 8.6
illustrates the constraints. One constraint that Blakey fails to take into
account is that the sensors will have gaps between them and there is
the possibility that the peak in brightness corresponding to a hole in
the mask will coincide with a gap. This is an instance the well-known
problem of aliasing in digital photography. But ignoring that problem
for a moment, let us consider how to overcome the bluring caused by
diffraction. We could constrain the separation between the principal and
first diffracted components arriving on the sensor array to be no more
than half the separation between sensors. This gives us the constraint

w/A <
1
2
B/F (8.3)

Let us add the further constraint that A = cB with c > 1 in order
to have enough sensors to have some hope of compensating for the

Fig. 8.6 A detailed view of how a
mask interacts with a sensor array.
The wavelength of the light is w, the
separation of the mask and the sensor
array is F , and A and B are the
separations of the mask holes and the
sensors, respectively.

F

A
B

w

MASK SENSORS

Principal component

First diffracted component

8.3 Wegner and Eberbach’s super-Turing computers 201

aliasing problem. Let us set c = 2. We thus have the derivation

w

2B
=

B

2F
2wF = 2B2

B =
√

wF

Since we can only currently build sensors of this density of about 4 cm
across, we can use Blakey’s diagrams to fix a plausible value of the focal
length F to be about 2 cm. Let us assume that we use visible light with a
wavelength of 0.7μm. This gives us a figure for B, the sensor separation,
of about 0.1 mm and a grid spacing of twice that. If we assume that
the practical size of the grid is set by the sensor dimensions to also be
about 4 cm, we see that the optical apparatus could hope to determine
the prime factors of numbers up to about 200. Finding prime factors
in this range is not a serious problem for digital techniques. Since the
prime numbers used in cryptography tend to be of the order of 2256, it
is evident that the analogue technique is of far too low a precision to be
of use.

The algorithmic complexity would be worse than on an orthodox
machine. The problem would be to find the maximum brightness over
the sensors, which are of order N , so that the time complexity is N
rather than

√
N on the conventional computer. The space complexity is

N2, since the area of the grid grows in this manner.

8.3 Wegner and Eberbach’s
super-Turing computers

Wegner and Eberbach (2004) assert that there are fundamental limita-
tions to the paradigmatic conception of computation that are overcome
by more recent ‘super-Turing’ approaches. We will now summarize their
core arguments before exploring them in greater detail. This material
draws directly on Cockshott and Michaelson (2007).

Wegner and Eberbach depend strongly on the idea of an algorithm
as an essentially closed activity. That is, while the TM realizing an
algorithm may manipulate an unbounded memory, the initial memory
configuration is pre-given and may only be changed by the action of the
machine itself. Furthermore, an effective computation may only consume
a finite amount of the unbounded memory and of time, the implication
being that an algorithm must terminate to be effective.

They say that the TM model is too weak to describe the Internet,
evolution, or robotics. For the Internet, web clients initiate interactions
with servers without any knowledge of the server history. The Internet,
as a dynamic system of inputs and outputs, parallel processes, and
communication nodes, is outside the realm of a static, sequential TM.
Furthermore, TMs cannot capture evolution because the solutions and
algorithms are changed in each generation and the solution search is

202 Hypercomputing proposals

an infinite process. This does not depend on a finite or infinite search
space. Because evolutionary algorithms are probabilistic, the search may
take an infinite number of steps over a finite domain. Finally, robots
interact with non-computable environments that are more complex than
the robots themselves.

Wegner and Eberbach claim that there is a class of super-Turing
computations (sTCs) that are a superset of TM computations; that
is, sTCs include computations that are not realizable by a TM. A
super-Turing computer is ‘any system or device which can carry out
super-Turing computation’.

Most significantly, Wegner and Eberbach say that it is not possible to
describe all computations by algorithms. Thus they do not accept the
classic equation of algorithms and effective computations.

They go on to argue that there are three known systems that are
capable of sTC: interaction machines (IM), the π-calculus, and the $-
calculus. They give discursive presentations of these systems and explore
why they transcend the TM.

8.4 Interaction Machines

Wegner and Eberbach refer to Interaction Machines as a class of
computer that is more powerful than the Turing Machine. The latter,
they claim, is restricted by requiring all its inputs to appear on the
tape prior to the start of computation. Interaction Machines, on the
contrary, can perform input output operations to the environment
in which they are situated. The difference between Turing Machines
and Interaction Machines, they claim, corresponds to the technology
shift from mainframes to workstations. Interaction Machines, whose
canonical model is the Persistent Turing Machine (PTM) of Goldin et al.
(2004), are not limited to a pre-given finite input tape, but can handle
potentially infinite input streams.

This argument was originally advanced by Wegner in a previous
publication (Wegner, 1997b), some of whose main arguments have been
criticized by Ekdahl (1999). Rather than rehearse Ekdahl’s critique, we
shall focus on some additional weaknesses of Wegner and Eberbach’s
claims.

8.4.1 Turing’s own views

As is well known, Turing’s contribution to computer science did not stop
with the Turing Machine. Besides his work on cryptography, he played a
seminal role in the establishment of Artificial Intelligence research. His
Turing Test for machine intelligence is probably as well known as his
original proposal for the Universal Computer. He proposed, in a very
readable paper (Turing, 1950), that a computer could be considered
intelligent if it could fool a human observer into thinking that they
were interacting with another human being. It is clear that his putative
intelligent machine would be an Interaction Machine in Wegner’s sense.

8.4 Interaction Machines 203

Rather than being cut off from the environment and working on a fixed
tape, it receives typed input and sends printed output to a person.

Turing did not, however, find it necessary to introduce a fundamental
new class of computing machine for this gedanken experiment. He is
quite specific that the machine to be used is a digital computer and he
goes on to explain just what he means by such a machine:

The idea behind digital computers may be explained by saying that these
machines are intended to carry out any operations which could be done by
a human computer. The human computer is supposed to be following fixed
rules; he has no authority to deviate from them in any detail. We may suppose
that these rules are supplied in a book, which is altered whenever he is put
on to a new job. He has also an unlimited supply of paper on which he does
his calculations. He may also do his multiplications and additions on a ’desk
machine’, but this is not important.

(Turing, 1950, p. 436).

This is, of course, a paraphrase of his description of the computing
machine in his 1936 paper (Turing, 1937), where he explicitly models
his machine on a person doing manual calculations. The states of the
machine correspond to the finite number of states of mind of the human
mathematician and the tape corresponds to the squared paper that he or
she uses. It is clear that Turing is talking about the same general category
of machine in 1950 (Turing, 1950) as he had in 1936 (Turing, 1937). With
the practical experience of work on the Manchester Mk 1 and the ACE
behind him, he speaks in more general terms of the computer as being
composed of (i) store, (ii) executive unit, and (iii) control, and says that
the store locations are addressable rather than being purely sequential.
He says he is concerned with discrete state machines, and that a special
property of such digital computers was their universality:

This special property of digital computers, that they can mimic any discrete
state machine, is described by saying that they are universal machines. The
existence of machines with this property has the important consequence that,
considerations of speed apart, it is unnecessary to design various new machines
to do various computing processes. They can all be done with one digital
computer, suitably programmed for each case. It will be seen that as a
consequence of this all digital computers are in a sense equivalent.

(Turing, 1950, p. 442).

This is clearly a recapitulation of the argument in section 6 of his 1936
paper (Turing, 1937), where he introduced the idea of the Universal
Computer. Turing argued that such machines were capable of learning
and that with a suitable small generalized learning program and enough
teaching, then the computer would attain artificial intelligence.

8.4.2 Equivalence of Interaction Machines and
Turing Machines

It seems that Turing considered that the class of machines that
he had introduced in 1936 (Turing, 1937) had all of the properties

204 Hypercomputing proposals

that Wegner and Goldin were later to claim for their Interaction
Machines and Persistent Turing Machines. He may of course have been
mistaken, but we think that Turing’s confidence was well founded. It
can be demonstrated that Turing Machines are powerful enough for
the task.

Consider first a digital computer interacting in the manner foreseen
by Turing in his 1950 paper (Turing, 1950), with teletype input/output.
The teletypes of Turing’s day had the capability of capturing keystrokes
to paper tape, or of accepting paper tape input instead of keystrokes.
Suppose, then, that we have a computer initialized with a simple learning
program, following which it acquires more sophisticated behaviour as a
result of being ‘taught’. As the computer is taught, we record every
keystroke on to paper tape.

Suppose that we initialize a second identical computer with the same
program and, at the end of the first computer’s period of interaction,
we give to the second machine as an input the tape on which we have
recorded the all the data fed to the first machine. With the input channel
of the second machine connected to the tape reader, it then evolves
through the same set of states and produces the same outputs as the
original machine did. The difference between interactive input from a
teletype and tape input as used by Turing in 1936 is essentially trivial.
By a simple recording mechanism, we can emulate the behaviour of an
interactive machine on another tape-input computer. This has been a
widely used and practical test procedure.

In Turing (1950), he clearly assumes that his computer has a persistent
or long-term memory. Wegner and Goldin Persistent TMs allow a
machine to retain data on a tape so that it can be used in subsequent
computations. They claim that the idea of a persistent store was absent
in TMs. However, persistence only became an issue because the combi-
nation of volatile semiconductor storage and first-generation operating
systems imposed on programmers a sharp pragmatic distinction between
persistent disk store and volatile random access memory (Cockshott,
1982; Cockshott et al., 1984). This distinction had not been present in
a first generation of magnetic core based von Neumann machines, and
was not included in the basic computational models of Turing and von
Neumann.

A small modification to the program of a conventional TM will
transform it into a PTM. Like Goldin, we will assume a three-tape TM,
M1, with one tape T1 purely for input, one tape T2 purely for output,
and one tape T3 used for working calculations. We assume that tapes
T1 and T2 are unidirectional, and T3 is bidirectional. Such a machine
can be emulated on Turing’s original proposal by a suitable interleaving
scheme on its single tape.

M1 has a distinguished start state S0 and a halt state Sh. On being
set to work, it either goes into some non-terminating computation
or eventually outputs a distinguished termination symbol τ to T2,
branches to state Sh, and stops. We assume that all branches to Sh

are from a state that outputs τ . Once τ has been output, the sequence

8.4 Interaction Machines 205

of characters on T2 up to to τ are the number computed by the
machine.

We now construct a new machine M2 from M1 as follows: replace all
branches to Sh with branches to S0. From here, it will start reading in
further characters from T1 and may again evolve to a state in which it
outputs a further τ on T2.

Machine M2 now behaves as one of Goldin’s PTMs. It has available
to it the persisting results of previous computation on T3 and these
results will condition subsequent computations. It is still a classic TM,
but a non-terminating one. It follows that PTMs, and thus Interaction
Machines, of which they are the canonical example, are a sub-class of
TM programs and do not represent a new model of computation.

8.4.3 Thermodynamic considerations

For Wegner and Eberbach, there is a fundamental difference between
starting a TM over a given tape that is only changed by that TM,
and where additional input comes from the environment. This alleged
distinction may be further explored using an algorithmic information-
theoretic argument.

Chaitin introduced algorithmic information theory (Chaitin, 1987),
according to which the entropy of a binary number x is bounded by the
number of bits of the shortest TM program that will output x. From
this standpoint, there is a pragmatic difference between an isolated TM
and one that can accept input from the environment.

A modern computer is initially built with a start-up ROM and a
blank disk drive. The ROM typically contains a BIOS, but can be
replaced by any other program that will fit on the chip. Let us suppose,
realistically, that the ROM chip contains 219 bits. Suppose that instead
of a BIOS, we put in a ROM that performs some predefined algorithm,
possibly using disk I/O, and in the process of computation outputs
a stream of characters from the serial port. Chaitin’s result indicates
that if the program were to perform no input operations from the
keyboard, mouse, CD, and so on, the entropy of the information on
disk plus the information output on the serial line could not exceed
219 + 1, where the additional 1 bit would encode whether the initial
blank state of the disk was a 1 or a 0. If the disk was much bigger than
the boot chip, it could, for example, never really be randomized by the
boot chip.

A practical BIOS chip will attempt to read input from keyboards,
communications lines, or CD, starting a process that allows the disk to
gain entropy from external sources. We know from experience that disks
become cluttered and entropic over time. The external world acts as an
entropy source, causing the disk entropy to rise in conformance with
thermodynamic laws.

Thus, we can formulate the interaction process within Chaitin’s
framework, which is in turn grounded in TM theory. This again implies
that Interaction Machines are not a new class of computer.

206 Hypercomputing proposals

8.5 π-Calculus

Wegner and Eberbach give the π-calculus as another of their three
super-Turing computational models. The π-calculus is not a model of
computation in the same sense as the TM: there is a difference in level.
The TM is a specification of a material apparatus that is buildable.
Calculi are rules for the manipulation of strings of symbols and these
rules will not do any calculations unless there is some material apparatus
to interpret them. Leave a book on the λ-calculus on a shelf along with
a sheet of paper containing a formula in the λ-calculus and nothing
will happen. Bring along a mathematician, give them the book and
the formula and, given enough paper and pencil, the ensemble can
compute. Alternatively, feed the suitably expressed λ-calculus formula
into a computer with a Lisp interpreter and it will evaluate.

We have to ask if there exists any possible physical apparatus that can
implement the π-calculus and, if there does,whether it is a conventional
computer such an apparatus. Since it is possible to write a conventional
computer program that will apply the formal term rewrite rules of the π-
calculus to strings of characters representing terms in the calculus, then
it would appear that the π-calculus can have no greater computational
power than the von Neumann computer on which the program runs. The
language Pict (Turner and Pierce, 2000) is an example of this. Since it
is also possible to implement the λ-calculus in the π-calculus (Milner,
1993), we can conclude that the π-calculus is just one more of the growing
family of computational models that are Turing Machine equivalent.

A possible source of confusion is the terminology used to describe the
π-calculus—channels, processes, evolution—which implies that we are
talking about physically separate but communicating entities evolving
in space–time. The π-calculus is intended to be used as a language to
describe communicating physically mobile computing machines such as
cell phones and their underlying communications networks. As a result,
there is always a tension between what is strictly laid down as the rules
of a calculus and the rather less specific physical system that is suggested
by the language used to talk about the calculus.

We have to be very careful before accepting that the existence of the
π-calculus as a formal system implies a physically realizable distributed
computing apparatus.

Consider two of the primitives: synchronization and mobile channels.
We will argue that each of these faces limits to their physical implemen-
tation that prohibits the construction of a super-Turing computational
engine based on the the calculus.

8.5.1 Difficulties in implementing π-calculus
synchronization

It is not clear that π-calculus synchronization is, in its general
sense, physically realistic. First, it seems to imply the instantaneous

8.5 π-Calculus 207

transmission of information, that is faster than light communication, if
the processes are physically separated.

Furthermore, if the processors are in relative motion, relativity theory
shows that there can be no unambiguous synchronization shared by the
different moving processes. It thus follows that the processors can not be
physically mobile if they are to be synchronized with at least three-way
synchronization (see Einstein, 1920, pp. 25–26).

Suppose that we have the following π-calculus terms:

α ≡ (āv.Q) + (by.R[y]) (8.4)

β ≡ (b̄z.S) + (ax.T [x]) (8.5)

In the above, α and β are processes. The process α tries to either
output the value v on channel a or to read from channel b into the
variable y. The + operator means non-deterministic composition, so
A + B means that either A occurs or B occurs, but not both. The
notation āv means output v to a, whilst av would mean input from a
into v. If α succeeds in doing an output on channel a, it then evolves into
the abstract process Q; if, alternatively, it succeeds in doing an input
from b into y, then it evolves into the process R[y], which uses the value
y in some further computation.

We can place the two processes in parallel by using the | operator for
parallel process composition to form α|β, which expands to the following:

(āv.Q) + (by.R[y])|(b̄z.S) + (ax.T [x]) (8.6)

This should now evolve to

(Q|T [v]) or (S|R[z]) (8.7)

where either Q runs in parallel with T [v] after the communication on
channel a or S runs in parallel with R[z] after the value z was transferred
along channel b from process β to process α. The key ideas here are
processes, channels, synchronization, and parallel and non-deterministic
composition.

Suppose further that we attempt to implement the synchronization
by a standard three-wire handshake wherein each channel is represented
as follows:

rqs request to send
ack acknowledge
d data

The protocol is as follows:

Put:

1. place data on d and assert rqs then wait for ack
2. on getting ack, negate rqs and remove data from d
3. wait for ack to be negated

208 Hypercomputing proposals

Get:

1. wait for rqs, then latch data
2. assert ack
3. wait for rqs to be negated
4. negate ack

The two processes are shown in Fig. 8.7, with lines representing the wires
used to implement the channel. But instead of wires we could think of
these as being radio signals, each at a different frequency. Let us consider
how the time evolution of the processes might proceed. We will indicate
times as t0, t1, . . .:

to process α places data v on line da and asserts rqsa

t1 process β places data z on line db and asserts rqsb

t2 process β gets the rqsa

t3 process α gets the rqsb

What happens now?
At time t2, process β has attempted to send on channel b and has got

a request to send from channel a, so which of these should it act on?
If it responds to the rqs on a with an acknowledge, it will be

committing itself to evolving to T [x], but it also has an outstanding
rqs on b. Suppose that it commits to T [x] by sending acka; then it can
ignore any further communications on channel b. This is fine for process
β considered in isolation, but poses problems for the other process. Since
we are talking about a general implementation strategy, we have to
assume that process α will follow the same rule. Thus after getting the
request to send on channel b, it too will acknowledge, which means that
it will commit to continuation R[y]. The consequence is that we have

Fig. 8.7 Two paradoxical processes.

beta

ack

a b
alpha

av.Q+by.R[y]

ax.T[x]+bz.S

ack
d d rqs

rqs

a b

8.5 π-Calculus 209

evolved to T [x]|R[y], but this is not a permitted transition according to
the π-calculus.

Suppose, instead, that β does not send an acka but gives priority to
its outstanding request to send on channel a. In this case, we have to
assume that process α will likewise postpone transmission of ackb, since
α is the mirror image of β. It follows that neither process will ever get
an ack, so they will deadlock.

This is not just a reflection of an inadequacy in the two-stage
handshake protocol. Since the two processes are identical mirror images
of one another, any deterministic rule by which process β commits
to communication on one of the channels must cause α to commit to
the other channel and hence synchronization must fail. The argument
from the processes α, β is a variant of the Liar Paradox, but it is not
a paradox within the π-calculus itself. It only emerges as a paradox
once you introduce the constraints of relativity theory prohibiting
the instantaneous propagation of information. Nor does abandoning
determinism help. If the commitment process is non-deterministic, then
on some occasions synchronization will succeed, but on other occasions
the evolution of both processes will follow the same rule, in which case
synchronization will fail.

The arbitration problem is not insoluble. Suppose that there was a
global arbitration machine. Each process attempting a guarded non-
deterministic fork could inform the arbiter of the channel names and
the direction of communication being tried. Then, with knowledge of
all outstanding requests for reads and writes, it would probably be
possible for the arbiter to apply the reduction rules of the calculus to
resolve the synchronization. However, the use of the arbiter machine as
a tie-breaker removes the parallelism that we want from a distributed
version of the calculus, returning us to a sequential centralized evaluation
of a key part of the calculus. A worse loss of parallelism is entailed
by broadcast protocols such as Asynchronous Byzantine Agreement
(Bracha and Toueg, 1983).

In conclusion, it is not possible to build a reliable mechanism that will
implement in a parallel distributed fashion any arbitrary composition of
π-calculus processes.

More tractable systems intellectually derived from the π-calculus
can be devised. The Aπ-calculus (Sangiori and Walker, 2001) has no
synchronization, and its processes terminate as soon as they output
a message. This should be implementable, if restrictive. The Java
library for Grid computing Jπ (Yarmolenko et al., 2004) does away
with non-deterministic guards on output, but retains the ability to
transmit channels over channels. This provides a practical tool for the
parallelization of algorithms in a manner analogous to MPI (Message
Passing Interface) (Walker and Dongarra, 1996), PVM (Parallel Virtual
Machine) (Ferrari, 1998; Geist, 1994), or IceT (Gray and Sunderam,
1997). Parallelization speeds up sequential code, but it does not allow
you to solve problems that are TM uncomputable.

210 Hypercomputing proposals

8.5.2 Difficulties in implementing channels

As with synchronization, it is not clear how channels may be imple-
mented in terms of physical law. If we have a physical network of
processors that do not move physically, then we can connect them by
wires or fibre optic cables, but:

1. These only allow fixed point-to-point communication.
2. They are limited in terms of the number of physical wires that

can be fed into any given processing unit. Indeed, the number of
wires that can be connected to a given chip has always been one of
the main limitations on computer chips and remains a substantial
technical challenge.

Taking into account (1), it is clear that a system using fixed point-
to-point communication can only emulate a system with dynamically
created communications channels by using multiplexing and forwarding
of messages. From the point of view of computational models, this
implies that we would have to emulate the π-calculus on the sort of
parallel fixed link network that can be described by CSP. Let us refer to
a π-calculus system emulated on a fixed link network as Πcsp.

If we do not assume wires or optical fibres, but instead assume a
broadcast network using radio waves, like GSM, then we can have
physically mobile processes, but at the expense of removing simultaneous
overlapping communication. A system such as GSM relies on time
multiplexing the radio packets so that, in fact, only a small finite number
of the processes can send messages at any one instant—one process per
frequency slot. Of course, GSM relies on base stations to forward packets
along fixed-point links, but a system such as Aloha used basically similar
techniques without the base stations.

It is evident that the π-calculus can be used to reason about the
behaviour of, and protocols for, phones and other computing devices
using radio networks: such problems were a motivation for its design.
It would be reasonable to accept that the behaviour of any physical,
wireless-linked, computer network can be described in the π-calculus.

However, it does not follow from this that there can exist a physically
constructable wireless network whose evolution will directly emulate
that of an arbitrary term in the π-calculus. Because of the exponential
decay of signal strength with distance and the finite bandwidth of
the radio channel, there are limits to the number of mobile agents
that can simultaneously engage in direct communication. We can allow
indirect communication by partitioning both the bandwidth and the
machines, setting aside one group of machines to act as relays, and
dividing frequency slots between those used by the relay machines and
mobile machines. But relying on indirect communication would amount
to emulating the π-calculus behaviour in Πcsp style. Since the number
of directly communicating mobile processes that can operate without
relays is modest, and since such a finite network of mobile processes
could itself be emulated Πcsp style on a finite fixed-link network, the

8.6 $-Calculus 211

computational power of physically realizable systems programmed in π-
calculus will not exceed that of a formalism such as CSP, which would
render it equivalent to other well-known computational models including
Turing Machines.

8.5.3 Wegner and Eberbach’s argument

Wegner and Eberbach’s argument for the super-Turing capacity of the
π-calculus rests on there being an implied infinity of channels and an
implied infinity of processes. Taking into account the restrictions on
physical communications channels, the implied infinity could only be
realized if we had an actual infinity of fixed-link computers. At this point
we are in the same situation as the Turing Machine tape—a finite but
unbounded resource. For any actual calculation a finite resource is used,
but the size of this is not specified in advance. Wegner and Eberbach
then interpret ‘as many times as is needed’ in the definition of replication
in the calculus as meaning an actual infinity of replication. From this,
they deduce that the calculus could implement infinite arrays of cellular
automata, for which they cite Garzon (1995) to the effect that the calculi
are more powerful than TMs.

We undercut this argument at two points:
1. We have shown that the synchronization primitive of the calculus

is not physically realistic. The modelling of cellular automata in
the calculus rests on this primitive.

2. The assumption of an infinite number of processes implies an
infinity of mobile channels, which are also unimplementable.

We therefore conclude that whilst the π-calculus can be practically
implemented on a single computer, infinite distributed implementations
of the sort that Wegner and Eberbach rely upon for their argument
cannot be implemented.

It is important to emphasize that, just as we are untroubled by
an unknown but bounded TM tape, we have no concerns about the
deployment of an unknown but bounded number of processes in the π-
calculus. However, Wegner and Eberbach are unclear as to whether they
mean this or a completed infinity of processes, which we think physically
impossible.

8.6 $-Calculus

8.6.1 Evolution and effective computation

The $-calculus (‘cost’ calculus; Eberbach, 2000; E.Eberbach, 2001) is
based on a process algebra extended with cost operators. The $-calculus
draws heavily on the π-calculus and on interaction machines: thus the
critiques of these in the section below also apply to the $-calculus.

A central claim is that ‘The unique feature of the $-calculus is that
it provides a support for problem-solving by incrementally searching for
solutions and using cost to direct its search’ (p. 7). Furthermore, ‘The

212 Hypercomputing proposals

$-calculus allows in a natural way to express evolution’ (p. 7). Let us first
examine the argument that evolutionary computing is not algorithmic
before considering the $-calculus itself in more detail.

Eberbach (2002) characterizes an evolutionary algorithm (EA) as
involving the repeated selection from a population under some selection
operation for reproduction that introduces variations through mutation
and crossover. When some selection threshold is reached, the final
population is deemed to be optimal. This characterization thus far corre-
sponds to Kleene’s unbounded minimization; that is, general recursion.
Eberbach goes on to elaborate a hierarchy of EAs and corresponding
TMs. The Universal Evolutionary Algorithm (UEA) consists of all
possible pairs of EA TMs and initial population tapes. An Evolutionary
Turing Machine (ETM) is a potentially infinite sequence of pairs of
EA TMs and population tapes, where each pair was evolved in one
generation from the previous pair subject to a common fitness (selection)
operator.

Eberbach claims that evolution is an infinite process because the
fitness operator is part of the TM and evolves along with it. This seems
unremarkable: it is well understood that a Universal TM may execute
a TM that modifies its own encoding. Hence, the TM’s termination
condition may change and may never be achieved.

Eberbach then makes the apparently stronger claim that EAs are a
superset of all algorithms, but this is either unremarkable or misleading.
EAs are generalized unbounded minimization and so are expressible as
general recursion or TMs. Given that any effective computation can be
captured as a TM or through general recursion, it seems plausible that
any effective computation can be evolved. However, it is not at all clear
how we would define a selection operator to decide if a required effective
computation had indeed been achieved. As noted above, the equivalence
of TM is undecidable, so even if we could specify the required effective
computation as another TM, there is no effective method for proving that
an arbitrary evolved TM is equivalent to the specification. Furthermore,
for EAs to be a superset of all algorithms, there must be something in
the set of EAs that is not itself an algorithm. However, Eberbach says
that all EAs can themselves be encoded as TMs, so all EAs must be
algorithms. Thus, it seems more likely that the set of algorithms is at
least as big as the set of all EAs.

Finally, Eberbach introduces the Universal Evolutionary Turing
Machine (UETM), which takes an ETM as its initial tape. He states
in theorems that the UETM halting problem is unsolvable by the UTM,
and that the UTEM cannot solve its own halting problem.

Eberbach speculates that ETM can be understood as a special case
of the Persistent Turing Machine. Thus the ETM must answer the
critique of Persistent Turing Machines made above. Eberbach goes to
to enunciate two more theorems. First, he claims that the UTM halting
problem is solvable by the ETM using the ‘infinity principle’, where
‘Fitness is defined to reach optimum for halting instances.’ As noted
already, we do not think it possible to construct an effective computation

8.6 $-Calculus 213

for such a fitness function. He then claims that the UTM halting problem
is solvable by ETM using evolution through a TM augmented with an
oracle. This argument again seems plausible—though curious, given that
Eberbach and Wegner say that the $-calculus does not gain its power
from an oracle (p. 7). However, as discussed above, if an ETM is a TM
with an oracle, then ETMs are not effectively computable and in general
are not materially realizable.

8.6.2 $-calculus and expressiveness

In Eberbach (2000), Eberbach explores the expressiveness of the $-
calculus. First, he shows that the λ-calculus and the π-calculus may
both be simulated in the $-calculus. He claims that ‘the λ-calculus is
a subclass of the $-calculus, because of the one-to-one correspondence
between reductions in λ-terms and in their corresponding $-calculus
terms’(p. 5); and that ‘π-calculus could be claimed to be a subclass
of the $-calculus, because each operator of π-calculus is simulated by a
corresponding operator(s) from $-calculus’(p. 5). We dispute the claimed
subclass relationship, but note that this is not expressed in (1) below
and do not consider this further.

Next, citing Milner’s proof that λ-calculus may be simulated by π
calculus (Milner, 1992), and drawing implicitly on the Church–Turing
equivalence of λ-calculus and TMs, he enunciates a hierarchy:

(1) TM ⊆ πC ⊆ $C

We note the use of ⊆ rather than ⊂ in πC ⊆ $C. Certainly,
Eberbach does not substantiate a strong hierarchy (⊂) at this stage by
demonstrating a $-calculus term that cannot be expressed as a π-calculus
term.

Next, Eberbach says that Sequential Interaction Machines (SIMs)
have less expressive power than Multi-stream Interaction Machines
(MIMs), and cites Wegner’s claim (Wegner, 1997a) that π-calculus has
only the same expressive power as SIMs, giving the additional hierarchy:

(2) πC ⊆ SIM ⊂ MIM

Finally, he sketches how MIMs may be simulated by $-calculus (MIM ⊆
$C), which combined with (1) and (2) gives:

(3) TM ⊆ πC ⊆ SIM ⊂ MIM ⊆ $C

Note that (3) greatly strengthens the $-calculus’s position in the
hierarchy relative to Church–Turing systems: (1) says that πC ⊆ $C,
but (3) now implies that πC ⊂ $C through transitivity of ⊆ and ⊂.
Thus, the $-calculus term that is not expressible in π-calculus may come
from an instance of MIM, but this is not displayed.

8.6.3 $-calculus and costs

As noted above, the $-calculus (E.Eberbach, 2001) is characterized by
the integration of process algebra with cost functions derived from

214 Hypercomputing proposals

von Neumann/Morgenstern utility theory. As well as sequential and
parallel composition, and inter-$-expression communication, cost choice
and mutating send constructs are also provided. Rather than having a
unitary expression form, the $-calculus distinguishes between composite
(interruptible) expressions, and simple (contract) expressions that are
conside red to be executed in one atomic indivisible step. While cost
choices are made in composite expressions and costs communicated in
simple expressions, they may be defined and evaluated in both layers.

Composition and choice are over countably infinite sets of
$-expressions, which Eberbach claims as one locus of the $-calculus’s
increased expressive power. However, λ-calculus is also capable of
expressing dynamically changing, arbitrary width, and depth nesting of
functions; the Y fixed-point finder being a classic example. $-calculus is
also supposed to support true parallelism; the implications for effective
computation are discussed below.

Costs are asserted as a central locus of the $-calculus’s strength. While
it does not prescribe a base set of cost functions, crisp (i.e. algorithmic),
probabilistic and fuzzy functions have all been developed. Users may also
define their own cost functions. However, it is not clear how costs actually
extend the $-calculus’s expressive power. Without costs, in particular
mutating send, the $-calculus is reminiscent of a higher-order process
algebra, which as Eberbach (2000) notes, is no more powerful than a
first-order system.

To add power to the $-calculus, user-defined costs must be crafted
in some formalism other than the $-calculus itself, or built from base
cost functions, where the other formalism or the base functions are
themselves more powerful than anything expressible by a either a
Church–Turing system or cost-less $-calculus. Either way, cost choice
over any one bounded set of cost values and mutation over a bounded
set of $-expressions are both Church–Turing.

Choice over an infinite set of cost values seems deeply problematic,
where even an approximation ultimately involves the expansion of all
possible execution traces of the invoking program.

Finally, the operational semantics for $-calculus is defined ‘in a
traditional way for process algebras’ (Eberbach (2000), Section 3) using
inference rules and a labelled transition system (LTS), where the LTS
always looks for a least-cost action. However, inference rules and LTS are
no more powerful than Church–Turing systems, so either the $-calculus
is a Church–Turing system or the semantics does not capture the full
expressive power of the $-calculus. In the latter case, it is not clear
how the meaning of $-calculus programs may actually be formalized or
implemented.

8.7 Conclusions

We have reviewed a number of proposals for trans-Turing machines.
In each case, we have seen that the machine does not live up to its

8.7 Conclusions 215

promise. Now in one sense this is not surprising, since many designs
of conventional computers have faults in them initially. A computer is
something very complicated and it is hard to get the design right initially.
Bugs are uncovered in the initial designs as you try to fill in details. Some
bugs survive until the first prototypes are built and tested.

Unless and until a hypercomputer is built, we have to reserve
engineering judgement on whether it is possible for one to exist. The
current proposals all seem to hit snags well before the prototype stage.

But suppose that a machine could be built that would solve some
hypercomputational problem. What use would it be?

Suppose that it gave us answers about some uncomputable function.
We would not be in a position to verify whether the answer was correct
unless there was an independent way of verifying it by algorithmic
means. We would need multiple different designs of hypercomputer,
working in different ways so that they could check each other for
consistency.

But in what sense would this hypercomputer be a computer?
It would not be a general-purpose computer. If it had general-purpose

computing abilities, up to the level of self-emulation, then it would
be possible to construct a self-referential problem analogous to the
paradoxical problem that Turing constructed to demonstrate the halting
problem.

Instead, it would a special-purpose measuring device rather than a
general-purpose computer. A Turing Machine can’t answer the question
‘How much do I weigh?’ From the standpoint of TM’s, this is an
uncomputable number. But a set of bathroom scales can answer it, and
we can check such scales for mutual consistency. In that sense, we already
have non-algorithmic devices that give us numerical answers—we just
don’t call them hypercomputers.

The key property of general-purpose computers is that they are
general purpose. We can use them to deterministically model any
physical system, of which they are not themselves a part, to an arbitrary
degree of accuracy. Their logical limits arise when we try to get them to
model a part of the world that includes themselves.

Bibliography

Adkins, C. J. (1983). Equilibrium thermodynamics. Cambridge Univer-
sity Press, Cambridge.

Aharonov, D., van Dam, W., Kempe, J., Landau, Z., and Lloyd, S. and
Regev, O. (2007). Adiabatic Quantum Computation is Equivalent
to Standard Quantum Computation. SIAM Journal of Computing,
37(1), 166-194.

Aristotle (1983). Aristotle’s Physics. Clarendon Press, Oxford.
Aristotle (1994–2000). Metaphysics. Internet Classics Archive by

Daniel C. Stevenson, Web Atomics. http://classics.mit.edu/Aristotle/
metaphysics.mb.txt.

Aristotle, R. H. (1960). Metaphysics. University of Michigan Press, Ann
Arbor, Michigan.

Barrow, J. (2005). The Infinite Book. Vintage, London.
Bashe, C. J., Johnson, L. R., Palmer, J. H., and Pugh, E. W. (1986).

IBM’s Early Computers. The MIT Press, Cambridge, MA.
Beckenstein, J. (1981). Universal Upper Bound on the Entropy-to-

Energy Ratio for Bounded Systems. Physical Review D, 23, 287–298.
Beggs, E. J. and Tucker, J. V. (2006). Embedding Infinitely Parallel

Computation in Newtonian Kinematics. Applied Mathematics and
Computation, 178(1), 25–43.

Bergman, G. D. (1955). A New Electronic Analogue Storage Device.
In Proceedings of the International Analogy Computation Meeting,
Brussels, pp. 92–95. Presses Académiques Européennes, Brussels.

Blakey, E. (2011). Computational Complexity in Non-Turing Models of
Computation. Electronic Notes in Theoretical Computer Science, 270,
17–28.

Blakey, E. (2008). A Model-Independent Theory of Computational Com-
plexity. Price: From Patience to Precision (and Beyond). Dissertation,
Computing Laboratory, University of Oxford.

Blakey, E. (2009). Factorizing RSA Keys, an Improved Analogue
Solution. New Generation Computing, 27(2), 159–176.

Bohm, D. (1952a). A Suggested Interpretation of the Quantum Theory
in Terms of ‘Hidden’ Variables. i. Physical Review, 85(2), 166–179.

Bohm, D. (1952b). A Suggested Interpretation of the Quantum Theory
in Terms of ‘Hidden’ Variables. ii. Physical Review, 85(2), 180–193.

Boltzmann, L. (1995). Lectures on Gas Theory. Dover Publications,
New York.

http://classics.mit.edu/Aristotle/metaphysics.mb.txt
http://classics.mit.edu/Aristotle/metaphysics.mb.txt

Bibliography 217

Bournez, O. and Cosnard, M. (1995). On the Computational Power and
Super-Turing Capabilities of Dynamical Systems. Technical Report
95-30, Ecole Normale Supérieure de Lyon.

Bousso, R. (2002). The Holographic Principle. Reviews of Modern
Physics, 74(3), 825.

Bracha, G. and Toueg, S. (1983). Asynchronous Consensus and Byzan-
tine Protocol in a Faulty Environment. Technical Report TR-83-559,
Computer Science Department, Cornell University, Ithaca, New York.

Brooks, J. (2005). Dreadnought Gunnery and the Battle of Jutland: The
Question of Fire Control. RoutledgeFalmer, London.

Bunimovich, L. A. and Khlabystova, M. A. (2002). Lorentz Lattice Gases
and Many-Dimensional Turing Machines. In Collision-Based Comput-
ing (ed. A. Adamatzky), pp. 443–468. Springer-Verlag, London.

Burghartz, J. N., Jenkins, K. A., and Soyuer, M. (1996). Multilevel-
Spiral Inductors using VLSI Interconnect Technology. IEEE Electron
Device Letters, 17(9), 428–430.

Ceruzzi, P. E. (2003). A History of Modern Computing. The MIT Press,
Cambridge, MA.

Chaitin, G. (1987). Information, Randomness and Incompleteness.
World Scientific, Singapore.

Chaitin, G. (1999). Information and Randomness: A Survey of Algo-
rithmic Information Theory. In The Unknowable. Springer-Verlag,
Singapore.

Chaitin, G. J. (1998). The Limits of Mathematics. Springer-Verlag,
Singapore.

Chomsky, N. (1956). Three Models for the Description of Language. IRE
Transactions on Information Theory, 2(3), 113–124.

Church, A. (1936). An Unsolvable Problem of Elementary Number
Theory. American Journal of Mathematics, 58, 345–363.

Cockshott, P. (1982). Orthogonal Persistence. Ph.D. thesis, Department
of Computer Science, University of Edinburgh.

Cockshott, P., Atkinson, M., Chisholm, K., Bailey, P., and Morrison, R.
(1984). POMS—A Persistent Object Management System. Software
Practice and Experience, 14(1), 49–71.

Cockshott, P. and Michaelson, G. (2007). Are There New Models
of Computation? Reply to Wegner and Eberbach. The Computer
Journal, 50(2), 232.

Cohen-Tannoudji, C., Diu, B., Laloë, F., and Hemley, S. R. (1977).
Quantum Mechanics, Vol. 1. Wiley Interscience, New York.

Copeland, J. (2002). Accelerated Turing Machines. Minds and Machines,
12, 281–301.

Cray, S. R., Jr (1986). Immersion Cooled High Density Electronic
Assembly. US Patent 4,590,538, 20 May.

Crozier, W. D. and Hume, W. (1957). High-Velocity, Light-Gas Gun.
Journal of Applied Physics, 28(8), 892–894.

da Costa, N. C. A. and Doria, F. A. (2009). How to Build a Hypercom-
puter. Applied Mathematics and Computation, 215(4), 1361–1367.

218 Bibliography

Davies, P. C. W. and Brown, J. R. (1993). The Ghost in the Atom:
A Discussion of the Mysteries of Quantum Physics. Canto Series.
Cambridge University Press, Cambridge.

Davis, M. (1965). The Undecidable. Raven Press, Hewlett, NY.
Davis, M. (1973). Hilbert’s Tenth Problem is Unsolvable. The American

Mathematical Monthly, 80(3), 233–269.
Dawson, T. (1909). Range Keeper For Guns. US Patent 941,626, 30

November.
de Solla Price, D. (1959). An Ancient Greek Computer. Scientific

American, 201, 60–67.
de Solla Price, D. (1974). Gears from the Greeks. The Antikythera

Mechanism: A Calendar Computer from ca. 80 bc. Transactions of
the American Philosophical Society, 64(7), 1–70.

d’Espagnat, B. (1976). Conceptual Foundations of Quantum Mechanics.
Addison-Wesley, Reading, MA.

d’Espagnat, B. (2003). Veiled Reality: An Analysis of Present-Day
Quantum Mechanical Concepts. Frontiers in Physics. Westview Press,
Boulder, CO.

d’Espagnat, B. (2006). On Physics and Philosophy. Princeton University
Press, Princeton, NJ.

Deutsch, D. (1985). Quantum Theory, the Church–Turing Principle and
the Universal Quantum Computer. Proceedings of the Royal Society
of London A, 97–117.

Deutsch, D. (1989). Quantum Computational Networks. Proceedings of
the Royal Society of London. A. Mathematical and Physical Sciences,
425(1868), 73–90.

DiVincenzo, D. P. (2000). The Physical Implementation of Quantum
Computation. Arxiv preprint quant-ph/0002077.

Dumaresq, J. S. (1905). A Rate of Change of Range and Deflection
Finder to Facilitate the Accurate Shooting of Guns. GB patent
GBD190417719 19040815.

Dunn, P. D. and Reay, D. A. (1973). The Heat Pipe. Physics in
Technology, 4, 187–201.

Eberbach, E. (2000). Expressiveness of $-Calculus: What Matters?
In Advances in Soft Computing, (eds M. Klopotek, M. Michalewicz,
and S. T. Wierzchon), pp. 145–157. Physica-Verlag, Heidelberg.

Eberbach, E. (2001). Process Algebra + Anytime Algorithms. In Appli-
cable Mathematics: Its Perspectives and Challenges (ed. J. C. Misra),
pp. 213–220. Narosa Publishing House, Mumbai.

Eberbach, E. (2002). On Expressiveness of Evolutionary Computation:
Is EC Algorithmic? In Proceedings of the 2002 World Congress on
Computational Intelligence WCCI’2002, pp. 564–569.

Einstein, A. (1920). Relativity. Methuen, London.
Einstein, A. (1965). Concerning an Heuristic Point of View toward the

Emission and Transformation of Light (English translation). American
Journal of Physics, 33(5), 367.

Bibliography 219

Ekdahl, B. (1999). Interactive Computing Does Not Supersede Church’s
Thesis. In Proceedings, Computer Science, 17th International Confer-
ence, San Diego, pp. 261–265. Association of Management and the
International Association of Management.

Englund, R. K. (1996). The proto-Elamite Script. In The World’s
Writing Systems (eds P. T. Daniels and W. Bright), pp. 160–164.
Oxford University Press, New York.

Etesi, G. and Németi, I. (2002). Non-Turing Computations via
Malament–Hogarth Space–Times. International Journal of Theoret-
ical Physics, 41(2), 341–370.

Farhi, E., Goldstone, J., Gutmann, S., and Sipser, M. (2000). Quan-
tum computation by adiabatic evolution. Arxiv preprint quant-
ph/0001106. Arxiv, USA.

Ferrari, A. (1998). JPVM: Network Parallel Computing in Java.
Concurrency Practice and Experience, 10(11–13), 985–992.

Feynman, R. P. (1986). Quantum Mechanical Computers. Foundations
of Physics, 16(6), 507–531.

Feynman, R. P., Leighton, R. B., and Sands, M. L. (1963). The Feynman
Lectures on Physics: Quantum Mechanics. The Feynman Lectures on
Physics. Pearson/Addison-Wesley, Reading, MA.

Feynman, R. P. (1999). Simulating Physics with Computers. In Feynman
and Computation: Exploring the Limits of Computers (ed. A. Hey),
pp. 133–153. Perseus Books, Cambridge, MA.

Fredkin, E. and Toffoli, T. (1982). Conservative Logic. International
Journal of Theoretical Physics, 21(3), 219–253.

Freedman, M. H., Kitaev, A., Larsen, M. J., and Wang, Z. (2003).
Topological Quantum Computation. Bulletin of the American Math-
ematical Society, 40(1), 31–38.

Freeth, T., Bitsakis, Y., Moussas, X., Seiradakis, J. H., Tselikas, A.,
Mangou, H., Zafeiropoulou, M., Hadland, R., Bate, D., Ramsey, A.,
et al. (2006). Decoding the Ancient Greek Astronomical Cal-
culator Known as the Antikythera Mechanism. Nature-London,
444(7119), 587.

Gannon, P. (2006). Colossus: Bletchley Park’s Greatest Secret. Atlantic
Books, London.

Garzon, M. (1995). Models of Massive Parallelism: Analysis of Cellular
Automata and Neural Networks. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Berlin.

Gea-Banacloche, J. (2002). Minimum Energy Requirements for Quan-
tum Computation. Physical Review Letters, 89(21), 217901.

Gea-Banacloche, J. and Kish, L. B. (2003). Comparison of Energy
Requirements for Classical and Quantum Information Processing.
Fluctuation and Noise Letters, 3, C3–C7.

Geist, A. (1994). PVM: Parallel virtual machine: a users’ guide and
tutorial for networked parallel computing. The MIT Press.

George, D. F. J. (2005). Reconfigurable Cellular Automata Computing
for Complex Systems on the SPACE Machine. Ph.D. thesis, University
of South Australia.

220 Bibliography

Gödel, K. (1962). On Formally Undecidable Propositions of Principia
Mathematica and Related Systems. Oliver and Boyd, Edinburgh.

Goldin, D. Q., Smolka, S. A., Attie, P. C., and Sonderegger, E. L. (2004).
Turing Machines, Transition Systems, and Interaction. Information
and Computation, 194(2), 101–128.

Gordon, P. (2004). Numerical Cognition without Words: Evidence from
Amazonia. Science, 306(5695), 496.

Gray, P. A. and Sunderam, V. S. (1997). IceT: Distributed Computing
and Java. Concurrency—Practice and Experience, 9(11), 1161–1167.

Grover, L. K. (1996). A Fast Quantum Mechanical Algorithm for
Database Search. In Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing, STOC ’96, New York,
pp. 212–219. ACM.

Halmos, P. R. (1960). Naive Set Theory. Van Nostrand, Princeton, NJ.
Hamkins, J. D. (2002). Infinite Time Turing Machines. Minds and

Machines, 12(4), 521–539.
Hamming, R. W. (1980). The Unreasonable Effectiveness of Mathemat-

ics. American Mathematical Monthly, 81–90.
Hartree, D. R. (1938). The Mechanical Integration of Differential

Equations. The Mathematical Gazette, 22(251), 342–364.
Hawking, S. W. (1974). Black Hole Explosions. Nature, 248(5443),

30–31.
Heyting, A. (1974). Mathematische Grundlagenforschung, Intuitionis-

mus, Beweistheorie. (German) Reprint. Springer-Verlag, Berlin.
Hodges, A. (1983). Alan Turing: The Enigma. Touchstone edition. Simon

and Schuster, New York.
Hodges, W. (1977). Logic. A Pelican original. Penguin Books,

Harmondsworth.
Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata

Theory, Languages, and Computation. Addison Wesley, Reading, MA.
Hunter, G. (1971). Metalogic: An Introduction to the Metatheory of

Standard Logic. Macmillan, London.
Ifrah, G. (1995). Histoire universelle des chiffres: l’intelligence des

hommes racontée par les nombres et le calcul. R. Laffont, Paris.
Isham, C. J. (1995). Lectures on quantum theory: mathematical and

structural foundations. Imperial College Press, London.
Joos, E. and Zeh, H. D. (1985). The Emergence of Classical Properties

through Interaction with the Environment. Zeitschrift für Physik B:
Condensed Matter, 59, 223–243. 10.1007/BF01725541.

Kieu, T. D. (2003). Quantum Algorithm for Hilbert’s Tenth Problem.
International Journal of Theoretical Physics, 42, 1461–1478.

Kim, Y.-H., Yu, R., Kulik, S. P., Shih, Y., and Scully, M. O.
(2000). Delayed ‘Choice’ Quantum Eraser. Physical Review Letters,
84(1), 1–5.

Kish, L. B. (2004). Moore’s Law and the Energy Requirement of
Computing versus Performance. IEE Proceedings on Circuits, Devices,
and Systems, 151(2), 190–194.

Bibliography 221

Kistermann, F. W. (1998). Blaise Pascal’s Adding Machine: New
Findings and Conclusions. IEEE Annals of the History of Computing,
20(1), 69–76.

Kleene, S. (1952). Introduction to Metamathematics. Van Nostrand,
Princeton, NJ.

Kneebone, G. (1963). Mathematical Logic and the Foundations of
Mathematics. Van Nostrand, London.

Knight, T. F., Jr and Younis, S. G. (1994). Asymptotically Zero Energy
Computing Using Split-Level Charge Recovery Logic. Technical
report. Massachusetts Institute of Technology, Cambridge, MA.

Knuth, D. E. (1976). Big Omicron and Big Omega and Big Theta.
SIGACT News, 8(2), 18–24.

Koiran, P. and Moore, C. (1999). Closed-Form Analytic Maps in One and
Two Dimensions can Simulate Turing Machines. Theoretical Computer
Science, 210(1), 217–223.

Kornai, A. (2003). Explicit Finitism. International Journal of Theoreti-
cal Physics, 42(2), 301–307.

Lakoff, G. and Nunez, R. (2001). Where Mathematics Comes From:
How the Embodied Mind Brings Mathematics into Being. Basic Books,
New York.

Landauer, R. (1961). Irreversibility and Heat Generation in the Comput-
ing Process. IBM Journal of Research and Development, 5, 183–191.

Landauer, R. (1991). Information is Physical. Physics Today, May,
23–29.

Landauer, R. (1996). The Physical Nature of Information. Physics
Letters A, 217(4–5), 188–193.

Landauer, R. (2002). Information is Inevitably Physical. In Feynmann
and Computing (ed. A. Hey). Westview Press, Oxford.

Landin, P. J. (1964). The Mechanical Evaluation of Expressions.
Computer Journal, 6(4), 308–320.

Lavington, S. (1975). A History of Manchester Computers. NCC
Publications, Manchester.

Lavington, S. H. (1980). Early British Computers: The Story of Vintage
Computers and the People Who Built Them. Manchester University
Press, Manchester.

Lavington, S. H. (1978). The Manchester Mark I and Atlas: A Historical
Perspective. Commununications of the ACM, 21(1), 4–12.

Lloyd, S. (2002). Computational Capacity of the Universe. Physical
Review Letters, 88(23), 237901.

MacKay, D. and Fisher, M. (1962). Analogue Computing at Ultra High
Speed. Chapman and Hall, London.

Mandler, G. and Shebo, B. J. (1982). Subitizing: An Analysis of its
Component Processes. Journal of Experimental Psychology: General,
111(1), 1–22.

Marlow, S. (ed.) (2010). Haskell 2010 Language Report. http://www.
haskell.org/onlinereport/haskell2010/.

McNamara, B. (2010). F# Language Reference. http://msdn.microsoft.
com/en-us/library/dd233181.aspx.

http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/onlinereport/haskell2010/
http://msdn.microsoft.com/en-us/library/dd233181.aspx
http://msdn.microsoft.com/en-us/library/dd233181.aspx

222 Bibliography

Menicucci, N. C. and Caves, C. M. (2002). Local Realistic Model for the
Dynamics of Bulk-Ensemble NMR Information Processing. Physical
Review Letters, 88(16), 167901.

Menninger, K. (1992). Number Words and Number Symbols: A Cultural
History of Numbers. Dover Publications, New York.

Mermin, N. D. (2007). Quantum Computer Science: An Introduction.
Cambridge University Press, Cambridge.

Mermin, N. D. (2009). Whats Bad About This Habit. Physics Today,
62(May), 8.

Michaelson, G. (1993). Interpreter Prototypes from Formal Language
Definitions. Ph.D. thesis, Department of Computing and Electrical
Engineering, Heriot-Watt University.

Milne, G., Cockshott, P., McCaskill, G., and Barrie, P. (1993). Realising
Massively Concurrent Systems on the SPACE Machine. In Proceedings
of IEEE Workshop on FPGAs for Custom Computing Machines, 5–7
April 1993, Napa, CA (eds D. A. Buell and K. L. Pocek), pp. 26–32.
IEEE Computer Society Press, Los Alamitos, CA.

Milner, R. (1992). The Polyadic π-Calculus: A Tutorial. In Logic
and Algebra of Specification (ed. F. L. Bauer and W. Brauer).
Springer-Verlag, Berlin.

Milner, R. (1993). Elements of Interaction: Turing Award Lecture.
Commmunications of the ACM, 36(1).

Minsky, M. (1972). Computation: Finite and Infinite Machines. Open
University Press, Milton Keynes.

Mizel, A., Lidar, D. A. and Mitchell, M. (2007). Simple proof of
equivalence between adiabatic quantum computation and the circuit
model. Physical review letters, 99(7), 70502.

Moore, E. F. (1956). Gedanken-Experiments on Sequential Machines.
Automata Studies, 34, 129–153.

Mott, N. (1929). The Wave Mechanics of Alpha-Ray Tracks. Proceedings
of the Royal Society, A126, 79–84.

Nagel, E. and Newman, J. R. (1959). Gödel’s Proof. Routledge and
Kegan Paul, London.

Neugebauer, O. (1955). Apollonius’ Planetary Theory. Communications
on Pure and Applied Mathematics, 8(4), 641–648.

Nidditch, P. H. (1962). Propositional Calculus. Routledge and Kegan
Paul, London.

Nissen, H. J., Damerow, P., and Englund, R. K. (1993). Archaic Book-
keeping: Early Writing and Techniques of Economic Administration
in the Ancient Near East, pp. 11–12. University of Chicago Press,
Chicago, IL.

Omnes, R. (1994). The Interpretation of Quantum Mechanics. Princeton
University Press, Princeton, NJ.

Peter, R. (1967). Recursive Functions. Academic Press, New York.
Polcari, M. R. (2005). Collaboration: The Semiconductor Industry’s

Path to Survival and Growth. In AIP Conference Proceedings,
Volume 788, p. 3. IOP Institute of Physics Publishing, Bristol.

Post, E. L. (1936). Finite Combinatory Processes. Formulation 1.
Journal of Symbolic Logic, 1, 103–105.

Bibliography 223

Power, R. J. D. and Longuet-Higgins, H. C. (1978). Learning to
Count: A Computational Model of Language Acquisition. Proceed-
ings of the Royal Society of London. Series B. Biological Sciences,
200(1141), 391.

Pratt, V. (1987). Thinking Machines: The Evolution of Artificial
Intelligence. Blackwell, Oxford.

Primas, H. (1998). Emergence in Exact Natural Sciences. Acta Polytech-
nica Scandinavica, 91(1998), 5–83.

Pugh, E. W., Johnson, L. R., and Palmer, J. H. (1991). IBM’s 360 and
Early 370 Systems. The MIT Press, Cambridge, MA.

Quinn, T. J. (1999). International Report: Practical Realization of the
Definition of the Metre (1997). Metrologia, 36(3), 211–244.

Rashleigh, S. C. and Marshall, R. A. (1978). Electromagnetic Accelera-
tion of Macroparticles to High Velocities. Journal of Applied Physics,
49(4), 2540–2542.

Rucker, R. (2004). Infinity and the Mind: the Science and Philosophy of
Infinity. Princeton University Press, Princeton, NJ.

Russell, G., Cowie, A., McInnes, J., Bate, M., and Milne, G. (1994).
Simulating Vehicular Traffic Flows Using the Circal System. Technical
report RR-94-157 (formally aiscia-1-94), University of Strathclyde.

Sangiori, D. and Walker, D. (2001). The π-Calculus. Cambridge Univer-
sity Press, Cambridge.

Sazonov, V. Yu. (1995). On Feasible Numbers. In Logic and Compu-
tational Complexity (ed. D. Leivant), pp. 30–51. Lecture Notes in
Computer Science, Volume 960. Springer-Verlag, Berlin.

Scardigli, F. (1999). Generalised Uncertainty Principle in Quantum
Gravity from Micro-Black Hole Gedanken Experiment. Physics Letters
B, 452, 39–44.

Schenck, T. O. E. C. (1883). Manufacture of Gunpowder. US Patent
273,209, 27 February.

Sears, F. W. and Salinger, G. L. (1975). Thermodynamics, kinetic theory,
and statistical thermodynamics. Addison-Wesley, Boston, MA.

Shannon, C. (1948). A Mathematical Theory of Communication.
The Bell System Technical Journal, 27, 379–423 and 623–656.

Shaw, P., Cockshott, P., and Barrie, P. (1996). Implementation of Lattice
Gases Using FPGAs. Journal of VLSI Signal Processing, 1251–1256.

Shor, P. W. (1999). Polynomial-Time Algorithms for Prime Factoriza-
tion and Discrete Logarithms on a Quantum Computer. SIAM Review,
41(2), 303–332.

Shor, P. W. (2004). Progress in Quantum Algorithms. Quantum
Information Processing, 3(1), 5–13.

Shor, P. W. (1995). Scheme for Reducing Decoherence in Quantum
Computer Memory. Physical Review A, 52(4), R2493–R2496.

Smith, W. D. (2006a). Church’s Thesis Meets the N -Body Problem.
Applied Mathematics and Computation, 178(1), 154–183.

Smith, W. D. (2006b). Three Counterexamples Refuting Kieu’s Plan
for ‘Quantum Adiabatic Hypercomputation’ and Some Uncomputable
Quantum Mechanical Tasks. Journal of Applied Mathematics and
Computation, 187(1), 184–193.

224 Bibliography

Spinellis, D. (2008). The Antikythera Mechanism: A Computer Science
Perspective. Computer, 41(5), 22–27.

Stapp, H. P. (1972). The Copenhagen Interpretation. American Journal
of Physics, 40, 1098–1116.

Steane, A. (1996). Multiple-Particle Interference and Quantum Error
Correction. Proceedings of the Royal Society of London. Series
A: Mathematical, Physical and Engineering Sciences, 452(1954),
2551–2577.

Suzuki, S. and Matsuzawa, T. (1997). Choice between Two Discrimina-
tion Tasks in Chimpanzees (Pan troglodytes). Japanese Psychological
Research, 39(3), 226–235.

Swinbourne, A. (1875). Picture Logic or the Grave Made Gay.
Longmans, Green, London.

Temple, R. K. G. (2000). The Crystal Sun: Rediscovering a Lost
Technology of the Ancient World. Century, London.

Thomson, W. (1876a). Mechanical Integration of the Linear Differential
Equations of the Second Order with Variable Coefficients. Proceedings
of the Royal Society of London, 24, 269–271.

Thomson, W. (1876b). On an Instrument for Calculating (
∫

ϕ(x)
ψ(x)dx), the Integral of the Product of Two Given Functions.
Proceedings of the Royal Society of London, 24, 266–268.

Tiles, M. (1989). The Philosophy of Set Theory: An Introduction to
Cantor’s Paradise. Blackwell, Oxford.

Tripp, J. L., Mortveit, H. S., Hansson, A. A., and Gokhale, M. (2005).
Metropolitan Road Traffic Simulation on FPGAs. In Proceedings
of the 13th Annual IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, 2005 (FCCM 2005), 18–20 April 2005,
pp. 117–126.

Turing, A. (1937). On Computable Numbers, With an Application to
the Entscheidungsproblem. Proceedings of the London Mathematical
Society, 42, 230–265.

Turing, A. (1939). Systems of Logic Based on Ordinals. Proceedings of
the London Mathematical Society, Series 2, 45, 161–228.

Turing, A. (1950). Computing Machinery and Intelligence. Mind (49),
433–460.

Turing, A. (2004). Lecture on the Automatic Computing Engine, 1947.
In The Essential Turing (ed. B. J. Copeland). Oxford University Press,
Oxford.

Turner, D. and Pierce, B. (2000). Pict: A Programming Language Based
on the pi-Calculus. In Proof, Language and Interaction: Essays in
Honour of Robin Milner (eds G. Plotkin, C. Stirling, and M. Tofte),
pp. 455–494. The MIT Press, Cambridge, MA.

von Neumann, J. (1945, 30). First Draft of a Report on the EDVAC,
Contract No. W-670-ORD-4926, Between the United States Army
Ordnance Department and the University of Pennsylvania Moore
School of Electrical Engineering. University of Pennsylvania.

von Neumann, J. and Morgenstern, O. (1944). Theory of Games and
Economic Behavior. Princeton University Press, Princeton, NJ.

Bibliography 225

Walker, D. and Dongarra, J. (1996). MPI: A Standard Message Passing
Interface. Supercomputer, 12(1), 56–68.

Wass, C. A. A. (1955). Introduction to Electronic Analogue Computers.
Pergamon Press, London.

Wegner, P. (1997a). Interactive Software Technology. In The Computer
Science and Engineering Handbook (ed. A. B. Tucker, Jr). CRC Press,
Boca Raton, FL.

Wegner, P. (1997b). Why Interaction is More Powerful than Algorithms.
Communications of the ACM, 40(5), 80–91.

Wegner, P. and Eberbach, E. (2004). New Models of Computation.
Computer Journal, 47, 4–9.

Wigner, E. (1960). The Unreasonable Effectiveness of Mathematics
in the Natural Sciences. Communications in Pure and Applied
Mathematics, 13(1), 1–14.

Wilczek, F. (1982). Magnetic Flux, Angular Momentum, and Statistics.
Physical Review Letters, 48(17), 1144–1146.

Wilder, R. L. (1978). Evolution of Mathematical Concepts. Open
University Press, Milton Keynes.

Williams, F. C. (1948). A Cathode Ray Tube Digit Store. Proceedings
of the Royal Society of London, 195A, 279–284.

Wisdom, J. O. (1953). Berkeley’s Criticism of the Infinitesimal. The
British Journal for the Philosophy of Science, 4(13), 22–25.

Wolfram, S. (2002). A New Kind of Science. Wolfram Media, Inc.,
Champaign, IL.

Yarmolenko, V., Cockshott, P., Borland, E., and Mackenzie, L. (2004).
Jπ INTERFACE: A Java Implementation of the π-Calculus for
Grid Computing. In Proceedings of the Middleware Grid Conference,
October.

Younis, S. G. (1994). Asymptotically Zero Energy Computing Split-
Level Charge Recovery Logic. Ph.D. thesis, Ph.D. Dissertation, MIT,
Cambridge, MA.

Zalka, Ch. (1999). Grover’s Quantum Searching Algorithm is Optimal.
Physical Review A, 60(4), 2746–2751.

Index

∗ (multiplication), 56
+ (addition), 56
− (subtraction), 57
/ (division), 57
<< e >> (Gödel number), 62
SUCC (successor), 56
⇒ (implication), 48
⇒β (β reduction), 76
ℵ0 (aleph null), 65
ℵ1 (aleph one), 66
β (beta) reduction, 76
∩ (intersection), 52
∪ (union), 52
∃ (exists), 53
∀ (all), 53
∈ (member), 51
λ (lambda) calculus, 75
λ calculus, 81
λ expression, 75
∧ (and), 48
∨ (or), 48
¬ (not), 48
⊂ (subset), 52
{} (empty set), 51
mod (remainder), 57
\ (difference), 52

Fredkin
and Tofoli, 119

abacus, 25, 44
abakion, 24, 25
absolute, 97

temperature, 103
absolute infinity, 179
abstract, 6, 10, 12, 24, 85, 191

maths, 191
abstract machine, 81
abstraction, 11, 12, 84
accelerating, 187, 188, 194, 195

Turing, 188
acceleration, 127, 188, 194
accuracy, 30, 35, 41, 83, 167, 168,

170, 171, 181, 184, 190,
197, 198

accurate, 10, 24, 32, 35, 36, 42, 83,
182, 198

Ackerman’s function, 185

actions, 17, 23
active, 83, 196, 198

gate, 116
actualized infinity, 178
add, 30, 35, 43–45, 86, 198, 200
adding, 23–25, 27, 42, 83
addition, 23, 24, 30, 35, 37, 39, 43, 45,

56, 84, 196
address, 20, 41, 86, 88
adiabatic, 101, 121, 162

chip, 122
circuit, 122
system, 101

adiabatic chip, 122
adjoint, 141
advanced, 12, 23, 28, 34, 41, 180
aerodynamic, 83
aft, 37, 38
ahead, 126
aleph null, 65
aleph one, 66
algebra, 10, 34

associative, 143
algorithm, 45, 68, 172, 192, 198
algorithmic, 191, 201, 215
algorithmically, 193
algorithms, 136
aliasing, 200
aligned, 37, 38
alignment, 41
amber, 18, 19
AMD, 92
AMD K10, 94
amplified, 118
amplifier, 84
amplitude, 157
amplitudes, 157
analogous, 34, 84, 195, 215
analogue, 9, 34, 35, 39, 41, 83,

167–171, 187, 190, 196,
198, 201

computer, 84, 195
device, 84
machine, 84
system, 196

analogy, 34, 84, 187
analysis, 7, 17
Analytical Engine, 82

ancient, 24, 28, 32, 34
Greek, 30

ancillary qubit, 161
and, 48

gate, 88
truth table, 49

angle, 38, 180, 197
between, 38

angular, 30, 32, 35, 192
angular momentum, 137, 138, 143

z -component, 144
animals, 11, 13
anti-realism, 163
Antikythera, 32, 34–36, 42

device, 33, 35
antor diagonalization, 185
aperture, 197, 198
Apollonius, 32, 33
Apollonius’

model, 33
apparatus, 84, 191, 197–199,

201
application, 7, 15, 127, 169, 192
apply, 85
applying, 194
appropriately, 119
approximate, 32, 93, 167,

170, 171
approximation, 32, 33, 106, 168
arbitrarily, 170, 181, 192–194

high, 193
small, 192, 194

arbitrary, 31, 105, 167, 182, 192,
195, 215

architecture, 26, 123
Aristotle, 177
arithmetic, 23, 35, 37, 42, 45, 56,

125, 198
human, 68
Peano, 55

array, 89, 200
assertion, 105
assigned, 25, 86, 98
associate, 14
associated, 9, 98, 171
associative, 143
astronomers, 33, 34
astronomy, 32, 42

Index 227

Athlon, 92
atoms, 169, 170, 192
automata, 123, 196
automatic, 7, 42, 86
automaton, 17, 20–22, 127, 196
average, 6, 87
Avogadro, 106
axiomatic, 193
axioms, 167

Peano arithmetic, 57
axis, 32, 33, 37, 40, 90,

183, 197
axoiom, 50

Babbage, C., 82
ball, 119, 194, 195

logic, 119
ballistic

engineering, 194
barrel, 45, 195
base case, 55

inductive proof, 57
recursive definition, 56

basis, 143, 144, 146, 147, 165
change, 146
computational, 143, 152
standard, 145, 153

basis states, 160, 161
beads, 24, 25, 44
beams, 199
bear, 34, 40, 85, 198
bearing, 35, 37
bee, 9
Beggs, 193–195
behaves, 105
behaviour, 9, 19, 20, 96, 97
Bell Laboratories, 112
below, 15, 21, 25, 168, 172
Bergman, 83
beta barium borate, 131
big O notation, 175
billiard, 119, 195

ball, 119, 195
ball logic, 119

binary, 184, 194, 196
switching, 91

bits, 88, 170, 180,
184, 198

black, 171, 183, 184, 187,
188, 190

hole, 183, 190
Blakey, 198, 200
body, of λ function, 75
Bohm, 135, 164
Bohr, 128, 133, 134, 163
Bohrian view, 163
Boltzmann, 96, 108, 111, 114, 115

Boltzmann’s
relation, 110
constant, 108, 115

boolean, 85
boolean algebra, 10
Born Rule, 141, 157
bound, 116, 169
bound variable, of λ function, 75
bounded, 85
box, 8, 109
bra vector, 141
braid, 162
brain, 10, 17, 20, 165
brightness, 200
British, 86
Brouwer, L. E. J., 179
Busicom, 92

Calabria, 35
calculate, 39, 42
calculated, 25, 34
calculating, 26
calculation, 6, 9, 15, 26–27, 30, 35, 36,

41, 42, 84, 192, 193, 198
calculator, 25, 43, 45, 46, 90
calculi, 25
calculus, 9, 10, 191, 193
calendar, 28
Callipic, 30, 35
cannon, 194, 195
cannonball, 194, 195
canonical, 106
Cantor, 185

diagonalisation, 66
Cantor diagonalization, 178
Cantor, G., 52, 64, 179
capacitance, 93

of gates, 93
of the gate, 94

capacitor, 85
capacity, 17, 184
car, 126
cardinal number, 65
cardinality

of reals, 67
cartesian, 37, 38
cathode, 87
cause, 88, 184
caused, 107, 199, 200
causing, 188
cell, 88

current, 69
of Turing Machine tape, 69

Central processing Unit, 80
Chaitin, G., 79
change

of state, 99

of the system, 101
charge, 10, 43, 85, 121, 195

on, 87
on the gate, 92

Charge Recovery Logic, 121
charged, 121
charging, 93

and discharging, 120
cheapening, 90
cheaper, 89
children, 24, 27
chip, 20, 88, 114, 122
Chomsky, 17, 20

class, 17
Church, 187
Church–Turing thesis, 176
circle, 6, 14, 33, 197–199
circle free, 72
circles, 7
circuit, 17, 90, 172

board, 123
circular, 30, 32, 33, 37, 42, 197
circumference, 6
class, 10, 17, 20, 117, 196
classes, 17

of grammars, 17
classical, 95, 167, 169, 171, 172, 192,

193, 198
thermodynamics, 96

classical worls
appearance of, 149

classified, 17, 20
clause, 18
Clausius, 102, 109

entropy, 111
Clausius’

Theorem, 104
theorem, 104

clay, 12, 13, 15
clock, 20, 28, 34, 35, 39, 40, 42, 85,

172, 189, 194
speed, 115
cycle, 93, 189
dial, 41
speed, 94, 116
ticks, 189

cloud chamber, 134
CMOS, 91–93, 114, 115, 121, 172

gate, 121
chip, 93
circuit, 120
gate, 93, 115

CNOT, 151
gate, 151, 161
matrix, 151
operator, 151

code, 86, 192

228 Index

coded, 86
cog, 46
coherence time, 159
coins, 24
cold, 95

reservoir, 102
colder, 101
collection, 93, 194

of messages, 113
collections, 24
collision, 119
colours, 19
combination, 19, 21, 89
combine, 91
combined, 37, 41
commercial, 42, 46
commutative, 143
compact, 41, 46
compilation, 81
complete, 59
completeness

topological, 139
Completeness Hypothesis, 164, 166

Weak, 134
complex

conjugate, 140
numbers, 139, 140

complexity, 116, 158, 172, 174, 201
constant time, 175
exponential time, 175
linear time, 175
non-deterministic polynomial

time, 175
polynomial time, 175

complicated, 28, 215
component, 17, 22, 33, 37, 39, 99,

169, 188, 200
of angular momentum, 143

composed, 104
composite, 104

system, 110
computability, 78, 187
computable, 183, 184, 187, 192

real, 184
computation, 6, 7, 14, 27, 31, 41, 59,

118, 170, 187, 188
computational, 14, 15, 17, 35, 184,

194, 196
aids, 15
basis, 150
power, 10

compute, 8, 26, 34, 118, 184, 188,
189, 191, 192

computed, 183, 188
computer, 7–10, 15, 17–19, 28, 34,

39, 41–43, 80, 83, 171,

184, 187–189, 191,
193–195, 215

science, 9, 184
technology, 116

computing, 6, 7, 9–11, 14, 23,
26, 28, 32, 34, 37, 39, 83,
171, 172, 184, 188, 190, 191,
193, 215

machine, 123
with real numbers, 84
work, 122

conception
of entropy, 111

conceptual, 16
conclusion, 50
configuration, 100
configurative, 100

work, 104
confusion, 197
connection, 8–10, 93

to ground, 93, 121
consciousness, 165
conservative

logic, 117
conservative logic, 117
conserved, 99
consistent, 59
constant, 15, 39, 83, 169, 172, 182,

183, 194
of proportionality, 108

constant time complexity, 175
constrain, 168, 197, 200
constraint, 101, 171, 188, 197, 200
constraints, 97, 191, 193, 194
constructive methods, 179
constructivism, 179
consumption, 171, 172

per square centimetre, 94
context, 17, 20–22

sensitive, 22
continuous, 34, 35, 84, 167, 192
continuously, 85, 167, 193
continuum, 192
contradiction, 59, 167

proof by, 179
contradictions, 9
control, 7, 17, 20, 23, 42

computers, 42, 83
controlled NOT, 151
cooling, 94, 172
coordinates, 38, 97, 195, 199
Copeland, 187, 188
Copenhagen interpretation, 163,

164, 166
Copernican revolution, 164
Copernicus, 166
core, 87

memory, 88
cores, 89
corpuscular, 96
Costa, 191
count, 11, 13, 15, 17, 20, 22, 23, 24,

27, 45, 90
countable, 65
counted, 20, 26
counters, 23–26
counting, 12, 14, 16–20, 22–25, 27,

108, 181
aloud, 20, 23, 27
as, 22

CPU, see Central processing Unit, 123
Cray, 124
current, 18, 32, 41, 91, 171, 172, 215

flow, 93
state, 69, 123
symbol, 69

currently, 114, 201
curve, 199
cycle, 20, 29, 34, 35, 85, 189

from, 102
time, 87

cycles, 19
cyclical, 87

d’Espagnat, 136, 163–165
D-time, 162
Da Costa, 190, 191
Davis, 191
Davisson–Germer experiment, 133
de Broglie, 133, 135, 164
decidability, 176
decidable, 59, 176
decide, 112
decimal, 41, 84, 183, 187, 188

fraction, 65
decision procedure, 176
declarative language, 57
decode, 88

logic, 89
tree, 89

decoded, 89
decoding, 126
decoherence, 148, 149, 152, 158,

160, 162
time, 158, 160

deduce, 193
deductive proof, 50
deep, 29, 94
define, 18, 21, 103, 109, 168, 184, 191

a
different state, 109
random bit, 184
real, 191

defined, 19, 20, 98, 109, 113, 183

Index 229

defining, 103
definite, 97, 171, 180, 188
definition, 86, 184

of heat, 101
recursive, 56

expression, 62
deflection, 36, 39
degenerate, 107
degree, 43, 84, 85, 167, 182, 183, 189,

191, 192, 215
of accuracy, 184
of freedom, 97, 120
of precision, 167

delay lines, 86
delayed choice quantum eraser, 132
delayed choice quantum eraser

experiment, 132
demultiplexer, 89
denumerable, 65
depletion, 92

zone, 92
detector, 199
determination, 106, 192
determine, 12, 26, 169, 191, 193, 201
determined, 107, 168, 192
determining, 112
deterministic, 120, 136, 137, 145, 152,

167, 174
Deutsch, 135, 162, 165, 166
deviation, 32, 85
device, 10, 20, 25, 32, 34–37, 39, 42,

84, 168, 171, 191, 215
DeWitt, 165
diagonalisation, 66
diagonalization

Cantor, 178, 185
dial, 28, 29, 35, 40
diameter, 31
difference, 52
differential

analyser, 40, 84
equations, 193
form, 104
gearing, 32

diffracted, 200
diffraction, 129–131, 197, 200
digit, 43, 84, 184, 188
digital, 10, 15, 34, 35, 41–44, 170,

171, 198, 200
computer, 15, 83
computers, 10, 85
machine, 83

digits, 22, 30, 35, 41, 84, 192, 197
encode, 113
leading, 35

digitword, 21
dimension, 90, 167, 197, 198, 201

of tensor product space, 147
dimensional, 169, 170, 200
Diophantine equation, 158
Dirac, 140

notation, 140, 141, 152
direction

of Turing Machine tape, 69
disc, 25
discharge, 93, 121
discharged, 121
discharging, 93
disk, 38, 42, 122
display, 30, 198
dissipate, 91
dissipated, 100, 172
dissipation, 91
dissipative, 100, 110, 188

work, 100
distance, 32, 88, 168, 169, 181,

183, 194
between, 94

divided, 84, 104, 169
into, 123

DiVincenzo, 158
divisible, 181, 183
division, 57
doping, 91
double

slit experiment, 130, 132, 133
well potential, 159

double-slit experiment, 130
drachma, 24, 25
drain, 91
DRAM, 89
draw, 21
drive, 96
dual, 140, 141
Dumaresq, 37–39, 41, 42, 152
dynamical variables, 137, 139

earth, 32, 33, 180
earthquake, 112
East, 37
eccentric, 32, 33

model, 33
eclipse, 30, 34
economic, 12, 122
economy, 89, 171
effective, 6, 7, 114

unreasonably, 6
effective calculability, 78
effective procedure, 68, 174
effectively, 108
effectiveness, 7, 11

of maths, 11
effects, 32, 84
efficiency, 103, 112

efficient, 113
effort, 16, 122
eigenspace, 141, 152
eigenstate, 165

normalised, 142
eigenvalue, 141, 152

degenerate, 141
of unitary operator, 144

eigenvector, 141, 144, 152
Einstein, 7, 129, 133, 148, 192
electric, 87, 192
electrical, 17, 20, 41, 100

energy, 102
electro-magnetic, 192
electromagnetic, 90, 195

theory, 129
electron, 85, 133, 134, 137, 138, 145,

159, 192
magnetic properties, 145
orbital, 133
spin, 139, 143, 145, 160

electronic, 17, 46, 83
calculator, 90
computer, 122

ellipse, 33
elliptical, 32
elongated, 125
empty set, 51
emulate, 118, 196
encode, 112
encoded, 112, 190

in binary, 125
encoding, 113, 184, 190, 191, 193
enemy, 38, 39, 42

course, 38
energies, 99
energy, 96, 111, 115, 136, 142, 172,

182, 184, 189, 192
kinetic, 136
level, 107, 159
levels, 110
of the particles, 100
of the system, 99
potential, 136

engine, 86
engineering, 6, 7, 112, 191, 194, 215
English, 20, 21, 23
Enlightenment, 164, 166
ensemble, 159
entangled, 131, 132, 147, 149, 159

photons, 148
state, 149
system, 147–149

entanglement, 146–152, 154, 158,
160, 165

state, 147
entanglment

230 Index

state, 147
entropy, 95, 104, 105, 110, 111, 184

of the environment, 115
reduction, 115
to decrease, 105

entropy , 184
enumerable, 65, 188
enumeration, 12
environment, 96, 148, 149, 158, 167
epicycle, 32, 33
epistemology, 163, 164
EPR paradox, 148
equal, 32, 34, 103, 171, 180, 181
equality, 103
equally, 97

likely, 112
probable, 108

equation, 31, 34, 107, 167, 168,
183, 193

of state, 97
equations, 7, 10
equilibrium, 96, 99, 110, 184

state, 109
state, 97

equipment, 37, 84, 198
error, 23, 28, 34, 41, 83, 84, 158, 160,

169, 171, 172, 192, 193,
195–197

bit flip, 160, 161
correcting code, 160
correction, 162
detection and correction, 160
due, 197
due to uncertainty, 84
phase, 161

Esti, 188
evaluate, 191
evaluation, 198
event, 120, 184, 188, 189

horizon, 188, 189
events, 128
Everett, 164
exact, 42, 107, 171, 180
exchanged

with the surroundings, 104
excited state, 159
excluded middle

law of, 179
execute, 102, 188

a cycle, 102
execution, 198
Exeligemos, 30
existence proof, 179
existential quantification, 53
exitonic state, 160
expand, 18, 100
expansion, 183, 196

experimental, 6, 95
explain, 7, 33
explained, 86
explanation, 119
explicit, 34

representations, 34
explicitly, 187
explosion, 98, 195
explosive, 195
exponential, 90, 172
exponential time complexity, 175
exponentially, 84, 91, 170,

187, 194
expression

recursive definition, 62
expressive power, 78, 176

fact, 32, 192
factor, 180, 198, 199, 201

of 10, 84
of four, 170
prime, 198

factoring, 158
factorization, 136, 198
faculty, 14
fairy

hall, 190
queen, 190
stuff, 190

false, 20, 48, 85, 188
falsity, 112
feature, 90

size, 114
Feynman, 130, 135
field

magnetic, 145
fields, 128
finger, 16, 17

counting, 16, 17
fingers, 17, 27
finite, 17, 19, 20, 95, 183, 184,

187–191, 193–195
macroscopic, 96
number, 17, 192
state, 17, 19, 20, 124

automaton, 123
machine, 123

finitism, 179
fire, 42, 180, 194
firing, 35, 36
first, 35, 37, 41, 43, 87, 109,

119, 168, 180, 187, 197, 198,
200, 215

digital, 43
Law, 101

fit
the, 123

fitted, 28, 41
five, 20, 22
fixed, 19, 37, 86

at one mole, 97
internal, 106
mass, 97
stars, 32

floating point, 185
flux qubit, 159
focal, 197, 200

length, 201
focus

on, 96
formal, 17, 24, 192
formalism, 168, 178
formally, 17
formula, 106
Fortran, 34
fraction, 10, 11, 94, 180

decimal, 65
frame, 28, 37, 38, 119, 189

of reference, 31, 38
Fredkin, 117, 195

gate, 118
and Tofoli, 119
gate, 118

freedom, 85
frequency, 116, 172
friction, 40, 43, 100
function, 28, 31, 83, 101, 172, 184,

191, 192
composition, 146
of state, 99, 105
square integrable, 139

functional, 196
fundamental, 96, 167, 171, 182,

187, 192

Gödel incompleteness theorems, 61
Gödel number, 62
Gödel, K., 61, 173
Gödelisation, 61
garbage, 118

bits, 118
gas, 105, 192, 195

constant, 97
is compressed, 101
law, 97

gate, 85, 171, 172
2-qubit, 151
count, 90
efficiency, 116
insulation, 94
one-qubit, 151
two-qubit, 151

Gaussian, 6, 168
distribution, 6

Index 231

gear, 30, 43, 45
gearing, 34, 37, 39, 40, 43
gearwheel, 30, 34, 46
general

purpose, 34, 41, 215
general recursion, 74
geometric, 7, 11, 37, 198

entities, 7, 11
geometry, 7, 34, 38, 183, 197
German, 86
GHz, 85, 172
gods, 190
Gover operator, 157
grammar, 18–23
grammatical, 18, 21, 23
graph, 42
gravitational, 171, 182, 183,

188, 193
gravity, 171, 195
Greek, 24, 25, 30, 32, 33, 180

astronomers, 33
ground, 93

state, 109
ground state, 159
group, 15, 26, 28, 198
Grover operator, 156
Grover’s algorithm, 155–157
grow, 169, 170, 198, 201

as the square, 125
exponentially, 170

growth, 90, 198
in processor power, 116

gun, 35–37, 195
control, 83
gas, 195
rail, 195

gunners, 35, 36, 39
gunnery, 36, 39, 41
gunpowder, 194

Hadamard
operator, 145, 154, 156
superposition, 166

halting, 188, 191, 215
function, 191

halting problem, 158, 176
Halting Universal Turing Machine, 73
halts, 191
Hamilton, 136
Hamiltonian, 136, 137, 142, 145, 148,

153, 162
time-independent, 145

Hamkins, 188
Hamming, 7, 11, 12
Hamming distance, 160
hand, 15–17, 25, 26, 90, 194
Harvard machine, 82

Haskell, 57
head

of Turing Machine tape, 69
heat, 91, 95, 114, 188

dissipation, 91
limit, 94

bath, 106
capacity, 105
dissipation, 91
engines, 95
entering, 99
is exchanged, 100
reversibly, 103
transfer, 104
transferred, 101

Heisenberg, 133, 197
hermitian, 152

matrix, 144
operator, 141, 144, 145

hermitian operator, 150
high, 35, 43, 171, 193, 194

entropy, 108
speed, 86

higher, 171, 195
entropy, 105

highly, 41, 195
Hilbert space, 139–142, 144, 147, 148,

150, 152
dimension, 139
infinite-dimensional, 139

Hilbert’s programme, 59, 61, 67
Hilbert’s Tenth Problem, 158
Hilbert, D., 59, 60, 178
hole, 162
holographic principle, 185
hot reservoir, 102
hotter, 101

body, 101
hour, 35, 90
human, 7, 9, 14, 18, 28, 86, 187

computer, 86, 187
HUTM, see Halting Universal Turing

Machine
Huygens, 129
hydrogen, 133, 137
hyperbolic, 198, 199

curve, 198, 199
hypercomputation, 158
hypercomputational, 176
hypercomputer, 158, 191, 195, 215
hypercomputing, 162, 187, 191
hypothetical, 188, 193

idea, 181, 188, 190, 191
of being, 167

ideal, 97
gas, 97

law, 97
idealized, 101, 191
idempotent, 152
identity element, 143
identity operator, 154
Iinterpretation

Many Worlds, 165
imortals, 190
implement, 30, 45, 120
implementation, 33, 37, 87
implemented, 34, 84, 196
implication, 48, 181

truth table, 49
implications, 10, 115, 170
impurity ion, 159
in

equilibrium, 96
incompleteness theorems, 61
indicate, 22, 24, 25, 32, 116, 182, 194
indicator, 97

diagram, 97
induces, 91
induction, 89
induction case, 57
inductive proof, 57
inductors, 121
inferance rule, 50
infinitary, 191, 193
infinite, 181, 187–191, 193, 194

computation, 187
energy, 189
number, 194
residual, 189
time, 191

infinite list, 60
infinite tape, 178
infinitely, 181, 183, 187, 188, 194

fast, 188
infinitesimal, 100

change, 100
infinities, 187, 193
infinity, 64, 177

absolute, 179
actualized, 178
mathematical, 179
physical, 179
potential, 178

infintely, 193
information, 11, 41, 86, 87, 108, 163,

184, 188, 190
and entropy, 114, 115
between, 41, 123, 188
content, 11, 112
content of stream, 113
required, 112
theory, 111

inner product, 139, 140

232 Index

inner product space, 139
input, 20, 85, 191

output, 118
variables, 118

inputs, 20, 84
instruction, 86
instructions, 86
instrumentalism, 134, 135, 163
insulating, 91
insulation, 94
insulator, 93
integer, 30, 42, 109, 180, 181,

184, 198
points, 198
positive, 56

integers, 11
integral, 34, 85, 191
integrate, 121
integrated, 41
integrated circuit, 91
integrator, 39, 40, 42
Intel, 91, 92
inter-subjective, 163
interference, 129–131, 149
internal, 30, 34, 98

energy, 98, 99
internally, 17, 99
interpretation, 30, 34, 106

Many Minds, 165
ontological, 165
quantum theory, 133, 135, 163
qunatum theory, 163, 166
relative states, 165

interpreted, 96, 193
interpreter, 80
intersection, 52, 198
interval, 18, 168, 169, 188, 194
intractable, 175
intuitionism, 179
invertible, 152

function, 153
ion, 159

confined, 159
irrational number, 66
irreversible, 152, 165
isomorphic, 142, 143, 149

James Thomson, 39
Joos, 149
Josephson junction, 159
joules, 115, 116, 172
Jupiter, 192

Kant, 163
Kantian, 163
Kelvin, 39, 102, 103
Kepler, 32, 33
Kerr, 188

ket vector, 140, 150
kinematic, 34, 119
kinetic, 99

theory, 120
Knight, 121

labour, 90
Landauer, 115

energy, 116
efficiency, 117
limit, 116, 117

Landin, P., 81
language, 10, 12–14, 17, 18,

22, 192, 194
laser, 159, 160
law, 95, 191

of physics, 114
of Thermodynamics, 102

law of excluded middle, 179
leakage, 93

current, 93
Leibniz, 9, 45
length, 46, 104, 168–171, 180, 181,

183, 184, 194, 197, 198, 200
of code, 113
of device, 168
of meter, 181
of programme, 198

light, 18, 19, 169, 181–184, 188, 189,
192, 193, 195, 197–200

from point source, 192
in state, 18
red, 19
signal, 189
wavelength, 201

limit, 13–15, 18, 23, 27, 28, 94, 96, 98,
115, 168, 171, 172, 182, 190,
194, 195, 197

logical, 215
limit to computation, 59
limitation, 87, 168, 170, 193
Limitations, 169, 187
limitations, 169, 187
limited, 35, 115, 167, 195, 197
line, 25, 181, 183, 194

of development, 42
of sight, 39

linear operator, 141, 143
linear time complexity, 175
liquid state, 158
list, 37
local, 110
logarithm, 108, 124, 183
logic, 85, 125, 171, 192

gate, 121, 171
operations, 116

per second, 116

predicate, 52
propositional, 47

logical, 89, 215
logically, 101, 193
logicism, 178
longer, 35
LOQC, 160
Lord Kelvin, 39, 102, 128, 166
low, 86, 201

temperature, 105
Lukasiewicz, 50
luminiferous aether, 129, 135
lunar, 28, 29, 32–34

and solar calendars, 29
months, 29
orbit, 33
position, 32

machine, 7, 9, 10, 19–22, 28, 32, 34,
41, 44, 45, 170, 184, 187–191,
193, 194, 196–201, 214, 215

abstract, 81
finite state, 19
Harvard, 82
Post, 178
virtual, 81
von Neumann, 81

machine code, 80
macroscopic, 95, 149, 164, 165, 167

description, 110
measurements, 109
system, 107

macrostate, 107, 108, 110
macrostates, 108, 109
magnetic, 84, 195

field, 84, 159, 160
flux, 159

Manchester, 87
Mk1, 116

mantissa, 185
manual, 41, 83
manufactured, 90
manufacturing, 84, 196

errors, 84, 196
process, 90
steps, 90

Many Worlds Interpretation, 165
mask, 197, 200
mass, 15, 25, 46, 169, 170, 182, 183,

190, 194, 198
of photon, 183
of system, 97
produced, 90, 94
production, 91

master
calculus, 10

matching, 31, 35
material, 7, 93, 129, 167, 184, 187, 193

Index 233

materialism
classical, 166

mathematical, 7, 9–11, 16, 84, 191, 193
concepts, 10, 11
construct, 118
techniques, 11

mathematical infinity, 179
mathematician, 9, 10, 102, 187, 192

does, 9, 10
mathematicians, 7
mathematics, 6, 7, 9–11, 34,

180, 184
maths, 6–8, 11, 27, 191, 193
Matlab, 34
matrix, 37, 39, 89, 140, 143, 146

components, 146
inverse, 144
multiplication, 143
row, 139
self adjoint, 144

matter, 10, 95, 183, 191
maximal, 103
maximum, 109, 168, 169, 201

entropy, 110
entropy, 109

Maxwell, 129
Maxwellian, 192

theory, 192
mean, 34, 169, 193

number, 85
mean value, 142
meaning, 6, 18, 109
measurable, 85, 167, 171
measure, 107, 180, 181, 184

of disorder, 110
measured, 38, 97, 180
measurement, 107, 134, 137, 139, 141,

147–149, 152, 154, 156, 158,
168, 169, 171, 180, 182,
190, 192

probabilities, 136
measurement gate, 152, 154, 165
measurements, 85, 183
measures, 85, 183
mechanical, 16, 17, 23, 28, 32, 33,

35–37, 39–43, 46, 96, 168,
188, 190, 196

computer, 28, 39, 41, 42
mechanical procedure, 59
mechanically, 45
mechanics, 96, 167, 168, 182, 191,

193, 194
Newtonian, 133

mechanism, 28, 29, 32–35, 41, 43, 120,
188, 198

mechanisms, 34
member, 51

memory, 20, 23, 86, 167–171, 187
Menninger, 12, 25, 26
mental, 10, 16, 23, 45

arithmetic, 45
mercury, 86
Mermin, 163, 166
message, 112, 189
metaphysical

model, 148
metaphysics, 134, 163, 166
meters

per
second, 37

Metonic, 29, 34
cycle, 29, 34

microcanonical, 106
microscopic, 95, 167
microstate, 107, 108

compatible, 108
corresponding, 108

microstates
are occupied, 108
available, 109
of system, 108
of which, 108

mirror, 182, 196–200
mode, 92
model, 10, 14, 26, 32–34, 36, 39,

45, 46, 93, 183, 193,
195, 215

a real system, 10
is represented, 33
of CMOS, 121

modelled, 10, 26, 33, 38, 88, 106, 180
as, 106

modelling, 9, 10, 26
models, 12, 33, 42, 119, 167, 187,

191, 198
modernism, 166
Modus Ponens, 50
mole, 97
molecule, 158
molecules, 106
moment, 18, 188, 197, 200
momentum, 109, 136, 137, 139, 169,

171, 197
months, 29
moon, 28, 32–34
Moore, 17
motor, 16, 17, 20, 23

control, 17, 20, 23
schema, 16, 17

Mott, 134
multiiverse, 166

branch, 165
multiple, 10, 11, 14, 89, 215

multiple tape head Turing
Machine, 173

multiple tape Turing Machine, 173
multiplication, 26, 31, 35, 37, 39, 40,

44, 56, 84, 196
tables, 26

multiplications, 26, 34
multiplied, 26, 44
multiply, 26, 38, 41, 113
multiplying, 45, 83
multiverse, 165

Nagel, E., 63, 173
NAND, 93, 121
natural, 7, 17, 22, 35, 168

languages, 22
logarithm, 115
selection, 9

natural number, 57
nature, 10, 96, 167, 180

of charge, 114
naval, 35, 37, 39, 41
navies, 35, 41
negation

simplification, 50
negative, 35, 91

charge, 91
Nemeti, 188, 189
nervous, 17
nested, 17, 21, 22, 44
new state, 69
new symbol, 69
Newman, J. R., 63, 173
Newton, 7–10, 129, 191, 194
Newton’s

laws, 9, 192
Newtonian, 188, 191, 193–195

mechanics, 191–194
NMOS, 91, 92
NMR

liquid, 158, 159
solid state, 159

no
process, 102

no-cloning theorem, 154, 161
noise, 84

level, 116
voltage, 114

non-deterministic, 174
non-deterministic polynomial time

complexity, 175
non-terminals, 18
norm, 144
normal, 23, 38, 39, 46, 85, 90, 197
normal form, of λ expression, 76
not

truth table, 49

234 Index

noumenal, 163
NP, 158
NP (non-deterministic polynomial

time complexity), 175
number, 10–15, 17, 18, 21–24, 28, 34,

35, 37, 38, 42, 43, 45, 84, 168,
170, 180, 181, 183, 184,
187–190, 192–194, 197, 198,
201, 214

as property of set, 58
cardinal, 65
Gödel, 62
irrational, 66
natural, 57
of AND gates, 125

of bits, 113
of cogs, 46
of degrees, 85
of digits, 113, 192
of electrons, 85
of layers, 91
of microstates, 108
of particles, 106
of possible, 110
of properties, 97
of quanta, 85
of reconstructions, 28
of states, 125
of theorems, 189
of transistors, 90
of wavelengths, 181
of ways, 109
of wires, 124

ordinal, 65
rational, 65
real, 66
system, 13, 15

numbers, 12–16, 21, 23, 24, 25, 26,
167, 171, 180, 181

and sets, 58
numberword, 21
numerator, 35
numerical, 24, 34, 192, 215

precision, 192

objective, 149
objectivity

strong, 136, 163, 166
weak, 163, 164

obol, 25
observable, 137, 139, 141, 142, 144,

150, 165
compatible, 139

observation, 41, 100, 136, 192
observational prediction, 163
observer, 134, 136, 149, 163–165, 189
observer independence, 165

ontological
model, 148

ontology, 134, 163
operate, 121, 172, 187–189
operated, 25, 94
operating, 38, 103, 172, 188, 189

time, 188
voltage, 115

operation, 22, 23, 34, 85, 118,
168, 169, 172, 187,
188, 198

operations, 27, 34, 35, 83
per

second, 116
operator, 27, 84, 167, 196

single-qubit, 151
operators, 169
optical, 32, 85, 181, 197, 198, 201

gates, 160
system, 197

optimal, 88, 198
size, 88

optimise, 125
or, 48

truth table, 49
oracle, 174
orbit, 32, 33, 190, 192
ordinal number, 65
orthogonal

vectors, 144
orthonormal basis, 141, 142,

144, 157
oxide, 94

P (polynomial time
complexity), 175

packages, 11
packets, 86
paper, 86, 187, 191–193
papyrus, 27, 28
parabolic, 194–196

mirrors, 196
paradigm, 125
paradox, 58, 192

Russell’s, 60
paradoxical, 215
parallel, 33, 37, 38, 42, 90, 193
parallel universe, 166
parallelism, 122

quantum, 135, 154, 166
parameter, 103, 192, 196

of system, 196
parameters, 170
parametric, 197
particle, 96, 110, 131, 134, 193–195,

197
energy, 109

levels, 110
state, 109

particles, 106, 128
particles , 99
Pascal, 43, 45
path, 33, 88, 197–199

length, 197, 198
pattern, 20, 23, 26, 198–200
patterns, 13, 15, 20
Pauli matrices, 143
Pauli matrix, 144
Peano arithmentic

axioms, 57
Peano arithmetic

as Turing Machine, 71
Peano, G., 55
pebbles, 11, 12, 23, 25, 26
Perga, 32, 33
perturbation, 120
perturbed, 120
phase, 29, 114, 155, 200
phases, 26

of the moon, 29
phenomena, 192
phenomenal, 163
philosophical, 96, 191
phonon, 162
photo, 192, 198
photography, 28
photon, 129–131, 134, 137, 159, 160,

182, 183, 193, 195, 197, 199
arriving, 197, 199
idler, 132
signal, 132

photons, 181, 183
photosensitive, 200
physical, 6, 9, 17, 23, 25, 26, 28, 29,

34, 84, 168, 170, 171, 183,
188, 191–193, 196, 198, 215

models, 191
system, 111, 167

physical infinity, 179
physically, 33, 39, 85, 167, 171, 187
physicist, 10, 102, 192
physicist’s, 10
physicists, 7
physics, 6, 7, 10, 11, 99, 128, 167,

192, 193
Pieris, 163
pilot waves, 164
pin, 28, 32

and slot, 32
pinwheel, 44–46
planar, 90, 196
Planck, 102, 129, 133, 169, 171, 172,

182, 183
Planck’s constant, 129

Index 235

reduced, 138
Platonic realism, 177
plus, 10, 11, 106

external, 10
PMOS, 91, 92
pocket, 25

calculator, 25
Podolsky, 148
point, 86, 168, 169, 183, 188, 192, 193,

197–200
masses, 193
of view, 99
on, 199

diagram, 98
ruler, 38

source, 192
pointer, 29, 34, 35, 41
pointing, 192
points, 11, 183
Poisson, 85

distribution, 85
polarization, 160
polynomial, 191
polynomial time complexity, 175
positive, 91
positive integer, 56
Post machine, 178
postulate, 11, 108, 168
potential, 99, 168, 169

energy, 99
potential infinity, 178
potentially, 20, 123, 191

infinite, 191
powder, 195
power, 9, 19, 35, 94, 115, 171, 172,

191, 196
loss, 122
consumption, 172
dissipation, 121
supply, 121
used, 91
would, 122

power set, 59, 66
powerful, 21, 117
powers, 25
practical, 95, 181, 183, 191, 201

application, 6, 7
engineering, 112

practically, 94
precision, 29, 35, 41–43, 167, 168, 170,

171, 183, 185, 192, 201
predicate

as set, 53
predicate logic, 52
predicting, 30, 34
predictions, 6, 7, 32, 96, 182, 191, 192

about, 191

of lunar position, 32
of quantum theory, 182
of statistical mechanics , 96

predictive, 191
premise, 50
pressure, 9, 41, 96
price, 26, 28, 90

of cargo, 26
prime, 180, 198, 201

factor, 198, 199, 201
factorization, 198
number, 201

primitive recursion, 74
prior, 15, 90, 168, 189, 195
probabilistic, 156
probabilities, 160
probability, 108, 113, 134, 139, 141,

148, 152, 168, 169
distribution, 111
distribution, 108
of failing, 168
of switching, 85

probable, 108, 112
message, 112

procedure, 12, 24, 26, 191
decision, 176
effective, 174

procedure,effective, 68
process, 83, 168

as, 8
of reckoning, 28

processes, 192
processing, 117, 189
processor, 94, 194

chip, 122
produce, 23, 34, 42, 90, 184,

193, 195
infinities, 193

produced, 20, 21, 25, 45, 46
product, 94

of human mind, 7
state, 150

product space, 157
product state, 147, 150
product states, 146, 147
production, 19, 21, 46, 91

of calculators, 91
productions, 18–20
profound, 192
program, 80, 184, 188, 198
programmed, 9, 83, 188

by plug boards, 83
programming, 7, 9, 17, 192

language, 192
languages, 17

programs, 9, 11
projection operator, 152

projector, 152
Prolog, 57
proof, 13, 33

as number, 62
by contradiction, 179
deductive, 50
existence, 179
inductive, 57

base case, 57
induction case, 57
of equivalence, 33

proofs, 180
propagate, 43, 88, 188

along, 88
halfway, 88

propagation
distance, 88
time, 88

proportional, 94, 108, 183, 195, 197
to

the square, 122
proposition, 112, 187
propositional logic, 47
proved, 32, 191
proven, 105
proves, 6
punched, 86
Pythagoras

theorem, 181
Pythagorean, 11

theorem, 11

quanta, 85
quantification

existential, 53
universal, 53

quantify, 112
quantised, 109
quantization, 129, 133
quantized, 193
quantum, 85, 167–169, 171, 172, 182,

190, 192–194, 198
algorithm, 136, 155–157
assembly, 106
circuit, 145, 146, 149, 151, 153, 162
circuit diagram, 145
computer, 135, 136, 145, 152–155,

157–160
computing, 128–167
error correcting code, 162
error correction, 161, 162
gate, 135, 136, 145, 149, 151, 153
gates, 158, 160
mechanical, 96, 168
mechanics, 120, 128–168, 182, 193
NOT gate, 145
potential, 135, 164

236 Index

register, 149, 151, 153, 155
rules, 136
search, 155
splits, 165
state, 139, 140, 159
superposition, 106, 108
system, 148
theory, 96, 128–167, 193
wire, 145
wires, 160

quantum adiabatic computer, 162
quantum circuit model,

153, 162
quantum dot, 159
quantum register, 152
quasi, 169
quasi-particles, 162
quatifier

recursive definition, 55
qubit, 135–137, 139, 142–162
qubit , 146
query, 7
qunatisation, 119

radiation, 90, 184, 198
radius, 119, 171, 183, 197
RAM, 89
random, 84, 184

access, 87
randomly, 13, 86
range, 22, 27, 35, 36, 39–42, 170, 172,

181, 191, 192, 201
and bearing, 36
clock, 39
of position, 170
of the target, 35

range , 96
ratio, 6, 31, 34, 43, 180, 197

as, 35
rational, 31, 34

number, 31, 34
rational number, 65
rationals, 184
rations, 13, 26
ratios, 180
real, 83, 168–171, 181, 183, 184, 187,

191, 193, 195, 198
number, 181, 187
numbers, 167, 171, 180
physical, 193
time, 83
valued, 196

real number, 66
realism, 149, 163, 177

classical, 130
far, 149
near, 149
physical, 128

realist, 148
realistic, 94
reality, 8, 9, 110, 133, 149, 192

objective, 128, 134, 135, 163, 164
observer-independent, 163
physical, 148

reals, 171, 184
reasoning, 9, 10, 110, 184

power, 9
reckoning, 24–26, 28, 34, 44

table, 26
tables, 27

recursion, 55
base case, 55
general, 74
primitive, 74
recursion case, 55

recursion case, 55
recursive definition, 56

recursive, 15, 27
recursive definition, 56

expression, 62
reduction, 115
redundancy bits, 160
reecursive function theory, 81
reference, 31, 38, 119, 189
referential, 215
reflector, 119
register, 20, 25, 26, 45, 118, 189
reification, 166
relative, 28, 30, 32, 35–40, 42, 89,

188, 200
velocity, 36, 38

relative states, 164
relatively, 32, 99, 192
relativistic, 193
Relativity

Special Theory of, 129
relativity, 128, 133, 148
relaxed, 101
reliable, 190
remainder, 57
replace

Turing Machine, 71
replacement, 63
resistance, 100

of circuit, 121
resistor, 93, 121

to ground, 93
result, 31, 34, 45, 86, 94, 168–170, 183,

188, 191–194, 197
of multiplying, 45
of plotting, 183

reverse, 33, 40, 45, 104
direction, 33, 118

reversed, 99
reversibility, 100

reversible, 99
change, 104
engine, 103

reversibly, 101
reversing, 100
ring

non-commutative, 143
role, 21
Roman, 15, 16, 25
Rosen, 148
rote, 7, 27
round, 40, 43, 192
rule

inference, 50
Modeus Ponems, 50
of Turing Machine, 69

ruler, 38, 180, 181
ruler e

had, 38
rules, 10, 19, 21, 86, 187

of grammar, 21
plus, 10

run, 122
running, 43, 117, 188
Russell’s Paradox, 60
Russell, B., 60, 178

sailing, 37
Salamis, 24, 25
Saros, 29, 30

cycle, 29, 30
Saturn, 192
scalar product, 139, 147
scaling, 158, 159
schema, 16
schematic, 36, 41, 125
scheme, 85
Schickard, 43
Schrödinger, 107, 109, 133, 139,

167, 168
equation, 107

Schrödinger equation, 136, 145, 147,
148, 153, 165

time dependent, 142
Schwarzschild radius, 190
select, 88, 189

the, 88
selected, 87
selective, 9

pressure, 9
self, 215

referential, 215
self-reference, 60, 62

in λcalculus, 78
semi-decidable, 176
semiconductor, 159
separable, 150

Index 237

sequence, 16, 19, 20, 43, 112, 184
of bytes, 184
of colours, 19
of random real, 184
of tosses, 112
of wheels, 43

sequences, 23
of actions, 23

sequencing, 17, 18, 20
sequentially, 86
set

definition by property, 60
difference, 52
element, 51
empty, 51
intersection, 52
member, 51
of sets, 59
power, 66
size, 58
union, 52

set theory, 51
set:subset, 52
sets

and numbers, 58
Shannon, 111–113, 115
Shannon’s

information, 111
ship, 35–39, 41

sailing, 37
Shor, 136, 157, 162, 198
Shor’s algorithm, 136, 155, 157
shot, 35, 36, 42, 85

noise, 85
signal, 85, 88, 188, 189
significance, 167
significant, 35, 41–43, 84, 197

digits, 35, 197
figures, 43

significantly, 83, 171, 183
signs, 13
silicon, 91

area, 125
dioxide, 93

silicon 28, 159
simple, 7, 10–12, 17, 20, 22, 23, 26, 27,

37, 93, 197
abstraction, 11, 12
model, 93

simplest, 7, 97, 180
such, 119

simplicity, 7, 85, 168
simplified, 111
simply, 35, 102
simulate, 188, 193, 196
simulated, 32, 126
simulation, 126

simultaneously, 90
single, 41, 44, 45, 88, 172, 197, 198

particle, 109
substance, 106

size
of set, 58

Smith, 193
social, 9

behaviour, 9
society, 12, 26
software, 10, 11, 122

development, 11
packages, 11

solid-state physics, 162
solution, 34, 36, 38, 106, 191, 193
solve, 107, 215
solved, 46, 83, 168
solving, 109
special, 14, 215
specific, 9, 10, 12
specification, 84, 191
specified, 109, 181, 188
specify, 110, 192, 197

exactly, 110
specifying, 17, 96
spectral expansion, 142
spectral theorem, 141
speech, 18, 21
speed, 32, 35, 37, 38, 83, 117, 169, 170,

182, 183, 188, 194, 195
of light, 169, 182, 183
of operation, 83
of sound, 195
of the moon, 32

spend, 122
sphere, 119

of radius, 119
spin, 138, 144, 159

nuclear, 158, 159
spiral, 29
spontaneous parametric

down-conversion, 131
spread, 25, 169, 193
sq, 94
square, 88, 169, 180, 198

of voltage, 115
root, 88, 198

squares, 180
SQUID, 159
stable, 97
stack, 22, 196

automata, 196
automaton, 196
machine, 22

standard
basis, 150

Stapp, 134

state, 12, 17–21, 24, 90, 98, 107, 125,
167, 168, 192

vector, 125
automata, 123
automaton, 127
bit, 126
current, 69
machine, 20, 125
new, 69
of Turing Machine, 69
variable, 105
vector, 123, 167
word, 22

state transition diagram, 70
state vector, 140, 142, 148, 152, 153
statement, 18, 167
states, 17, 20
static, 93, 100
stationary, 107

microstate, 108
state, 107

statistical, 96
mechanical, 106
mechanics, 96

statistician, 6
Steane, 162
step, 12–14, 17, 25, 45, 90,

188, 198
stepped, 46

wheel, 46
steps, 12, 17
Stern–Gerlach experiment, 138
Stirling’s formula, 111
storage, 83, 171
store, 84, 86, 168–170, 190
stored, 12, 86, 167, 170, 171
storing, 88, 167
stylus, 13, 25
sub, 35
subitizing, 13, 15, 23, 27

ability, 13, 15
faculty, 14

subject, 171, 196
subset, 52, 168
subspace, 140
substance, 96
substitute, 12, 191
subtract, 37, 44
subtraction, 35, 44, 57
success, 96, 168, 192
successive, 25, 90
successor, 56
sun, 28, 32
super, 187
super-Turing, 176, 195
superconducting, 159
superluminal signalling, 148

238 Index

superposition, 108, 153, 154,
161, 165

of states, 108
superpostition, 165
switch, 91, 196

each, 94
switching, 85, 172
symbol, 6, 18, 21, 93

current, 69
new, 69

symbols, 6, 13–15, 18
of language, 18

syntax, 18, 19
system, 12, 37, 38, 96–98, 167–170,

172, 184, 187, 189, 192, 193,
196, 197, 215

at
equilibrium, 108

at equilibrium, 97
based, 196
being, 108
can, 97, 184
could, 108
energy, 110
from, 197
has, 97, 172, 197
in

equilibrium, 99
is tallying, 15
of Cartesian coordinates, 38

systems, 169, 170

table, 20, 24, 26–27, 41, 44,
113, 170

tables, 25, 27
tallies, 13, 23
Tam Lynne, 190
tape, 86, 187, 196

Turing Machine, 69
cell, 69
direction, 69
infinite, 178

tape head, 69
technical, 20, 108, 194
technique, 26, 27, 90, 187, 195, 201
technologies, 27
technology, 14, 15, 32, 41, 88,

117, 172
has, 91
of 1961, 88
of Dumaresq, 41

teeth, 31, 34
telephone, 83
temperature, 97, 100, 101, 104, 172,

184, 188, 196
of system, 104

temple, 12, 13

temporal, 7, 27
tensor product, 146–152

operator, 150
space, 142, 148–150

term, 7, 23, 85, 190, 191, 194, 195
terminal, 18, 21

symbols, 18
terminals, 18, 21
termination, 74
terms, 18, 168, 171, 181

of wavelengths, 181
Thaller, 42
the

original, 40, 41, 200
Theorem, 11, 183
theorem, 11, 50, 115, 169, 180, 183,

188, 189
of Boltzmann, 115
of Pythagoras, 180, 183

theorems, 11
theoretical, 119, 169, 187, 192
theories, 171
theory, 22, 95, 167, 182, 183, 188,

192–194
thermal, 84, 184

noise, 114
contact, 101
energy, 99, 184
equilibrium, 100, 184
noise, 114

thermal noise, 159
thermally, 99
thermodynamic, 96, 171

equilibrium, 96
system, 96

thermodynamics, 89, 95, 96, 184
think, 12, 37
thinking, 7
Thomson, 39, 102
threshold, 10
time, 35, 88, 90, 167–169, 188–191,

193–195, 201
interval, 169, 194
taken, 15, 84
to

propagate, 88
time evolution, 142, 145, 152, 153
times, 13, 168–171, 183
TM, see Turing Machine, 187–189,

191, 196, 198, 215
head, 196
tape, 196

TMs, 187
Tofoli, 117
token, 12–14, 24
tokens, 12–15, 24, 26, 27

into, 14, 24

topological quantum computing, 162
total, 24, 26, 88, 184, 195

energy, 107
number, 24, 88
work, 90

tractability, 174
traffic, 18, 19, 126

light, 18, 19
simulation, 126

trajectories, 84, 194, 195
transcend, 187

the, 187
transfer, 41, 45, 102, 188

of energy, 99
transfered, 40
transferred, 90, 96
transferring, 99

heat, 102
transistor, 85, 122
transition, 43, 127
transitions, 17, 20, 22, 181
translated, 34, 36
translation, 196
transmission, 41, 112, 194

of information, 112
transmit, 112

information, 123
transmitted, 41, 90
triode, 116
TRUE, 85
true, 48, 85
truth, 112, 194
truth table, 49

implication, 49
not, 49
predicate, 52
quantifier, 54
size, 50

Tsushima, 35
tube, 83
Tucker, 193–195
Turing, 10, 86, 187, 188, 191, 193, 194,

199, 214, 215
had, 194
Machine, 10, 135, 188, 191,

193, 215
Turing Machine, 67, 176

multiple tape, 173
multiple tape heads, 173
tape, 69
Universal, 71

Turing’s, 184
Turing, A. M., 67, 174
turntable, 40, 42

Umbriel, 190
unary, 27

Index 239

unbounded, 196
uncertainty, 182
undecidability, 71

of oracle machine termination, 175
undecidable, 176
under, 17, 193, 196
uniform, 32, 194
union, 52
uniquely, 113
unit, 14, 24, 43, 83, 180, 182, 198

of measure, 182
of measurement, 180
of study, 96
sheep, 14
tokens, 14, 24
wheel, 43

unitary, 152
evolution, 164
matrix, 144
operator, 144–146, 151–153,

155, 166
operators, 150, 151
transformation, 144, 145,

149, 150
units, 13, 14, 24, 25

and tens, 13
universal, 10, 83, 167, 168, 187, 191

mathematical, 10
universal quantification, 53
Universal Turing Machine, 71, 80
universe, 11, 12, 90, 180, 184,

188, 194
quantum state of, 164

unreasonable, 9, 11
effectiveness, 11

UTM, see Universal Turing Machine

value, 15, 24, 25, 84, 167–170, 193,
197, 201

valued, 24, 191, 195
values, 24, 167–170

for parameters, 170

of counters, 24
valve, 8, 91

computer, 8, 91
valves, 91
variable, 32, 40, 41, 44, 46, 48, 84, 167,

195, 196
vector, 37, 38, 123, 124, 167, 168

column, 146
component, 146
components, 150
length, 140, 144
of quantum system, 167
space, 140, 147

vector space, 139, 140
finite-dimensional, 139

velocity, 32, 35–38, 40, 109, 119, 169,
192–195

vector, 37, 38
virtual machine, 81
visible, 201
visual, 14, 16

process, 16
volt, 85
voltage, 84, 91

across, 121
and capacitance, 94

volume, 96, 97, 109, 184, 192
von Neumann, 123, 124, 127

computer, 123
von Neumann machine, 81
von Neumann, J., 81

war, 41, 86
warfare, 35
watts, 94
wave, 87, 130, 168, 169, 193,

197, 199
wave function, 139
wave mechanics, 139
wave–particle duality, 130, 133
wavelength, 181–183, 189, 197, 200

of light, 182, 200

of photon, 182, 183, 197
waves, 134

electromagnetic, 129
matter, 133
pilot, 135

wheel, 30, 32, 34, 35, 40,
43, 46

Wheeler, 167
Wigner, 6, 7, 11
Wigner’s, 11

question, 6, 7
William, 39, 102

Thomson, 39, 102
Williams, 83

tubes, 84
wires, 123
word, 21, 22
work

is configurative, 104
is done, 100

world-lines, 162
worth, 90
write, 13, 19, 21, 83, 188, 191, 192

down, 13, 21
writing, 7, 188
written, 87, 169, 192

down, 27
number, 13

Young, 130
Younis, 121

Zeh, 149
Zermelo-Fraenkel, 52
zero point, 171
Zeus, 190
ZFC, 188, 189

set theory, 188
zodiac, 28
zone, 92

	Cover
	Contents
	1 Introduction
	1.1 Overview
	1.2 Summary
	1.3 Acknowledgements

	2 What is computation?
	2.1 The apparent mystery of maths
	2.2 Counting sheep
	2.3 Counting materialised in our own bodily movements
	2.4 From ‘aides-memoire’ to the first digital calculating devices

	3 Mechanical computers and their limits
	3.1 Antikythera
	3.2 Late mechanical computers
	3.3 Analogue mechanical multiply/accumulate
	3.4 Mechanizing the abacus

	4 Logical limits to computing
	4.1 Introduction
	4.2 Propositional logic
	4.3 Set theory
	4.4 Predicate logic
	4.5 Recursion
	4.6 Peano arithmetic
	4.7 Paradoxes
	4.8 Arithmetizing mathematics and incompleteness
	4.9 Infinities
	4.10 Real numbers and Cantor diagonalization
	4.11 Turing machines
	4.12 Universal TM and undecidability
	4.13 Computational procedures
	4.14 The Church–Turing thesis
	4.15 Machines, programs, and expressions

	5 Heat, information, and geometry
	5.1 The triumph of digital computation
	5.2 Analogue computing with real numbers
	5.3 What memories are made of
	5.4 Power consumption as a limit
	5.5 Entropy
	5.6 Shannon’s information theory
	5.7 Landauer’s limit
	5.8 Non-entropic computation
	5.9 Interconnection

	6 Quantum computers
	6.1 Foundations of quantum theory
	6.2 The quantum rules
	6.3 Qubits
	6.4 Entanglement and quantum registers
	6.5 Quantum computers
	6.6 Quantum algorithms
	6.7 Building a quantum computer
	6.8 Physical limits to real number representations
	6.9 Error rates in classical and quantum gates

	7 Beyond the logical limits of computing?
	7.1 Introduction
	7.2 Oracles, complexity, and tractability
	7.3 Beyond the Turing Machine?
	7.4 Numberology
	7.5 What is real about the reals?
	7.6 Real measurement
	7.7 Back to Turing
	7.8 Reservations about Cantor

	8 Hypercomputing proposals
	8.1 Infinite Turing Machines
	8.2 Infinitely precise analogue computers
	8.3 Wegner and Eberbach’s super-Turing computers
	8.4 Interaction Machines
	8.5 π-Calculus
	8.6 $-Calculus
	8.7 Conclusions

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

