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The world is not short of good introductions to logic. They differ widely in pace,
style, the coverage of topics, and the ratio of formal work to philosophical com-
mentary. My only excuse for writing another text is that I didn’t find one that
offered quite the mix that I wanted for my own students (first-year philosophy
undergraduates doing a compulsory logic course). I hope that some other logic
teachers and their students will find my particular combination of topics and
approach useful.

This book starts from scratch, and initially goes quite slowly. There is little
point in teaching students to be proficient at playing with formal systems if they
still go badly astray when faced with ground-level questions about the whole
aim of the exercise. So I make no apology for working hard at the outset to nail
down some basic ideas.

The pace picks up as the book proceeds and readers get used to the idea of a
formal logic. But even the more symbol-phobic students should be able to cope
with most of the book, at least with a bit of judicious skipping. For enthusiasts,
I give soundness and completeness proofs (for propositional trees in Chapter 19,
and for quantifier trees in Chapter 30). The proofs can certainly be skipped: but
I like to think that, if explained in a reasonably relaxed and accessible way, even
these more ‘advanced’ results can in fact be grasped by bright beginners.

I have kept the text uncluttered by avoiding footnotes. You can follow up
some of the occasional allusions to the work of various logicians and philoso-
phers (such as Frege or Russell) by looking at the concluding notes on further
reading.

The book has a web-site at www.logicbook.net. You will find there some sup-
plementary teaching materials, and answers to the modest crop of exercises at
the end of chapters. (And I’d like to hear about errors in the book, again via the
web-site, where corrections will be posted.)

I am very grateful to colleagues for feed-back, and to the generations of
students who have more or less willingly road-tested versions of most of the fol-
lowing chapters. Special thanks are due to Hilary Gaskin of Cambridge Univer-
sity Press, who first encouraged my plan to write this book, and then insisted
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that I didn’t keep revising it for ever; to Dominic Gregory and Alexander Paseau,
who read late drafts of parts of the book, and provided many corrections; and to
Laurence Goldstein, who did much more than it was reasonable to expect of a
publisher’s reader. 

Not least, I must thank Patsy and Zoë Wilson-Smith, without whose love and
support this book would never have been finished. 

Additional warm thanks are due to all those who kindly told me about mistakes
in the first printed version of the book. I have taken the opportunity of a reprint
to make the needed corrections and to make many other minor changes to
improve clarity. 



The business of logic is the systematic evaluation of arguments for internal
cogency. And the kind of internal cogency that will especially concern us is
deductive validity. But these brief headlines leave everything to be explained.

• What do we mean here by ‘argument’?
• What do we mean by evaluation for ‘internal cogency’?
• What do we mean, more particularly, by ‘deductive validity’?
• What sorts of ‘systematic’ evaluation of arguments are possible?

This introductory chapter makes a start on answering these questions.

1.1 What is an argument?
By ‘argument’ we mean, roughly, a chain of reasoning in support of a certain
conclusion. So we must distinguish arguments from mere disagreements and dis-
putes. The children who shout at each other ‘You did’, ‘I didn’t’, ‘Oh yes, you
did’, ‘Oh no, I didn’t’, are certainly disagreeing: but they are not arguing in our
sense, i.e. they are not yet giving any reasons in support of one claim or the
other. 

Reason-giving arguments are the very stuff of serious enquiry, whether it is
philosophy or physics, literary criticism or experimental psychology. But of
course, episodes of reasoning equally feature in everyday, street-level, enquiry
into what explains our team’s losing streak, the likely winner of next month’s
election, or the best place to train as a lawyer. For we quite generally want our
opinions to be true and to be defensible in the market-place of ideas, and that
means that we should aim to have good reasons backing up our opinions. That
in turn means that we have an interest in being skilful and accurate reasoners,
using arguments which really do support their conclusions.

1.2 What sort of evaluation?
The business of logic, then, is the evaluation of stretches of reasoning. Let’s take
a very simple case (call it argument A).

Suppose you hold
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(1) All philosophers are eccentric.

I then introduce you to Jack, who I tell you is a philosopher. So you come to
believe

(2) Jack is a philosopher.

Putting these two thoughts together, you can obviously draw the conclusion

 (3) Jack is eccentric.

This little bit of reasoning can now be evaluated along two quite independent
dimensions.

• First, we can ask whether the premisses (1) and (2) are true: are the
‘inputs’ to your reasoning correct? (1) in fact looks very disputable. And
maybe Jack’s reflective skills are so limited that we’d want to dispute the
truth of (2) as well. 

• Second, we can ask about the quality of the inference from the premisses
(1) and (2) to the conclusion (3). In this case, the movement of thought
from the premisses (1) and (2) to the conclusion (3) is surely absolutely
compelling. We have agreed that it may be open to question whether (1)
and (2) are both true. However, if (1) and (2) are granted to be true
(granted ‘for the sake of argument’, as we say), then (3) has got to be
true too. There’s just no way that (1) and (2) could be true and yet (3)
false. Someone who asserted that Jack is a philosopher, and that all phi-
losophers are eccentric, yet went on to deny that Jack is eccentric, would
be implicitly contradicting himself. 

In brief, it is one thing to consider whether an argument starts from true prem-
isses; it is another thing entirely to consider whether it moves on by reliable
inferential steps. To be sure, we normally want our arguments to pass muster on
both counts. We normally want to start from true premisses and to reason by
steps which will take us on to further truths. But it is important to emphasize
that these are distinct aims. 

The premisses (and conclusions) of arguments can be about all sorts of topics:
their truth is usually no business of the logician. If we are arguing about histori-
cal matters, then it is the historian who is the expert about the truth of our
premisses; if we are arguing about some matter of physics, then the physicist is
the one who can help us about the truth of our premisses; and so on. The specific
concern of logic, by contrast, is not the truth of initial premisses but the way we
argue from a given starting point. Logic is not about whether our premisses are
true, i.e. match up to the world, but about whether our inferences really do sup-
port our conclusions once the premisses are granted. It is in this sense that logic
is concerned with the ‘internal cogency’ of our reasoning.

1.3 Deduction vs. induction
The one-step argument A is a splendid bit of reasoning; if the premisses are true,
then the conclusion is guaranteed to be true too. Here’s a similar case:
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B (1) Either Jill is in the library or she is in the coffee bar.
(2) Jill isn’t in the library.

 So (3) Jill is in the coffee bar.

Who knows whether the premisses are true or not? But we can immediately see
that necessarily, if the premisses are true, then the conclusion will be true too:
the inferential move is absolutely watertight. If premisses B(1) and B(2) here are
both true, then B(3) cannot conceivably fail to be true.

Now consider the following contrasting case. Wild philosophical scepticism
apart, you are thoroughly confident that the cup of coffee you are drinking isn’t
going to kill you (and if you weren’t really confident, you wouldn’t be calmly
sipping as you read this, would you?). What justifies your confidence? Well, you
believe something like

C (1) Cups of coffee that looked and tasted just fine haven’t killed you 
in the past.

You also know that

(2) This present cup of coffee looks and tastes just fine.

These premisses will prompt you to conclude

(3) This present cup of coffee won’t kill you.

And the inference that moves from the premisses C(1) and C(2) to the conclu-
sion C(3) is, in the circumstances, surely perfectly reasonable: the facts recorded
in C(1) and C(2) do give you excellent grounds for believing that C(3) is true.
However – and here is the crucial contrast with the earlier ‘Jack’ and ‘Jill’ exam-
ples – it isn’t the case that the truth of C(1) and C(2) absolutely guarantees C(3)
to be true too. 

Perhaps someone has slipped a slow-acting tasteless poison into the coffee,
just to make the logical point that facts about how things have generally been in
the past don’t guarantee that the trend will continue in the future.

Fortunately for you, C(3) no doubt is true. The tasteless poison is a fantasy.
Still, it is a coherent fantasy. It illustrates the point that your grounds C(1) and
C(2) for the conclusion that the coffee is safe to drink are strictly speaking quite
compatible with the falsity of that conclusion. Someone who agrees to C(1) and
C(2) and yet goes on to deny C(3) might be saying something highly improbable
given her premisses, but she won’t actually be contradicting herself. We can
make sense of the idea of C(1) and C(2) being true and yet C(3) false. 

In his little book The Problems of Philosophy, Bertrand Russell has a nice
example which presses home the same basic point. Here is the chicken in the
farmyard. Every day of its life, the farmer’s wife has come into the hen yard in
the morning to feed it. Here she comes again, bucket in hand. The chicken
believes that it is about to be fed, on the best possible evidence. But tough luck:
today is the day when it gets its neck wrung. Again, what’s happened in the past
is a very good guide to what will happen next (what else can we rely on?): but
reasoning from past to future isn’t absolutely watertight.
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In summary, then, there is a crucial difference between the ‘Jack’ and ‘Jill’
examples on the one hand, and the ‘coffee’ example on the other. In the ‘Jack’
and ‘Jill’ cases, the premisses guarantee the conclusion. There is no conceivable
way that A(1) and A(2) could be true and yet A(3) false: likewise if B(1) and B(2)
are true then B(3) has to be true too. Not so with the ‘coffee’ case: it is conceiv-
able that C(1) and C(2) are true while C(3) is false. 

We’ll need some terminology to mark this difference: so, as a first shot defini-
tion, we will say

An inference step is deductively valid just if, given that its premisses are
true, then its conclusion is absolutely guaranteed to be true as well. 

Equivalently, when an inference is deductively valid, we’ll say that the premisses
logically entail the conclusion. So: arguments A and B each involve deductively
valid inferential steps, but the coffee argument C doesn’t. The latter argument
instead involves reasoning from previously examined cases to a new case: this
kind of extrapolation from the past to the future, or more generally from old
cases to new cases, is standardly called inductive.

Note, the deductive/inductive distinction is not the distinction between good
and bad reasoning. The ‘coffee’ argument is a perfectly decent one. It involves
the sort of generally reliable reasoning to which we rightly trust our lives, day in,
day out. The conclusion is highly likely to be true given the premisses. It is just
that the inference in this case doesn’t guarantee that the conclusion is true, even
assuming the given premisses are true. 

We’ll say very little more about inductive inferences in this book. They are an
important and difficult topic, but they are not our topic. Our concern is with
arguments which aim to use deductively valid inferences, where the premisses
are supposed to logically entail the conclusion. And our principal task will be to
find various techniques for establishing whether a putatively valid inferential
move really is deductively valid. 

1.4 More examples
The ‘Jack’ and ‘Jill’ arguments were examples where the inferential moves are
obviously deductively valid. Take the inference

D (1) All Republican voters support capital punishment.
(2) Jo supports capital punishment.

So (3) Jo is a Republican voter.

That is equally obviously invalid. Even if D(1) and D(2) are true, D(3) doesn’t
follow. Maybe lots of people in addition to Republican voters support capital
punishment, and Jo is one of them. 

But questions of deductive validity needn’t be immediately obvious, one way
or the other. Suppose someone holds both of

E (1) Most Irish are Catholics.
(2) Most Catholics oppose abortion.
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On those grounds he concludes 

So (3) At least some Irish oppose abortion.

What are we to make of this argument? I don’t know whether the premisses are
true or not, and anyway that is hardly a matter for the logician (it is an empirical
sociological matter to determine the distribution of religious affiliation among
the Irish, and to find out how many Catholics support their church’s official
teaching about abortion). So let’s leave aside the question of whether the
premisses are in fact correct. What we can seek to determine here – from our
armchairs, so to speak – is whether the inferential move is valid: if the premisses
are true, then must the conclusion be true too?

Suppose the Irish are a tiny minority of the world total of Catholics. Then it
could be that nearly all the other (non-Irish) Catholics oppose abortion, and
hence most Catholics do, even though none of the Irish oppose abortion. In
other words, E(1) and E(2) could be true, yet E(3) false. The truth of the prem-
isses doesn’t absolutely guarantee the truth of the conclusion, so the inference
step can’t be a deductively valid one.

Here’s a last example:

F (1) Some philosophy students admire all logicians.
(2) No philosophy student admires any rotten lecturer.

So (3) No logician is a rotten lecturer.

Does this argument make a valid inferential move? 
So far, all we can do to find the answer is to cast around experimentally, trying

to work out somehow or other whether the truth of the premisses would guaran-
tee the truth of the conclusion – though, as with the ‘Irish’ argument, a little
thought should give the right answer (which is revealed in §3.1). Still, it would
be good to be able to proceed more methodically and find some general tech-
niques for evaluating arguments like this. Ideally, we would like general tech-
niques that work mechanically, that can be applied to settle questions of validity
as automatically as we can settle arithmetical questions by calculation. But are
such techniques for systematically evaluating arguments ever available?

Later we will explore some general techniques – though we will also have
occasion to note that there are intriguing limitations on what can be done
mechanically. First, however, we should say a little more about what makes any
kind of systematic approach possible.

1.5 The systematic evaluation of arguments
Consider again our first sample argument with its deductively valid inference
step:

A (1) All philosophers are eccentric.
(2) Jack is a philosopher.

So (3) Jack is eccentric.

And compare it with the following arguments:
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A′ (1) All logicians are cool.
(2) Russell is a logician.

So (3) Russell is cool.

A″ (1) All robins have red breasts.
(2) Tweety is a robin.

So (3) Tweety has a red breast.

A″′ (1) All existentialists write bosh.
(2) Sartre is an existentialist.

So (3) Sartre writes bosh.

(We can evidently keep on going ad nauseam, churning out arguments to the
same A-pattern!)

The four displayed arguments – and, of course, any others cast in the same
mould – are all equally good in the sense of all involving valid inference steps. In
each case the truth of the premisses would logically guarantee the truth of the
conclusion. And plainly, it is no mere accident that the arguments are all inter-
nally cogent. The validity of the inference move in the first argument hasn’t any-
thing especially to do with being a philosopher or being eccentric. Likewise the
validity of the inference move in the ‘robin’ argument isn’t due to special facts
about robins. The four arguments all work for the same reason: the shared
pattern of inference is a reliable one. 

We can describe the general principle here as follows.

Any inference step which moves from a pair of premisses, one of which
says that everything of a certain kind has a given property, and the other
of which says that a particular individual is of the former kind, to a conclu-
sion which says that that individual has the latter property, is deductively
valid.

A moment’s reflection shows that this principle is a correct one. But we have
hardly presented it in the most perspicuous way. How much easier to put it
instead like this:

Any inference step of the following type 

All F are G
n is F
So, n is G

is deductively valid.

Here the italic letters ‘n’, ‘F’, ‘G’ are used to exhibit the skeletal pattern of an
argument (with ‘n’ holding the place for a name, ‘F’ and ‘G’ for predicates, i.e.
expressions which attribute properties or pick out kinds of thing). How we flesh
out the skeletal pattern or schema doesn’t matter: any sensible way of substitut-
ing for the schematic variables (as we’ll call the likes of ‘n’, ‘F’, ‘G’) will yield
another argument with a valid inference step of the same type.

We said at the outset, logic is concerned with the systematic study of validity.
We now get a first glimpse of how systematicity might be achieved – by noting
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that the same patterns or forms of inference can appear in many different partic-
ular arguments. 

Some inference patterns like the one just shown are reliable. Others aren’t. For
example, consider this pattern of inference:

Most F are G
Most G are H
So, at least some F are H

This is the pattern of inference the ‘Irish’ argument was relying on, and we saw
that it doesn’t work. 

There will be much more on the idea of patterns of inference in later chapters;
but first, a quick summary.

1.6 Summary
• We can evaluate a piece of reasoning in two distinct ways. We can ask

whether the premisses are actually true. And we can ask whether the truth
of the premisses actually supports the truth of the conclusion. Logic is con-
cerned with the second dimension of evaluation: i.e. the province of logic is
the question whether a given argument internally hangs together, whether
its inferential moves are cogent ones. 

• We are setting aside inductive arguments (and other kinds of non-conclu-
sive reasoning). We will be concentrating on arguments involving infer-
ences that purport to be deductively valid. In other words, we are going to
be concerned with the study of inferences that aim to logically entail their
conclusions – aim to be, as it were, absolutely watertight. (Imagine an
argument as a hydraulic device: if truth is poured in at the top, then we
want it to trickle down to the bottom. The arguments with non-conclusive,
possibly leaky, inference moves are ones where putting truth in at the top
doesn’t guarantee getting any truth out at the bottom; the deductively valid
inferences are those where truth in guarantees truth out.)

• Arguments typically come in families whose members share good or bad
types of inferential move; looking at such general patterns of inference will
be a step towards making logic a systematic study.

Exercises 1
By ‘conclusion’ we do not simply mean what concludes, what is stated at the end
of, a passage of reasoning. We mean what the reasoning aims to establish – and
that might in fact be stated at the outset of an argument. Likewise, ‘premiss’
does not mean (contrary to what the Concise Oxford Dictionary says!) ‘a previ-
ous statement from which another is inferred’. Reasons supporting a certain
claim might well be given after the target conclusion has been stated.

Indicate the premisses and conclusions of the following arguments. Which of
these arguments do you suppose involve deductively valid reasoning? Why? (We



8 What is logic?

haven’t developed any techniques for you to use yet: just improvise and answer
the best you can!)

1. Whoever works hard at logic does well. Accordingly, if Russell works hard
at logic, he does well.

2. Most politicians are corrupt. After all, most ordinary people are corrupt –
and politicians are ordinary people.

3. It will snow tonight. For the snow clouds show up clearly on the weather
satellite, heading this way.

4. Anyone who is well prepared for the exam, even if she doesn’t get an A
grade, will at least get a B. Jane is well prepared, so she will get at least a B
grade.

5. John is taller than Mary; and Jane is shorter than Mary. So John is taller
than Jane.

6. At eleven, Fred is always either in the library or in the coffee bar. And
assuming he’s in the coffee bar, he’s drinking an espresso. Fred was not in
the library when I looked at eleven. So he was drinking an espresso then.

7. The Democrats will win the election. For the polls put them 20 points
ahead, and no party has ever overturned even a lead of 10 points with only
a week to go to polling day.

8. Jekyll isn’t the same person as Hyde. The reason is that no murderers are
sane – but Hyde is a murderer, and Jekyll is certainly sane. 

9. No experienced person is incompetent. Jenkins is always blundering. No
competent person is always blundering. Therefore Jenkins is inexperienced. 

10. Many politicians take bribes. Most politicians have extra-marital affairs. So
many people who take bribes have extra-marital affairs.

11. (Lewis Carroll) Babies cannot manage crocodiles. Because babies are illogi-
cal. But illogical persons are despised. And nobody is despised who can
manage a crocodile. 

12. (Lewis Carroll again) No interesting poems are unpopular among people of
real taste. No modern poetry is free from affectation. All your poems are on
the subject of soap bubbles. No affected poetry is popular among people of
real taste. Only a modern poem would be on the subject of soap bubbles.
Therefore all your poems are uninteresting.

13. ‘If we found by chance a watch or other piece of intricate mechanism we
should infer that it had been made by someone. But all around us we do
find intricate pieces of natural mechanism, and the processes of the universe
are seen to move together in complex relations; we should therefore infer
that these too have a maker.’

14. ‘I can doubt that the physical world exists. I can even doubt whether my
body really exists. I cannot doubt that I myself exist. So I am not my body.’



The first chapter briefly introduced the idea of an inferential move being deduc-
tively valid. This chapter explores the idea of validity in a little more depth, and
also emphasizes the centrality of deductive reasoning. 

2.1 Validity and possibility
We said that an inference step is valid just if, given the input premisses are true,
then the output conclusion is absolutely guaranteed to be true as well. But what
do we mean here by an ‘absolute guarantee’? 

Previously, we gave a number of other, equally informal, explanations of the
idea of validity in terms of what is ‘conceivable’ or what it would be ‘self-contra-
dictory’ to assert. Here now is another definition of validity: and this time, it is a
version of the standard, ‘classical’, textbook definition of validity. 

An inference step from given premisses to a particular conclusion is
(classically) valid if and only if there is no possible situation in which the
premisses would be true and the conclusion false. 

We’ll take this as our official definition from now on. But it is only as clear as the
notion of a ‘possible situation’. It needs to be stressed, then, that ‘possible’ here
is meant in the widest sense – a sense related to those ideas of what is ‘conceiv-
able’, or ‘involves no contradiction’ that we met before.

Consider, for example, this inference:

Premiss: Jo jumped out of a twentieth floor window (without para-
chute, safety net, etc.) and fell freely and unimpeded onto a
concrete pavement.

Conclusion: Jo was injured.

And let’s grant that there is no situation that can really obtain in the actual
world, with the laws of physics as they are, in which the premiss would be true
and the conclusion false. In the world as it is, falling unimpeded onto concrete
from twenty floors up will always produce serious (surely fatal) injury. Does that
make the inference from the given premiss to the conclusion deductively valid? 

2

Validity and soundness
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No. Although it isn’t, let’s agree, physically possible to jump in those circum-
stances without being injured, it remains possible in a weaker sense: it is
‘logically possible’, if you like. We can coherently conceive of situations in which
the laws of nature are different or are miraculously suspended, and someone
jumping from twenty floors up will float delicately down like a feather. There is
no internal logical contradiction in that idea. And all that is required for the
deductive invalidity of an inference is that it is possible in this very weak sense
for the premisses to be true and the conclusion false. As we put it before, an
inference is invalid if there is no internal contradiction in the notion of the truth
of the premisses being combined with the falsity of the conclusion.

This very weak notion of logical possibility (any consistent fantasy counts as
possible in this sense) goes with a correspondingly strong notion of logical
impossibility. If something is logically impossible, like being circular and square
at the same time, then it is absolutely ruled out: the very idea is inconsistent,
incoherent, logically absurd. For a classically valid inference, it is impossible in
this very strong sense for the premisses to be true and the conclusion false.

It will be useful to introduce a further definition:

A set of propositions is logically consistent if it is logically possible for the
propositions all to be true together. Likewise, a set of propositions is logi-
cally inconsistent if it is logically impossible for the propositions to be
true together. 

If there is no possible situation in which a bunch of premisses would be true and
a certain conclusion false, then the premisses and the denial of the conclusion
form an inconsistent set of propositions. So another way of characterizing the
notion of validity is this: an inference is classically valid if the premisses taken
together with the denial of the conclusion form an inconsistent set.

To be sure, we have still only gestured at the notions of logical possibility and
logical impossibility that are in play here. As we go along, we will need to
sharpen up our understanding of these ideas. Still, we’ve said enough to get us
started.

2.2 What’s the use of deduction?
It needs to be stressed again that deductively valid inferences are not the only
acceptable ones. Inferring that Jo is injured from the fact she fell twenty stories
onto concrete is perfectly reasonable. Inductive reasoning like this is very often
good enough to trust your life to: the premisses may render the conclusion a rac-
ing certainty. But such reasoning isn’t deductively valid.

Now consider a more complex kind of inference: take the situation of the
detective – call him Sherlock. In the ideally satisfying detective story, Sherlock
assembles a series of clues and then solves the crime by an inference to the best
explanation. In other words, the detective arrives at an hypothesis that neatly
accommodates all the strange events and bizarre happenings, an hypothesis that
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strikes us (once revealed) as obviously the right explanation. Why is the bed
bolted to the floor? Why is there a useless bell rope hanging by the bed? Why is
there a ventilator near the top of the rope leading through into the next room?
What is that strange music heard at the dead of night? All the pieces fall into
place when Sherlock infers a dastardly plot to kill the sleeping heiress in her
unmovable bed by means of a poisonous snake, trained to descend the rope in
response to the music. But although this is an impressive ‘deduction’ in one
everyday sense of the term, it is not deductively valid reasoning in the logician’s
sense. We may have a set of clues, and some hypothesis H may be the only plau-
sible explanation we can find: but in the typical case it won’t be a contradiction
to suppose that, despite the way the evidence stacks up, our hypothesis H is
false. That won’t be a logically inconsistent supposition, only a very unlikely
one. Hence, the detective’s plausible ‘deductions’ are not (normally) valid deduc-
tions in the logician’s sense.

This being so, we might begin to wonder: if our inductive reasoning about the
future on the basis of the past is not deductive, and if inference to the best expla-
nation is not deductive either, just how interesting is the idea of deductively valid
reasoning?

To make the question even more worrisome, consider that paradigm of
systematic rationality, scientific reasoning. We gather data, and try to find the
best theory that fits; rather like the detective, we aim to come up with the best
explanation of the actually observed data. But a useful theory goes well beyond
merely summarizing the data. In fact, it is precisely because the theory goes
beyond what is strictly given in the data that the theory is useful for making
novel predictions. Yet since the excess content isn’t guaranteed by the data,
because it is (in a broad sense) an induction beyond the data, the theory cannot
be validly deduced from observation statements. So again it might be asked:
what’s the interest of deductive validity, except maybe to mathematicians, if
deductive inference doesn’t feature even in the construction of scientific theories?

But that’s too quick! It is true that we can’t simply deduce a theory from the
data it is based on. However, it just doesn’t follow that deductive reasoning
plays no essential part in scientific reasoning. 

Here’s a picture of what goes on in science. Inspired by patterns in the data, or
by models of the underlying processes, or by analogies with other phenomena,
etc., we conjecture that a certain theory is true. Then we use the conjectured the-
ory (together with assumptions about ‘initial conditions’) to deduce a range of
testable predictions. The first stage, the conjectural stage, may involve flair and
imagination, rather than brute logic, as we form our hypotheses about the
underlying processes. But at the second stage, having made our conjectures, we
need to infer testable consequences; and this does involve deductive logic. For
we need to examine what else must be true if the theory is true: we want to
know what our hypothesized theory logically entails. Once we have deduced
testable predictions, we seek to check them out. Often our predictions turn out
to be false. We have to reject the theory. Or else we have to revise it as best we
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can to accommodate the new data, and then go on to deduce more testable con-
sequences. The process is typically one of repeatedly improving and revising our
hypotheses, deducing consequences which we can test, and then refining the
hypotheses again in the light of test results. 

This hypothetico-deductive model of science (which highlights the role of
deductive reasoning from theory to predictions) no doubt itself needs a lot of
development and amplification and refinement. But with science thus conceived,
we can see why deduction is absolutely central to the enterprise after all.

2.3 The invalidity principle
Classical validity is defined in terms of possibility and necessity. An inference is
valid if it is impossible for the premisses to be true and the conclusion false.
Valid inferences are necessarily truth-preserving. So, to evaluate for validity, we
usually have to consider not only what is the case in the actual world but also
consider alternative ways things might have been – or, to use a helpful image, we
need to consider what is the case ‘in other possible worlds’. Take, for example,
the following argument:

A (1) No Welshman is a great poet.
(2) Shakespeare is a Welshman.

 So (3) Shakespeare is not a great poet.

The premisses and conclusion are all false. But this fact is quite compatible with
the inferential move here being a valid one. Which indeed it is. For there is no
possible situation in which the premisses would be true and the conclusion false.
In other words, any possible world which did make the premisses true (Shake-
speare being brought up some miles to the west, and the Welsh not going in for
verse), would also make the conclusion true.

Take a couple more examples:

B (1) No father is female.
(2) Bill Clinton is a father.

 So (3) Bill Clinton is not female.

C (1) No one whose middle name is ‘Winifrid’ is a Democrat.
(2) George W. Bush’s middle name is ‘Winifrid’.

 So (3) George W. Bush is not a Democrat.

These again are valid inferences (cut to the same reliable pattern as the Shake-
speare inference), but the inference step leads in argument B from true premisses
to a true conclusion, and in argument C from false premisses to a true conclusion. 

That last claim may for a moment seem odd: how can a truth be validly inferred
from two falsehoods? Well, C(3) is true – George W. Bush is a Republican – but
here in the actual world it has nothing to do with facts about his middle name. It
just happens to be true quite independently, and someone who believed C(3) on
the basis of the daft premisses C(1) and C(2) would be right merely by luck. Still,
the point remains that in any world where those premisses were true, C(3) would
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also be true, and so the inference step is deductively valid. 
There can of course be mixed cases too, with some true and some false prem-

isses. So allowing for these, we have in summary:

• A valid inference can have actually true premisses and a true conclusion,
(some or all) actually false premisses and a false conclusion, or (some or
all) false premisses and a true conclusion.

• The only combination ruled out by the definition of validity is having all true
premisses and a false conclusion. Validity is about the necessary preservation
of truth – so a valid inference cannot take us from actually true premisses
to a false conclusion. 

That last point is worth stressing, and indeed we might usefully dignify it with a
label:

The invalidity principle An inference with actually true premisses and an
actually false conclusion can’t be deductively valid.

We’ll see in §4.1 how this invalidity principle gets to do interesting work when
combined with the observation that arguments come in families sharing the
same kind of inference step. But here’s an immediate (if rather trivial) applica-
tion. Consider the following line of reasoning:

D (1) No England cricket captain has written a world-famous philo-
sophy text book.

(2) All world-famous philosophy text books are written by people
with some knowledge of philosophy. 

(3) Anyone who has taught philosophy at a university has some
knowledge of philosophy. 

 So (4) No one who has taught philosophy at a university has cap-
tained England at cricket.

Here we have a three-premiss inference with a certain complexity, and it may
take a moment’s thought to figure out whether the inferential move is valid or
not.

The question is immediately settled, however, once you put together the fact
that the premisses are all true with the esoteric bit of information that the con-
clusion is actually false (as it happens, the one-time England captain Mike Brear-
ley previously was a university lecturer in philosophy). Hence, by the invalidity
principle, the inference move in D must be invalid: and that settles that!

2.4 Inferences and arguments
So far, we have spoken of inferential steps in arguments as being valid or invalid.
For the moment, we’ll largely stick to this way of talking. But it is more common
simply to describe arguments as being valid or otherwise. In that usage, we say
that a one-step argument, like those we’ve been looking at so far, is valid just if
the inference step from the premiss(es) to the conclusion is valid.
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This is absolutely standard shorthand. But it can mislead beginners. After all,
saying that an argument is ‘valid’ can sound rather like an all-in endorsement.
However, to repeat, to say that an argument is valid is only to commend the
cogency of the inferential move between premisses and conclusion. A valid argu-
ment, i.e. one that is internally cogent like A, can still have premisses that are
quite hopelessly false.

It is useful, then, to have a term for arguments that do deserve all-in endorse-
ment – which both start from truths and proceed by deductively cogent inference
steps. The usual term is ‘sound’. So:

A (one-step) argument is valid just if the inference from the premisses to
the conclusion is valid.

A (one-step) argument is sound just if it has all true premisses and the
inference from those premisses to the conclusion is valid.

A few authors annoyingly use ‘sound’ to mean what we mean by ‘valid’. But
everyone agrees there is a key distinction to be made between mere deductive
cogency and the all-in virtue of having true premisses and making a cogent
inference. There’s just an irritating divergence over how this agreed distinction
should be labelled. Our usage of the labels is the majority one.

We typically want arguments that aim at deductive success to be sound in our
double-barrelled sense. But not always! Sometimes we argue from premisses we
think are false (or even inconsistent) precisely to bring out some absurd conse-
quence of them, in the hope that a disputant will agree that the consequence is
absurd and so come to accept that the premisses aren’t all true.

Note three immediate consequences of our definition:

(a) any sound argument has a true conclusion;
(b) no pair of sound arguments can have inconsistent conclusions;
(c) no sound argument has inconsistent premisses.

First, a sound argument starts from actually true premisses and involves a neces-
sarily truth-preserving inference move – so it must end up with an actually true
conclusion. Second, since a pair of sound arguments will have a pair of actually
true conclusions, that means that the conclusions are true together. If they are
actually true together, then of course they can be true together. And if they can
be true together then (by definition) the conclusions are consistent with each
other. Finally, since a bunch of inconsistent premisses cannot all be true together,
an argument starting from those premisses cannot fulfil the first half of the defi-
nition of soundness. 

Replacing ‘sound’ by ‘(classically) valid’ in (a) to (c) yields falsehoods, how-
ever. That is easy to see in the first two cases. For the third case, reflect again that
sometimes we show that certain premisses are implicitly inconsistent by validly
drawing some explicit contradiction from them: we’ll return to explore this
point in Chapter 5.
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2.5 What sort of thing are premisses and conclusions?
The basic constituents of arguments are premisses and conclusions. But what
sort of thing are they? Well, for a start, they are the sort of thing that can be true
or false; and we’ll follow one convention by calling the bearers of truth or falsity,
whatever they should turn out to be, propositions. So in our usage, arguments
are uncontentiously made up out of propositions: but what are they?

A terminological aside Propositions, such as premisses and conclusions,
are assessed for truth/falsity. Inference moves are assessed for validity/
invalidity. These dimensions of assessment, as stressed before, are funda-
mentally different: so we should mark the distinction very carefully.
Despite the common misuse of the terms, we should never say that a
proposition is ‘valid’ when we mean it is true, or that an argument is
‘true’ when we mean that it is valid (or sound).

You might suggest: propositions are just declarative sentences (like ‘Jack kicks
the ball’ as opposed to questions like ‘Does Jack kick the ball?’, or imperatives
like ‘Jack, kick the ball!’). But it would be odd to identify premisses and conclu-
sions with sentences in the sense of the actual printed inscriptions, particular
physical arrays of blobs of ink on the page. Surely we want to say that the same
premisses and conclusions can appear in the many different printed copies of
this book (or indeed, when the book is read aloud). So the suggestion is presum-
ably that propositions are declarative sentence types, which can have printed
instances appearing in many copies (and can have many spoken instances too).

But even so understood, the suggestion is not without difficulties. Consider (a)
an ambiguous sentence like the proverbial wartime headline ‘Eighth Army push
bottles up Germans’ – are the Germans being bottled up by a push, or are the
Eighth Army pushing bottles? The sentence says two different things, one of
which may be true and the other false: so, same sentence, different things said,
i.e. different propositions expressed. What about (b) sentences involving pro-
nouns? For example, consider the argument ‘No logician is irrational. Russell
is a logician. So, he is rational.’ We naturally read this as a valid argument. But
the conclusion as written is in a sense incompletely expressed. Who is being
referred to by ‘he’? In context, we take it to be Russell. In another context, the
pronoun ‘he’ could refer to someone else. And ripped out of all context, an
occurrence of ‘He is rational’ wouldn’t convey any determinate message –
wouldn’t express any particular proposition. So again, same sentence but
expressing different propositions (or none). (c) There can be converse cases,
where it seems natural to say that different sentences express the same proposi-
tion. After all, don’t ‘Snow is white’ and ‘La neige est blanche’ say the same? Or
within a language, how about ‘Jack loves Jill’ and ‘Jill is loved by Jack’?

Some find these sorts of reasons for distinguishing sentences and propositions
compelling, and conclude that propositions aren’t sentences but are – as we’ve
just been saying – what are expressed by declarative sentences. Others respond
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that cases of ambiguity and incompleteness only show that we need to identify
propositions with fully interpreted sentences (i.e. sentences parsed as having a
certain meaning, and with the reference of pronouns such as ‘he’, etc. deter-
mined); and they will say that cases of equivalent sentences (whether from differ-
ent languages or the same one) are no more than that – i.e. we have equivalent
but still distinct propositions. 

We aren’t going to try to settle that dispute. That may sound rather irrespons-
ible. But it will turn out that for our purposes later in this book, we don’t actually
need to settle the nature of propositions here. So we fortunately can leave that
tricky issue in ‘philosophical logic’ hanging as we proceed with our more formal
explorations.

2.6 Summary
• Although inductive arguments from past to future, and inferences to the

best explanation, are not deductive, the hypothetico-deductive picture
shows how there can still be a central role for deductive inference in scien-
tific and other enquiry.

• An inference step is (classically) valid if and only if there is no possible situ-
ation in which its premisses are true and the conclusion false.

• The relevant notion of a possible situation is (roughly) the notion of a
coherently conceivable situation, one whose characterization involves no
internal contradiction.

• A one-step argument is valid if and only if its inference step is valid.

• An argument which is valid and has true premisses is said to be sound.

• The constituents of arguments (premisses and conclusions) are propositions.
But we needn’t settle the nature of propositions.

Exercises 2
Which of the following claims are true, which false, and why? 

1. If someone produces an invalid argument, his premisses and conclusion
must make a logically inconsistent set.

2. If an argument has false premisses and a true conclusion, then the truth of the
conclusion can’t really be owed to the premisses: so the argument cannot
really be valid.

3. Any inference with actually true premisses and a true conclusion must be
truth-preserving and so valid.

4. If the conclusion of an argument is false and all its premisses are true, then
the argument cannot be deductively valid.

5. You can make a valid inference invalid by adding extra premisses.

6. You can make a sound inference unsound by adding extra premisses.
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7. You can make an invalid inference valid by adding extra premisses.

8. If a set of propositions is consistent, then adding a further true proposition
to it can’t make it inconsistent.

9. If a set of true propositions is consistent, then adding a further false propo-
sition to it must make it inconsistent.

10. If a set of propositions is inconsistent, then if we remove some proposition P,
we can validly infer that P is false from the remaining propositions in the set.



We noted in the first chapter how arguments can come in families which share
the same pattern of inference step. We now explore this idea in more detail. 

3.1 More patterns
Consider again the argument:

A (1) No Welshman is a great poet.
(2) Shakespeare is a Welshman.

 So (3) Shakespeare is not a great poet.

The inference step here is deductively valid. Likewise for the parallel ‘Clinton’
and ‘Bush’ arguments in §2.3. These are valid too:

A′ (1) No three-year old understands quantum mechanics.
(2) Daisy is three years old.

 So (3) Daisy does not understand quantum mechanics.

A″ (1) No elephant ever forgets.
(2) Jumbo is an elephant.

So (3) Jumbo never forgets.

And we can improvise endless variations on the same theme. 
The inference steps in these arguments aren’t validated by any special facts

about poets, presidents, three-year-olds or elephants. Rather, they are all valid
for the same reason, namely the meaning of ‘no’ and ‘not’ and the way that these
logical concepts distribute in the premisses and conclusion. In fact, we have

Any inference of the type 

No F is G 
n is F 
So, n is not G

is valid.

As before (§1.5), ‘F’ and ‘G’ here stand in for predicates – expressions that
attribute properties like being an elephant or understanding quantum mechanics

3

Patterns of inference
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– and ‘n’ holds the place for a name. Note again that this sort of use of symbols
is in principle dispensable. We could say, e.g.,

Any one-step inference is valid which has one premiss which says that
nothing of some given kind has a certain property, whose other premiss
says that a certain individual is of the given kind, and whose conclusion
says that the individual in question lacks the property in question.

But it is surely a lot more transparent to use the symbolic shorthand. 
Let’s be clear, then, that there is nothing essentially mathematical involved in

this use of symbols like ‘F’ and ‘n’. We are simply exploiting the fact that it is
easier to talk about a pattern of inference by displaying the pattern using these
‘schematic variables’, instead of trying to describe it in cumbersome words.

Here’s another, slightly trickier, example which we have met before (§1.4):

B (1) Some philosophy students admire all logicians.
(2) No philosophy student admires any rotten lecturer.

 So (3) No logician is a rotten lecturer.

Do the premisses logically entail the conclusion?
Suppose the premisses are true. Then by B(1) there are some philosophy

students (as it might be, Jack and Jill) who admire all logicians. We know from
B(2) that Jack and Jill (since they are philosophers) don’t admire rotten lecturers.
That is to say, people admired by Jack and Jill aren’t rotten lecturers. So in par-
ticular B(3), logicians – who are all admired by Jack and Jill – aren’t rotten lec-
turers. The inference is valid.

Having now done the work for the argument about rotten lecturers, and
shown that it is valid, what about this following argument?

B′ (1) Some opera fans buy tickets for every new production of Wagner’s
Siegfried.

(2) No opera fan buys tickets for any merely frivolous entertainment.
So (3) No new production of Wagner’s Siegfried is a merely frivolous

entertainment.

That again is valid; and a moment’s reflection shows that it essentially involves
the same type of inference move as before, and can be shown to be valid in just
the same kind of way. We could put it symbolically like this: 

Any inference of the type 

Some F have relation R to every G
No F has relation R to any H
So, no G is H

is valid.

By talk of a relation we just mean whatever is expressed by a predicate with (as
it were) more than one slot in it waiting to be filled by subject terms. For exam-
ple the predicate ‘… loves …’ has two empty places waiting to be filled up by
names like ‘Romeo’ and ‘Juliet’ (or by more complex terms like ‘Someone in this
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room’ and ‘every philosopher’). Likewise, ‘… is married to …’ also expresses a
two-place relation, as does ‘… is taller than …’ and (to return to our examples)
‘… admires …’ and ‘… buys tickets for …’. So, with that notion of a relation in
play, we can see that the arguments B and B′ do share the same indicated pattern
of inference. 

And just try expressing that common pattern without using the symbols: it can
be done, to be sure, but at what cost in perspicuity!

In summary, then, we have now displayed three examples of general patterns
of valid inference. In §1.5 we noted the simple inference pattern

All F are G 
n is F
So, n is G

We have just noted the pattern

No F is G 
n is F 
So, n is not G

and, rather more complicatedly,

Some F have relation R to every G
No F have relation R to any H
So, no G is H

Any inference following one of these three patterns will be valid. To repeat, it is
not the special subject matter of the instances that makes them valid. The way
that ‘all’, ‘every’ and ‘any’, ‘some’, ‘no’ and ‘not’ distribute between the prem-
isses and conclusion suffices for validity in these cases. 

Here are some more examples of reliable inference patterns (with varying
numbers of premisses – there is nothing special about having exactly two):

No F is G
So, no G is F

All F are H
No G is H
So, no F is G

All F are either G or H
All G are K
All H are K
So, all F are K

(Construct some instances, and convince yourself that your examples and other
inferences of the same types will all be valid.) 

In sum, evaluating a particular argument for validity very often goes with
seeing a certain general pattern of inference as doing the work in the argument.
And evaluating this inference pattern will, in one fell swoop, simultaneously give
a verdict on a whole range of arguments making the same sort of inferential
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move. This point underlies the whole business of logic as a systematic study –
though, as we will explain in §3.4 below, the point does need to be handled with
a bit of care. But first …

3.2 Three simple points about inference patterns
Point One Take again the inference pattern

All F are G 
n is F 
So, n is G

Does the following inference count as an instance of the pattern?

C (1) All men are mortal.
(2) Snoopy is a dog.

 So (3) Bill Clinton is female.

Of course not! True, when taken separately, C(1) is of the form All Fs are G (i.e.
attributes a certain property to everything in some class), C(2) is a simple sub-
ject/predicate claim of the form n is F, and likewise C(3) has the form n is G. But
when we describe an inference as having a pair of premisses of the pattern 

All F are G 
n is F 

and a conclusion
n is G

we are indicating that the same predicate F is involved in the two premisses.
Likewise, the name n and predicate G that are in the premisses should recur in
the conclusion. The whole point of the schematic variables is to represent
patterns of recurrence in the premisses and conclusion. So in moving back from
an abstract schema to a particular instance of the type, we must preserve the pat-
terns of recurrence by being consistent in how we interpret the ‘F’s and ‘G’s and
‘n’s. A schematic variable is to be filled out the same way at each occurrence in
the schema.

What about the following argument? Does this count as an instance of the dis-
played inference pattern?

D (1) All philosophers are philosophers.
(2) Socrates is a philosopher.

 So (3) Socrates is a philosopher.

This time, instead of substituting at random, we have at least been consistent –
though we have substituted in the same way for both ‘F’ and ‘G’. We will allow
this as a special case. The crucial thing, to repeat, is that we must hold the inter-
pretation of each of ‘F’ and ‘G’ fixed throughout the argument. If an argument
pattern is reliably valid whatever the substitutions for ‘F’ and ‘G’, etc., it will
still be valid in the trivializing case where what is substituted for the ‘F’s and ‘G’s
happens to be the same. 
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And indeed argument D is classically valid by our definition: it can’t have true
premisses and a false conclusion. The inference is certainly no use at all as a
means for persuading someone of the conclusion who does not already accept
that very proposition! But there’s an important distinction to make here: truth-
preservation is one thing, persuasiveness is something else. And once we firmly
make that distinction, counting D as deductively virtuous is acceptable. After all,
an inference that covers no ground hasn’t got a chance to go wrong! (We will
return to expand this remark in Chapter 6.)

Point Two Consider the two arguments:

E (1) All men are mortal.
(2) Socrates is a man.

 So (3) Socrates is mortal.

E′ (1) Socrates is a man.
(2) All men are mortal.

 So (3) Socrates is mortal.

What’s the relation between the inferences here? Validity, recall, is defined this
way: an inference is valid just when there is no possible situation in which all the
premisses are true and the conclusion false. Assessments of validity for inference
steps are therefore quite blind to the order in which the premisses are ‘fed in’.
Hence for our purposes – concentrating, as logic does, on assessments of validity
– the order in which the premisses of an inference step are presented is irrele-
vant. So we’ll take the two E arguments as involving the same inference step.
And generalizing, we’ll take two schemas

All F are G 
n is F 
So, n is G

n is F 
All F are G 
So, n is G

as representing the same basic pattern of inference. 

Point Three What is the relation between that pattern and these ones? – 

All H are K 
m is H 
So, m is K

All Φ are Ψ 
α is Φ
So, α is Ψ

All ① are ② 

 is ①
So,  is ②

1

1
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Again, all four schemas are just more possible ways of representing the same
kind of inferential move. The choice of ‘F’s and ‘G’s as against ‘H’s and ‘K’s, or
Greek letters, or some other place-holders, doesn’t matter at all; what we are
trying to reveal is a pattern of recurrence, and the ‘F’s or ‘Φ’s or whatever are
just used to mark different places in the pattern. (It would be a rather bad mis-
take, then, to identify the pattern of inference with one or other of these various
symbolic expressions used to display the pattern.) 

3.3 Generality and topic neutrality
Our examples so far have all had a very abstract structure. But consider:

F (1) Jill is a mother.
So (2) Jill is female.

G (1) Jack has a first cousin.
So (2) Jack’s parents are not both only children.

H (1) Tom is taller than Dick.
(2) Dick is taller than Harry.

So (3) Tom is taller than Harry.

These arguments are all valid. If Jill is a mother, she is a female parent, and
hence female. If Jack has a first cousin (where a first cousin, by definition, is a
child of one of his aunts or uncles) he must have an aunt or uncle. So his parents
cannot both have been only children. And if three people are lined up in
descending order of height, then the first must be taller than the last.

Now, in each case we can expose some inferentially relevant structure. The
first two arguments are not made valid by something peculiar to Jill or Jack. Any
inference of these kinds is valid:

n is a mother
So, n is female

n has a first cousin
So, n’s parents are not both only children

Likewise, any argument with the following pattern is valid:

k is taller than l
l is taller than m
So, k is taller than m

Here, then, we have further examples of reliable patterns of inference; but in an
obvious sense, these are less general patterns than before. In our earlier exam-
ples, we could display the pattern using, in addition to the symbols, only very
general vocabulary like ‘all’ or ‘none’ or ‘any’ or ‘not’. That vocabulary can be
called topic neutral, for it is vocabulary that we might equally well use in dis-
cussing any topic, be it history, pure mathematics, philosophy or whatever. The
logical structures that the skeletal forms displayed were correspondingly general.
By contrast, our new examples of valid inference patterns involve concepts
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which belong to more specific areas of interest, concerning familial relations, or
physical size. 

These latest examples are none the worse for that; they are perfectly good
kinds of valid inferences. But in what follows we are not going to be much inter-
ested in arguments whose validity depends on features of special-interest
concepts like motherhood or tallness. We are going to be concentrating on the
kinds of argument whose salient patterns can be laid out using only topic-
neutral vocabulary like ‘if’ and ‘or’ and ‘some’ and ‘all’, and so can occur when
we are reasoning about any subject matter at all. 

3.4 Arguments instantiate many patterns
Consider this inference again:

F (1) Jill is a mother.
So (2) Jill is female.

Then note that this very simple one-step valid argument in fact exemplifies a
number of different patterns of reasoning.

First, and most abstractly, it is an argument with one premiss and a (distinct)
conclusion. So it is an instance of the pattern (a) ‘A; so, C’ (rather than the repe-
titious ‘A; so, A’ or the two-premiss ‘A, B; so C’). It need hardly be remarked
that the very general pattern of inference (a) is quite unreliable; most of its
instances are invalid. 

Second, our inference has a premiss which attributes a certain property to a
given individual, and a conclusion which attributes another property to the same
individual. So it is an instance of the slightly more specific pattern (b) ‘n is F; so,
n is G’ – though again this is a totally unreliable inferential move in the general
case.

To move to a third, more detailed, level of description, the argument is also an
instance of the type (c) ‘n is a mother; hence n is female’. And this more specific
pattern of reasoning plainly is deductively reliable in the sense that all of its
instances are valid. 

Finally, we could take the inference to be the one and only exemplar of the
type (d) ‘Jill is a mother; so Jill is female’ – which is (so to speak) a pattern with
all the details filled in. A reliable pattern again (of course!).

All this illustrates a very important general moral:

There is no such thing as the pattern of inference that a given argument
can be seen as instantiating. 

The valid argument F exemplifies a number of different patterns of different lev-
els of generality, some invalid. Generalizing, while valid inferences are typically
instances of reliable general patterns, they will also be instances of other, ‘too
general’, unreliable patterns. Or to put it the other way around, a generally
unreliable pattern of inference can have specific instances that happen to be valid
(being valid for some other reason than exemplifying the unreliable pattern).
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This point becomes important in the next chapter.
Finally, a terminological remark. It is quite common to say that a type of infer-

ence is itself ‘valid’ when all its instances are valid: otherwise the type is said to
be ‘invalid’. This usage shouldn’t cause confusion when you encounter it, so long
as you remember that a generally invalid inference type (like ‘A; so, C’) can have
valid instances (like F).

3.5 ‘Logical form’
Consider the following arguments: 

I (1) All dogs have four legs.
(2) Fido is a dog.

So (3) Fido has four legs.

I′ (1′) Every dog has four legs.
(2) Fido is a dog.

So (3) Fido has four legs.

I″ (1) Any dog has four legs.
(2) Fido is a dog.

So (3) Fido has four legs.

In one obvious sense, these arguments exemplify different patters of inference,
involving respectively ‘all’, ‘every’ and ‘any’.

However it very tempting to say that the differences here are superficial and
the underlying logical structure is intuitively the same. In each case, we have one
premiss which says that everything/anything/all things of a certain general kind
has/have some property (those are arguably just different ways of expressing the
same proposition); another premiss which says that a given individual belongs to
the general kind in question; and a conclusion which says that the relevant indi-
vidual has the mentioned property. 

It is tempting to put it this way: the various versions of I may differ in surface
form, but they share the same logical form. At the level of the propositions
expressed, the inferences are all instances of a single pattern

All/every/any F are G 
n is F 
So, n is G

We might also want to say that arguments couched in e.g. Aristotle’s Greek or in
a medieval logician’s Latin can again have this same inferential structure (even
though they don’t involve the words ‘all’, ‘any’ or ‘every’ at all).

Another simple illustration. At the beginning of the chapter, we cheerfully
counted the inference in

A″ (1) No elephant ever forgets.
(2) Jumbo is an elephant.

So (3) Jumbo never forgets.
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as belonging to the family of inferences of the type

No F is G 
n is F 
So, n is not G

despite the absence of the words ‘is not’ from the conclusion. It is again very nat-
ural to say that the different surface idiom provides only the lightest of disguises
for the logical form that argument A″ shares with others in the family.

So the suggestion is now emerging that the schematic representations of forms
of inference that we’ve been introducing are perhaps best thought of, not as just
displaying surface patterns in the sentences used in an argument, but rather as
indicating underlying logical patterns in the propositions expressed. But again
we are not going to try to really develop and explore this tempting suggestion.
That’s because, as with the sentence/proposition distinction itself, we will find
that we can largely sidestep issues about this idea of logical form. (For more dis-
cussion, see e.g. §§12.3, 13.6.)

3.6 ‘Arguments are reliable in virtue of their form’
We should, however, pause over one point. Talk of ‘logical form’ is associated
with a popular slogan: Valid arguments are valid in virtue of their form. We will
conclude this chapter with some deflationary remarks.

We have seen that valid arguments typically exemplify a number of different
inferential patterns, some good, some bad. It is therefore more than a bit mis-
leading to say baldly that an argument is valid in virtue of its form (as if it has
only got one). The idea behind the popular slogan is presumably that for every
valid argument there is some relevant inferential ‘form’ which captures what
makes it valid.

But that idea is empty if we are allowed to take an argument as the one and
only instance of its own entirely specific inference pattern. Of course a valid
argument always exemplifies some reliable pattern if you count the argument as
a one-off pattern for itself! So, to avoid triviality, the claim had better be some-
thing like this: every valid argument belongs to a family of valid arguments cut
to the same pattern, a family which also has other members, and the argument is
valid in virtue of the inference pattern it shares with the other members of the
family. 

Well, that’s true of all our examples of valid arguments so far. Is it true in
every case? Take for example the following one-step argument:

J (1) Everyone is female.
So (2) Any siblings are sisters.

This is valid. Any situation in which the premiss is true – for instance, a plague
having killed off all the men – must be a situation without brothers. But what
more general but still reliable form does the inference exemplify? Certainly, at
the surface level, there is no way of replacing various parts of the argument with
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place-holding letters so that you end up representing a schematic pattern whose
instances are all valid. (You might reply: ‘Still, “sister” means female sibling so
at the level of propositions expressed the argument is of the valid general form

Everyone is F.
So, anyone who is G is F and G.’

This riposte, however, takes us back to troublesome questions about proposi-
tions and their constituents. For a start, what makes it the case that the concept
of a sister is to be analysed into the constituents female and sibling, rather than
the concept of a sibling being the complex one, to be analysed as brother-or-
sister? Let’s not open up these murky issues!)

As we will see later, e.g. in §13.6, there are good uses for crisply defined tech-
nical notions of being ‘valid in virtue of logical form’. These notions will
sharpen up the idea of owing validity to the way in which all-purpose, topic-
neutral, logical concepts like ‘and’ and ‘not’ or ‘all’ and ‘some’ distribute
between the premisses and conclusion. However, these crisp notions are put to
work in contexts where we want to contrast arguments which are valid in virtue
of ‘logical form’ (in some narrow, technical sense) with other kinds of valid
arguments like examples F and J (which depend for their validity on something
other than the presence of topic-neutral logical notions like ‘not’ and ‘all’).
Hence many valid arguments are not valid-in-virtue-of-form in the technical
senses to be later explained. 

In fact, it is very unclear whether there is any useful notion of being valid-in-
virtue-of-form which is applicable to all valid inferences. 

3.7 Summary
• Arguments with valid inference steps are often – but not always – valid in

virtue of the way that various key logical concepts (like ‘all’, ‘no’ and
‘most’) are distributed in a patterned way between the premisses and con-
clusion.

• Inferential patterns can be conveniently represented using schematic vari-
ables, whose use is governed by the obvious convention that a given vari-
ables represents the same name or predicate whenever it appears within an
argument schema.

• Intuitively, inferential patterns can be shared even when the surface linguis-
tic form differs (e.g. it is natural to say that various arguments beginning
‘Every man …’, ‘Any man …’, ‘Each man …’ may yet exemplify the same
inferential move).

• There is strictly no such thing as the unique form exemplified by an argu-
ment. Valid arguments will typically be instances of reliable forms; but they
can also be instances of other, more general, unreliable forms.

• Our main concern henceforth will be with rather general, ‘topic-neutral’,
patterns of inference.
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Exercises 3
A Which of the following types of inference step are valid (i.e. are such that

all their instances are valid)? If you suspect an inference-type is invalid, find
an instance which obviously fails because it has plainly true premisses and
a false conclusion.

1. Some F are G; no G is H; so, some F are not H.
2. Some F are G; some F are H; so, some G are H.
3. All F are G; some F are H; so, some H are G.
4. No F is G; some G are H; so, some H are not F.
5. No F is G; no G is H; so, some F are not H.

(Arguments of these kinds, with two premisses and a conclusion, with each
proposition being of one of the kinds ‘All … are …’, ‘No … is …’ or ‘Some
… are/are not …’, and each predicate occurring twice, are the traditional
syllogisms first discussed by Aristotle.)

B What of the following patterns of argument? Are these valid?
1. All F are G; so, nothing that is not G is F.
2. All F are G; so, at least one thing is F and G.
3. All F are G; no G are H; some J are H; so, some J are not F.
4. There is an odd number of F, there is an odd number of G; so

there is an even number of things which are either F or G.
5. m is F; n is F; so, there are at least two F.
6. All F are G; no G are H; so, all H are H.

C Consider the following argument:

Dogs have four legs.
Fido is a dog.

So Fido has four legs.

Is it of the same inferential type as the I-family arguments in §3.5?



In this chapter we exploit the fact that many arguments come in families which
share an inferential structure (Chapter 3) and put that together with the invalid-
ity principle (Chapter 2) to give a technique for showing that various invalid
arguments are indeed invalid.

4.1 The technique illustrated
Recall the following argument (§1.4):

A (1) Most Irish are Catholics.
(2) Most Catholics oppose abortion.

So (3) At least some Irish oppose abortion.

We quickly persuaded ourselves that the inference is invalid by imagining how
the premisses could be true and conclusion false. But let’s now proceed a bit
more methodically. Notice first that this argument exemplifies the argumentative
pattern

M Most F are G
Most G are H
So, at least some F are H

And the ‘Irish’ argument surely stands or falls with this general pattern of infer-
ence – for if this pattern isn’t reliable, what else can the argument depend on?

So, next ask: is this inference pattern M in fact a reliable one? Are inferences
of this shape always valid? Consider: 

A′ (1) Most chess masters are men.
(2) Most men are no good at chess.

So (3) At least some chess masters are no good at chess.

The premisses of this argument are true. Chess is a minority activity, and still (at
least at the upper levels of play) a predominantly male one. But the conclusion is
crazily false. So we have true premisses and a plainly false conclusion: hence by
the invalidity principle, argument A′ is invalid. We have shown, then, that the
inference pattern is not reliable: an inference of this type can have true premisses

4

The counterexample technique
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and a false conclusion. There is no special feature to save the ‘Irish’ argument –
the cases are exactly parallel – so that too shares in the general unreliability.

We need to be absolutely clear about what is going on here. We can’t just say
‘The inference pattern M is unreliable, so any instance (such as A) is invalid’. For
as we stressed in §3.4, a generally unreliable pattern of inference may have
special instances that happen to be valid. Still, when an unreliable pattern does
happen to have a valid instance, there must be something else about the argu-
ment (i.e. something other than exhibiting the unreliable pattern) which makes it
valid. So faced with an instance of an unreliable pattern, if there are no other
redeeming features of the argument, then we can conclude that the argument
isn’t valid. That’s the case with A. The inference pattern M is unreliable. There’s
nothing else that the ‘Irish’ argument can be depending on for its validity. In
other words there’s nothing to make it any better than the invalid argument A′.
They really are parallel cases. So A is invalid.

4.2 More illustrations
Here’s another example of the same technique for criticizing an argument.
Consider the inference:

B (1) Some philosophers are great logicians.
(2) Some philosophers are Germans.

So (3) Some great logicians are Germans.

This has true premisses and a true conclusion; so we can’t yet apply the invalid-
ity principle. But the argument exemplifies the pattern

N Some F are G
Some F are H
So, some G are H

Argument B is valid if inference pattern N is reliable: and equally, it is invalid if
N is unreliable – for argument B has no special feature that could make it valid
for some other reason.

So is the pattern N reliable? Take this instance:

B′ (1) Some humans are adults.
(2) Some humans are babies.

So (3) Some adults are babies.

True premisses, false conclusion: so by the invalidity principle, the inference in
B′ is invalid. N is unreliable. And hence any argument like B that depends on
this pattern is unreliable.

Another quick example: what are we to make of the following argument?

C (1) Most philosophy professors have read Spinoza’s Ethics.
(2) Few football fans have read Spinoza’s Ethics.

So (3) Few philosophy professors are football fans.

This has one true and one false premiss (most philosophy lecturers have never
waded through Spinoza!). Maybe the conclusion is true as well. So we can’t
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apply the invalidity principle directly. But the argument evidently appeals to the
inference move

O Most F are G
Few H are G
So, few F are H

Here’s another instance of O:

C′ (1) Most philosophy professors have got a doctorate in philosophy.
(2) Few owners of televisions have got a doctorate in philosophy.

So (3) Few philosophy professors own televisions.

The premisses are true and the conclusion false (lots of philosophy professors
are worldly enough to have televisions!). So we have a ‘counterexample’ which
shows the unreliability of the argument form O: this form of inference doesn’t
guarantee to take you from truths to truths. The Spinoza argument C relies on
this form of reasoning – there is nothing to make it any better than argument C′;
so it is a bad argument.

4.3 The technique described
We have been using a two-stage technique for showing arguments to be invalid.
Let’s set down the general recipe, and then use it in some more examples. 

The counterexample technique

Stage 1 Locate the pattern of inference that the argument is actually rely-
ing on (i.e. the pattern of inference that needs to be valid if the argument
is to work).

Stage 2 Show that the pattern is not a reliable one by finding a counter-
example, i.e. find an argument with this pattern which is evidently invalid,
e.g. because it has actually true premisses and a false conclusion.

There is absolutely nothing mysterious or difficult or novel about this counter-
example technique; we use it all the time in everyday evaluation of arguments.
We could also call it the ‘But you might as well argue …’ gambit. Someone says
that Mrs Jones must be a secret alcoholic, because she has been seen going to the
Cheapo Booze Emporium and everyone knows that that is where all the local
alcoholics hang out. You reply, for example: ‘But you might as well argue that
Hillary Clinton is a Republican Senator, because she’s been seen going into the
Senate, and everyone knows that that’s where all the Republican Senators hang
out’.

The gossip used the reasoning:

D (1) All the local alcoholics use the Cheapo Booze Emporium.
(2) Mrs Jones uses the Cheapo Booze Emporium.

So (3) Mrs Jones is an alcoholic.

That has the form
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P All (the) F are G
n is G
So, n is F

You then point out that this line of reasoning is unreliable by coming up with a
simple counterexample:

D′ (1) All the Republican Senators frequent the Senate.
(2) Hillary Clinton frequents the Senate.

So (3) Hillary Clinton is a Republican Senator.

In sum, the counterexample technique is simple, powerful and natural. And its
rationale is clear. Certain patterns of inference are guaranteed to be truth-
preserving, other kinds of inferential move can lead from true premisses to a
false conclusion. Now, given an argument, we want to know whether the pattern
of inference it is crucially relying on is a safe one, that is bound to lead from true
premisses to a true conclusion. Very obviously, the pattern will not be a safe one
if you can find an instance of it with actually true premisses and a false conclu-
sion – in other words, if we can find a ‘real life’ counterexample to the reliability
of the inferential pattern.

And in fact, now we’ve got the basic point, we can see that telling counter-
examples don’t have to constructed from ‘real life’ situations. An uncontrover-
sially coherent but merely imaginable counterexample will do just as well. Why?
Because that’s still enough to show that the inferential pattern in question is
unreliable: it doesn’t necessarily preserve truth in all possible situations. Using
‘real life’ counterexamples just has the advantage that you don’t get into any dis-
putes about what is coherently imaginable.

4.4 More examples
Consider the following quotation (in fact, the opening words of Aristotle’s
Nicomachean Ethics):

Every art and every enquiry, and similarly every action and pursuit, is
thought to aim at some good; and for this reason the good has rightly
been declared to be that at which all things aim. 

On the face of it – though many scholars rightly challenge this interpretation –
this gives us an initial premiss, roughly

E (1) Every practice aims at some good.

And then a conclusion is drawn (note the inference marker ‘for this reason’)

(2) There is some good (‘the good’) at which all things aim.

This argument has a very embarrassing similarity to the following one:

E′ (1) Every assassin’s bullet is aimed at some victim.
 So (2) There is some victim at whom every assassin’s bullet is aimed.

And that is obviously bogus. Every bullet has its target (let’s suppose), without
there being a single target shared by them all. Likewise, every practice may aim
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at some valuable end or other without there being a single good which encom-
passes them all.

Drawing out some logical structure, Aristotle’s argument appears to rely on
the inference form

Q Every F has relation R to some G
So, there is some G such that every F has relation R to it

and then the ‘assassin’ argument is a counterexample (an inference of the same
pattern, which is evidently invalid).

Expressions like ‘every’ and ‘some’ are standardly termed quantifiers by logi-
cians (see Chapter 21); and the invalidity of Q shows that in general we can’t
shift around the order of quantifiers in a sentence. It is perhaps worth noting
that a number of supposed arguments for the existence of God commit the same
quantifier-shift fallacy. Thus, even if you grant that 

E˜ (1) Every causal chain has an uncaused first link,

it does not follow that

(2) There is something (God) that is the uncaused first link of every 
causal chain.

Again, even if you suppose that

E° (1) Every ecological system has a designer,

(though that’s a premiss which Darwin exploded), it still does not follow that

(2) There is one designer (God) of every ecological system.

There may, consistently with the premiss, be no one Master Designer of all the
ecosystems; perhaps each system was produced by a competing designer.

4.5 Countering the counterexample technique?
Did Aristotle really use the terrible argument E? Many, perhaps most, scholars
would deny that he did, and offer alternative readings.

Quite generally, faced with a play of the ‘But you might as well argue …’ gam-
bit, the defender of the argumentative text up for criticism may always try to
counter that the intended form of argument has been misidentified, and that the
supposedly parallel counterexample isn’t really parallel at all. And in complex
cases, as with Aristotle’s text which we have ripped out of context, it may well
not be immediately obvious quite what the intended argument is and what pat-
tern of inference is being relied on. 

However, faced with an apparent counterexample, the proponent of the origi-
nal argument must at least meet the challenge of saying why the supposed coun-
terexample fails to make the case, and must tell us what the principle of
inference used in the argument really is. If Aristotle isn’t wanting to rely on the
fallacious inference-type Q then what is he up to? His defender has to come up
with an alternative suggestion here.

This kind of interpretative exchange can be very instructive. More generally,



34 The counterexample technique

there’s a considerable skill involved in taking a real-life passage and trying to
tease out what is supposed to be going on argumentatively, and knocking it into
its best shape. Rarely does ordinary prose serve up fully explicit arguments
neatly packaged into premisses and conclusions all set out just waiting for the
propositions to be numbered off! Which is why there are whole books on ‘infor-
mal logic’ which aim to foster the skill of extracting nuggets of hard argument
from the relaxed prose presentations. 

The focus of this book, however, is different. Here we will assume that that
kind of interpretative work is done, and arguments are already neatly packaged
into premisses and conclusions. Our concern is with the assessment of argu-
ments once we have sifted them from the prose.

4.6 Summary
• The counterexample technique to show invalidity is applicable to a target

argument when (1) we can find a pattern of inference that the argument is
depending on, and (2) we can show that the pattern is not a reliable one by
finding a counterexample to its reliability, i.e. find an argument exemplify-
ing this pattern which has (or evidently could have) true premisses and a
false conclusion.

• This technique is familiar in everyday evaluation of arguments as the ‘But
you might as well argue …’ gambit. 

• But in applications of this gambit to real-world arguments, step (1) – i.e.
locating the relevant form of inference that is being relied upon – can be a
contentious business.

Exercises 4
Some of the following arguments are invalid. Which? Use the counterexample
technique to prove invalid the ones that are.

1. Many ordinary people are corrupt, and politicians are ordinary people. So,
some politicians are corrupt.

2. Many great pianists admire Glenn Gould. Few, if any, unmusical people
admire Glenn Gould. So few, if any, great pianists are unmusical.

3. Everyone who admires Bach loves the Goldberg Variations; some who
admire Chopin do not love the Goldberg Variations; so some admirers of
Chopin do not admire Bach.

4. Some nerds are trainspotters. Some nerds wear parkas. So some trainspot-
ters wear parkas.

5. Anyone who is good at logic is good at assessing philosophical arguments.
Anyone who is mathematically competent is good at logic. Anyone who is
good at assessing philosophical arguments admires Bertrand Russell. Hence
no-one who admires Bertrand Russell lacks mathematical competence.

6. (Lewis Carroll) Everyone who is not a lunatic can do logic. No lunatics are
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fit to serve on a jury. None of your cousins can do logic. Therefore none of
your cousins is fit to serve on a jury.

7. Most logicians are philosophers; few philosophers are unwise; so at least
some logicians are wise.

8. Few Sicilians approve of abortion; many atheists approve of abortion; so
few atheists are Sicilians.

9. All logicians are rational; no existentialists are logicians; so if Sartre is an
existentialist, he isn’t rational.

10. If Sartre is an existentialist, he isn’t rational; so if he is irrational, he is an
existentialist.



The counterexample technique is a way of demonstrating the invalidity of some
inferences. This chapter introduces a way of showing the validity of some other
inferences.

5.1 Two sample proofs
It can be hard to pin down the deductive structure that is being relied on in a
passage of argument. But suppose we have agreed what type of inference move is
at stake. Then, if we can find a counterexample which shows the inference move
is not reliable, that’s that. The argument is shown to be invalid. 

Suppose, however, that we have tried for some time to find a counterexample
and failed. What does that show? Perhaps nothing very much. It could be that
the argument is invalid but we have just been too dim to think up a suitable
counterexample. Or it could be that the argument is in fact valid after all. But if
failure to find a counterexample doesn’t settle the matter, how can we demon-
strate that a challenged inference really is a valid one?

Take this charmingly daft example from Lewis Carroll: 

A Babies are illogical; nobody is despised who can manage a crocodile; 
illogical persons are despised; so babies cannot manage a crocodile.

This three-premiss inference is in fact valid. Maybe, just for a moment, that isn’t
obvious. So consider the following two-step argument:

A′ (1) Babies are illogical. (premiss)
(2) Nobody is despised who can manage a crocodile. (premiss)
(3) Illogical persons are despised. (premiss)
(4) Babies are despised. (from 1, 3)
(5) Babies cannot manage a crocodile. (from 2, 4)

Here, we have inserted an extra step between the original premisses and the tar-
get conclusion. The inference from the premisses to the intermediate step, and
then the inference from there to the conclusion, are both evidently valid. So we
can indeed get from the initial premisses to the conclusion by a truth-preserving
route.

5

Proofs
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Here’s a second quick example, equally daft (due to Richard Jeffrey):

B Everyone loves a lover; Romeo loves Juliet; so everyone loves Juliet.

Take the first premiss to mean ‘everyone loves anyone who is a lover’ (where a
lover is a person who loves someone). Then this inference too is, slightly surpris-
ingly, deductively valid! 

For consider the following multi-step argument:

B′ (1) Everyone loves a lover. (premiss)
(2) Romeo loves Juliet. (premiss)
(3) Romeo is a lover. (from 2)
(4) Everyone loves Romeo. (from 1, 3)
(5) Juliet loves Romeo. (from 4)
(6) Juliet is a lover. (from 5)

 (7) Everyone loves Juliet. (from 1, 6)

We have again indicated on the right the ‘provenance’ of each new proposition
in the argument. And by inspection we can again see that each small inference
step is truth-preserving. As the argument grows, then, we are adding new propo-
sitions which must be true if the original premisses are true. These new proposi-
tions then serve in turn as inputs (as premisses) to further valid inferences.
Everything is chained together so that, if the original premisses are true, every-
thing later, and hence the final conclusion, must be true too. Hence the inference
B that jumps straight across the intermediate stages must be valid.

These examples illustrate how we can establish an inferential leap as valid –
namely by breaking down a big leap into smaller steps, each one of which is
clearly valid. And as a first-shot definition, we’ll say:

When a chain of argument leads from initial premisses to a final conclu-
sion via intermediate inferential steps, each one of which is clearly valid,
then we will say that the argument constitutes a proof of the conclusion
from those premisses. 

More or less informal proofs, defending inferences by reducing them to a
sequence of smaller steps, occur in everyday contexts. Some systems of formal
logic – so-called ‘natural deduction’ systems – aim to regiment such everyday
proofs into tidy deductive structures governed by strict rules. Our examples of
proofs in this chapter fall somewhere between loose everyday argumentation
and the rigorous presentations of natural deduction systems. For want of a
better label, these are semi-formal proofs.

5.2 Fully annotated proofs
In our two examples so far, we indicated at each step which earlier propositions
the inference depended on. But we could do even better, and also indicate what
type of inference move is being invoked at each stage.

Take another example from Lewis Carroll (an inexhaustible source!):
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C Anyone who understands human nature is clever; every true poet
can stir the heart; Shakespeare wrote Hamlet; no one who does not
understand human nature can stir the heart; no one other than a
true poet wrote Hamlet; so Shakespeare is clever.

The big inferential leap from those five premisses to the conclusion is in fact
valid. (Try to prove that it is, before reading on!)

There is a number of ways of demonstrating this. Suppose we grant that the fol-
lowing two patterns of inference are deductively reliable ones (which they are): 

U Any/every F is G; n is F; so n is G
V No one who isn’t F is G; so any G is F

Then we can argue as follows, using these two patterns:

C′ (1) Anyone who understands human nature (premiss)
is clever.

(2) Every true poet can stir the heart. (premiss)
(3) Shakespeare wrote Hamlet. (premiss)
(4) No one who does not understand human 

nature can stir the heart. (premiss)
(5) No one other than a true poet wrote Hamlet. (premiss)
(6) Anyone who wrote Hamlet is a true poet. (from 5, by V)
(7) Shakespeare is a true poet. (from 3, 6, by U)
(8) Shakespeare can stir the heart. (from 2, 7, by U)
(9) Anyone who can stir the heart (from 4, by V)

understands human nature.
(10) Shakespeare understands human nature. (from 8, 9, by U)
(11) Shakespeare is clever. (from 1, 10, by U)

That’s all very, very laborious, to be sure: but now we have the provenance of
every move fully documented. Since each of the inference moves is clearly valid,
and together they get us from the initial premisses to the final conclusion, we can
see that the original inference C must be valid.

Here, then, we glimpse an argumentative ideal – the ideal of setting out all the
needed premisses and inferential moves systematically, with all the commitments
of the argument explicitly acknowledged. Call that a ‘fully annotated proof’.

Of course, setting out a fully annotated proof gives a critic a particularly clear
target to fire at. If the critic can rebut one of the premisses or come up with a
counterexample to the general reliability of any one of the inference patterns that
is explicitly called on, then the proof (as presented) is sabotaged. On the other
hand, if the premisses are agreed and if the inference moves are uncontentiously
valid, then the proof will indeed establish the conclusion beyond further dispute.

5.3 Enthymemes
Plato writes (Phaedrus 245c)

D Every soul is immortal. For that which is ever moving is immortal.
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Plainly the premiss that whatever is ever-moving is immortal doesn’t by itself
logically entail the desired conclusion. We need some additional assumption.
The intended extra assumption in this case is obvious: Plato is assuming that
every soul is ever-moving (whatever exactly that means!). 

Another quick example. Consider the argument

E The constants of nature have to take values in an extremely narrow
range (have to be ‘fine-tuned’) to permit the evolution of intelligent
life. So the universe was intelligently designed.

For this to work as a deductively valid inference, we presumably need to add
two more premisses. One is uncontroversial: intelligent life has evolved. The
other is much more problematic: intelligent design is needed in order for the uni-
verse to be fine-tuned for the evolution of intelligent life. Only with some such
additions can we get a cogent argument (exercise: construct a fully annotated
argument with versions of these additional premisses).

Arguments like D and E with missing premisses left to be understood (that is,
with ‘suppressed premisses’) are traditionally called enthymemes. And the exer-
cise of trying to regiment informal reasoning into semi-formal annotated proofs
can often help us in spotting an enthymeme and finding a suitable repair. Note
too that the same exercise can also help identify redundancies, when it turns out
that a premiss given at the outset needn’t actually be used in getting to the
conclusion.

5.4 Reductio arguments
Suppose someone couldn’t see why in the ‘crocodile argument’ A′ it was correct
to infer that babies cannot manage a crocodile (given that nobody is despised
who can manage a crocodile, and babies are despised). How might we convince
them? We might amplify that step, as follows:

F (1) Nobody is despised who can wrestle a crocodile. (premiss)
(2) Babies are despised. (premiss)

Suppose temporarily, for the sake of argument,
(3) Babies can manage a crocodile. (supposition)
(4) Babies are not despised. (from 1, 3)
(5) Contradiction! (from 2, 4)

So the supposition that leads to this absurdity must be wrong. 
(6) Babies cannot manage a crocodile (RAA)

Here we are arguing ‘indirectly’. We want to establish (6). But instead of aiming
directly for the conclusion, we branch off by temporarily supposing the exact
opposite is true, i.e. we suppose (3). This supposition is very quickly shown to
lead to something that contradicts an earlier claim. Hence the supposition (3) is
‘reduced to absurdity’: its opposite must therefore be true after all. The label
‘(RAA)’ indicates that the argument terminates with a reductio ad absurdum
inference.
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Another quick example. We’ll demonstrate the validity of the inference ‘No
girl loves any sexist pig; Caroline is a girl who loves whoever loves her; Henry
loves Caroline; hence Henry is not a sexist pig’.

G (1) No girl loves any sexist pig. (premiss)
(2) Caroline is a girl who loves whoever loves her. (premiss)
(3) Henry loves Caroline. (premiss)
(4) Caroline is a girl who loves Henry. (from 2, 3)
(5) Caroline is a girl. (from 4)
(6) Caroline loves Henry. (from 4)

Suppose temporarily, for the sake of argument,
(7) Henry is a sexist pig. (supposition)
(8) No girl loves Henry. (from 1, 7)
(9) Caroline does not love Henry. (from 5, 8)

(10) Contradiction! (from 6, 9)
So the supposition that leads to this absurdity must be wrong. 

(11) Henry is not a sexist pig (RAA)

And we are done. 
Let’s say – at least for now (compare §12.1) – that a contradiction is a pair of

propositions, C together with its exact opposite not-C (or what comes to the
same thing, a single proposition of the type C and not-C). The principle under-
lying the last inference move in F and G can then be summarized as follows:

Reductio ad absurdum If the propositions A1, A2, …, An plus the tem-
porary supposition S logically entail a contradiction then, keeping A1, A2,
…, An as premisses, we can validly infer that not-S.

Why does this principle hold? Suppose that a bunch of premisses plus S do entail
a contradiction. Then there can be no situation in which those other premisses
plus S are all true together (or else this would be a situation in which the entailed
contradiction would also have to be true, and it can’t be). So any situation in
which the other premisses are all true is one in which S has to be false. Hence
those premisses logically entail it isn’t the case that S, i.e. they entail not-S.

It is worth noting that the reductio principle continues to apply in the special
case where the number of original premisses is zero. In other words, if the sup-
position S by itself leads to a contradiction, then it can’t be true. 

As an illustration of the last point, here’s a third – and rather more interesting
– example of an RAA argument. We’ll prove that the square root of 2 is an irra-
tional number, i.e. √2 is not a fraction m�n, where m, n are integers. 

If √2 is a fraction m�n, then we can put it in lowest terms (that is to say, divide
out any common factors from m and n). So we’ll start by make the following ini-
tial assumption:

H Suppose temporarily, for the sake of argument,
(1) √2 = m�n where m and n are integers with no 

common factor.



5.5 Limitations 41

We now show that this leads to contradiction, so it can’t be true:

(2) 2 = m2�n2 (squaring 1)
(3) m2 = 2n2 (rearranging 2)
(4) m2 is even. (from 3)
(5) m is even. (from 4)

That last move depends on the easily checked point that odd integers always
have odd squares: so if m2 is even, m cannot be odd. Continuing:

(6) m = 2r, for some integer r. (from 5)
(7) (2r)2 = 2n2 (from 3, 6)
(8) n2 = 2r2 (rearranging 7)
(9) n2 is even. (from 8)

(10) n is even. (from 9)
(11) m and n are both even. (from 5, 10)
(12) m and n have a common factor (i.e. 2). (from 11)
(13) Contradiction! (from 1, 12)

So the supposition (1) that leads to (13) must be wrong. 
(14) √2 ≠ m�n where m and n are integers with (RAA)

no common factor.

Despite the relative simplicity of the argument, the result is deep. (It shows that
there can be ‘incommensurable’ quantities, i.e. quantities which lack a common
measure. Take a right-angled isosceles triangle. Then there can’t be a unit length
that goes into one of the equal sides exactly n times and into the hypotenuse
exactly m times.)

Finally, two quick remarks. The first concerns the way we have displayed
these arguments involving RAA. When we are giving proofs where temporary
suppositions are made en route, we need to have some way of clearly indicating
which steps of the argument are being made while that temporary supposition is
in play. A fairly standard way of doing this is to indent the argument to the right
while the supposition is in play; and then to go back left when the supposition is
‘discharged’ and is finished with – we’ve also used vertical lines to help signal the
indentation. That gives us a neat visual display of the argument’s structure. 

Second, allowing suppositions to be made temporarily complicates the range of
permissible structures for arguments. However, well-formed proofs will still march
steadily on in the sense that each new step of the proof that isn’t a new assump-
tion will depend on what has gone before. It is just that now what goes before
can not only be previous propositions but also whole indented subproofs. For
example, the conclusion in G is derived from the subproof from lines (7) through
to (10); the conclusion in H is derived from the subproof from (1) to (12).

5.5 Limitations
The styles of direct and indirect proof we’ve been illustrating can be used infor-
mally and can also be developed into something much more rigorous. However,
there is a certain limitation to the technique of trying to warrant inferences by
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finding step-by-step proofs. If we are lucky/clever, and spot a proof that takes us
from the given premisses to the target conclusion, that will show that a putative
inference is indeed valid. But we may be unlucky/dim, and not spot the proof. In
the general case, even if a proof exists, proof-discovery requires ingenuity, and
failing to find a proof doesn’t show that the original inference from premisses to
conclusion is invalid. (Compare the counterexample technique: if we are lucky/
clever, deploying that technique will show us that an invalid inference is invalid.
But we may miss the counterexample.) 

It would be nice to have less hit-and-miss techniques for establishing validity
and invalidity. Ideally, we would like a mechanical general technique for work-
ing out whether an inference is or is not valid that doesn’t need any imaginative
searching for proofs or counterexamples. Can we ever (as it were) calculate the
validity or invalidity of inferences in as mechanical a way as we calculate how
much five pints of beer will cost, given the price per pint? 

Profound results (mostly discovered in the 1930s) show that, in general, a
mechanically applicable calculus will not in fact be available. But in a limited
class of cases, we can pull off the trick. In the next part of this book, starting in
Chapter 7, we will be exhibiting one such calculus. 

5.6 Summary
• To establish validity we can use many-step deductions, i.e. proofs, which

chain together little inference steps that are obviously valid and that lead
from the initial premisses to the desired conclusion. 

• Some common methods of proof, however, are ‘indirect’, like reductio ad
absurdum.

• In the general case, even if a proof exists, proof-discovery requires ingenuity.

Exercises 5
Which of the following arguments are valid? Where an argument is valid, pro-
vide a proof. Some of the examples are enthymemes that need repair. 

1. No philosopher is illogical. Jones keeps making argumentative blunders. No
logical person keeps making argumentative blunders. All existentialists are
philosophers. So, Jones is not an existentialist.

2. Jane has a first cousin. Jane’s father had no siblings. So, if Jane’s mother had
no sisters, she had a brother.

3. Every event is causally determined. No action should be punished if the
agent isn’t responsible for it. Agents are only responsible for actions they
can avoid doing. Hence no action should be punished.

4. Something is an elementary particle only if it has no parts. Nothing which
has no parts can disintegrate. An object that cannot be destroyed must con-
tinue to exist. So an elementary particle cannot cease to exist.

5. No experienced person is incompetent. Jenkins is always blundering. No
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competent person is always blundering. So, Jenkins is inexperienced.

6. Only logicians are good philosophers. No existentialists are logicians. Some
existentialists are French philosophers. So, some French philosophers are
not good philosophers.

7. Either the butler or the cook committed the murder. The victim died from
poison if the cook did the murder. The butler did the murder only if the vic-
tim was stabbed. The victim didn’t die from poison. So, the victim was
stabbed.

8. Promise-breakers are untrustworthy. Beer-drinkers are very communicative.
A man who keeps his promises is honest. No one who doesn’t drink beer
runs a bar. One can always trust a very communicative person. So, no one
who keeps a bar is dishonest.

9. When I do an example without grumbling, it is one that I can understand.
No easy logic example ever makes my head ache. This logic example is not
arranged in regular order, like the examples I am used to. I can’t understand
these examples that are not arranged in regular order, like the examples I
am used to. I never grumble at an example, unless it gives me a headache.
So, this logic example is difficult.



Before turning to explore some formal techniques for evaluating arguments, we
should pause to say a little more about the ‘classical’ conception of validity for
individual inference steps, and also say more about what makes for cogent
multi-step arguments. 

6.1 Classical validity again
In Chapter 1, we introduced the intuitive idea of an inference’s being deductively
valid – i.e. absolutely guaranteeing its conclusion, given the premisses. Then in
Chapter 2, we gave the classic definition of validity, which is supposed to capture
the intuitive idea. But does our definition really do the trick? 

A reminder, and a quiz. We said that an inference is (‘classically’) valid if and
only if there is no possible situation in which the premisses are true and the con-
clusion false. So consider: according to that definition, which of the following
inferences are classically valid?

A Jo is married; so Jo is married.

B Socrates is a man; Jo is married; all men are mortal; so Socrates is mortal.

C Jack is married; Jack is single; so today is Tuesday.

D Elephants are large; so either Jill is married or she is not.

And then ask: which of the inferences are intuitively deductively compelling? Do
your answers match?

(1) Trivially, there is no possible way that A’s premiss ‘Jo is married’ could be
true and its conclusion ‘Jo is married’ be false; so the first inference is indeed
valid by the classical definition. 

What is the intuitive verdict about this argument? Of course, the inference is
no use at all as a means for persuading someone who does not already accept the
the conclusion as correct. Still, truth-preservation is one thing, being useful for
persuading someone to accept a conclusion is something else (after all, a valid
argument leading to an unwelcome conclusion can well serve to persuade its
recipient of the falsehood of one of the premisses, rather than the truth of the

6

Validity and arguments
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conclusion). Once we make the distinction between truth-preservation and use-
fulness, there is no reason not to count the ‘Jo’ argument as deductively valid. As
we put it in §3.2, an inference that covers no ground hasn’t got a chance to go
wrong!

Objection: ‘It was said at the very outset that arguments aim to give reasons
for their conclusions – and the premiss of A doesn’t give an independent reason
for its conclusion, so how can it be a good argument?’ Reply: Fair comment.
We’ve just agreed that A isn’t a persuasive argument, in the sense that it can’t
give anyone who rejects the conclusion a reason for changing their minds. Still,
to repeat, that doesn’t mean that the inferential relation between premiss and
conclusion isn’t absolutely secure. And the intuitive idea of validity is primarily
introduced to mark absolutely secure inferences: A just illustrates the limiting
case where the security comes from unadventurously staying in the same place.

(2) Argument B with a redundant and irrelevant premiss also comes out as valid
by the classical definition. There can be no situation in which Socrates is a man,
and all men are mortal, yet Socrates is not mortal. So there can be no situation in
which Socrates is a man, all men are mortal, and (as it happens) Jo is married,
yet Socrates is not mortal. 

What’s the intuitive verdict on B? Well, introducing redundant premisses may
be pointless (or worse, may be misleading). But B’s conclusion is still guaran-
teed, if all the premisses – including the ones the really matter – are true.

Generalizing, suppose A1, A2, …, An logically entail C. Then A1, A2, …, An, B
logically entail C, for any additional premiss B (both intuitively, and by our offi-
cial definition). 

Deductive inference contrasts interestingly with inductive inference in this
respect. Recall the ‘coffee’ argument in §1.3:

E (1) Cups of coffee that looked and tasted just fine haven’t killed you 
in the past.

(2) This present cup of coffee looks and tastes just fine.
So (3) This present cup of coffee won’t kill you.

The premisses here probabilistically support the conclusion. But add the further
premiss

(2′) The coffee contains a tasteless poison,

and the conclusion now looks improbable. Add the further premiss

(2″) The biscuit you just ate contained the antidote to that poison,

and (3) is supported again (for it is still unlikely the coffee will kill you for any
other reason). This swinging to and fro of degree of inductive support as further
relevant information is noted is one reason why the logic of inductive arguments
is difficult to analyse and codify. By contrast, a deductively cogent argument
can’t be spoilt by adding further premisses. 

(3) So far so good. We can readily live with the results that completely trivial
arguments and arguments with redundant premisses count as deductively valid



46 Validity and arguments

by the classical definition. But now note that there is no possible situation in
which Jack is both married and single. That is to say, there is no possible situa-
tion where the premisses of argument C are both true. So, there is no possible
situation where the premisses of that argument are both true and the conclusion
false. So, this time much less appealingly, the inference in C also comes out as
valid by the classical definition.

The point again generalizes. Suppose that a bunch of propositions A1, A2, …, An
is logically inconsistent, i.e. there is no possible situation in which A1, A2, …, An
are all true together. Then there is also no situation in which A1, A2, …, An are
all true and C is false, whatever C might be. Hence by our definition of classical
validity, we can validly infer any proposition we choose from a bunch of incon-
sistent premisses.

That all looks decidedly counter-intuitive. Surely the propositions ‘Jack is
married’ and ‘Jack is single’ can’t really entail anything about what day of the
week it is.

(4) What about the ‘Jill’ argument? There is no possible situation in which the
conclusion is false; it is inevitably true that either Jill is married or she isn’t. So,
there is no possible situation where the conclusion is false and the premiss about
elephants is true. Hence the inference in argument D is also valid by the classical
definition.

The point again generalizes: If C is necessarily true, i.e. there is no possible sit-
uation in which C is false, then there is also no situation in which A1, A2, …, An
are all true, and C is false, whatever A1, A2, …, An might be. Hence by our defi-
nition, we can validly infer a necessarily true conclusion from any premisses we
choose, including elephantine ones. 

Which again looks absurd. What to do?

6.2 Sticking with the classical definition
We have just noted a couple of decidedly counter-intuitive results of the classical
definition of validity. Take first the idea that contradictory premisses entail any-
thing. Then one possible response runs along the following lines:

We said that the premisses of a valid argument guarantee the conclusion:
how can contradictory premisses guarantee anything? And intuitively, the
conclusion of an inferentially cogent inference ought to have something to
do with the premisses. So argument C commits a fallacy of irrelevance. Our
official definition of validity therefore needs to be tightened up by introduc-
ing some kind of relevance-requirement in order to rule out such examples
as counting as ‘valid’. Time to go back to the drawing board.

Another response runs: 

The verdict on C is harmless because the premisses can never be true
together; so we can never use this type of inference in a sound argument for
an irrelevant conclusion. To be sure, allowing the ‘Jack’ argument to count
as valid looks surprising, even counter-intuitive. But maybe we shouldn’t
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slavishly follow all our pre-theoretical intuitions, especially our intuitions
about unusual cases. The aim of an official definition of validity is to give a
tidy ‘rational reconstruction’ of our ordinary notion which smoothly cap-
tures the uncontentious cases; the classical definition does that particularly
neatly. So we should bite the bullet and accept the mild oddity of the verdict
on C.

Likewise there are two responses to the observation that the classical definition
warrants argument D. We could either say this just goes to show that our defini-
tion allows more gross fallacies of irrelevance. Or we could bite the bullet again
and deem this result to be a harmless oddity (we already need to know that a
conclusion C is necessarily true before we are in a position to say that it is classi-
cally entailed by arbitrary premisses – and if we already know that C is neces-
sary, then extra valid arguments for it like D can’t extend our knowledge). 

The majority of modern logicians opt for the second responses. They hold that
the cost of trying to construct a plausible notion of ‘relevant’ inference turns out
to be too high in terms of complexity to make it worth abandoning the neat sim-
plicity of the idea of classical validity. But there is a significant minority who
insist that we really should be going back to the drawing board, and hold that
there are well-motivated and workable systems of ‘relevant logic’. We won’t be
able to explore their arguments and their alternative logical systems here – and
in any case, these variant logics can really only be understood and appreciated in
contrast to classical systems. We just have to note frankly that the classical defi-
nition of validity is not beyond challenge. 

Still, our basic aim is to model certain forms of good reasoning; and models
can be highly revealing even if some of their core constructs idealize. The idea of
a ‘classically valid argument’ – like e.g. the idea of a ‘ideal gas’ – turns out at
least to be a highly useful and illuminating idealization: and this can be so even if
it would be wrong to claim that it is in the end the uniquely best and most accu-
rate idealization. Anyway, we are going to stick to the classical definition in our
introductory discussions in this book.

6.3 Multi-step arguments again
We characterized deductive validity as, in the first place, a property of individual
inference steps. We then fell in with the habit of calling a one-step argument
valid if it involves a valid inference step from initial premisses to final conclu-
sion. In this section, we’ll see the significance of that qualification ‘one-step’. 

Consider the following mini-argument: 

F (1) All philosophers are logicians.
So (2) All logicians are philosophers.

The inference is obviously fallacious. It just doesn’t follow from the assumption
that all philosophers are logicians that only philosophers are logicians. (You
might as well argue ‘All women are human beings, hence all human beings are
women’.) Here’s another really bad inference:
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G (1) All existentialists are philosophers.
(2) All logicians are philosophers.

So (3) Hence, all existentialists are logicians.

It plainly doesn’t follow from the claims that the existentialists and logicians are
both among the philosophers that any of the existentialists are logicians, let
alone that all of them are. (You might as well argue ‘All women are human
beings, all men are human beings, hence all women are men’.) 

But now imagine someone who chains this pair of rotten inference steps
together into a two-step argument as follows. He starts from the premisses

H (1) All existentialists are philosophers. (premiss)
(2) All philosophers are logicians. (premiss)

He then cheerfully makes the same fallacious inference as in F, and infers that

 (3) All logicians are philosophers. (from 2!!)

Then he compounds the sin by committing the same inferential howler as in G,
and supposes that it follows from H(1) and the newly inferred H(3) that

(4)  All existentialists are logicians. (from 1, 3!!)

Here our reasoner has got from the initial premisses H(1) and H(2) to his final
conclusion H(4) by two quite terrible moves: it would therefore be extremely
odd to dignify his supposed ‘proof’ as deductively cogent. 

Note, however, that in this case the two howlers by luck happen to cancel each
other out; there are no possible circumstances in which the initial premisses H(1)
and H(2) are both true and yet the final conclusion H(4) is false. If the existen-
tialists are all philosophers, and all philosophers are logicians, then the existen-
tialists must of course be logicians. Hence, the inferential jump from initial
premisses to final conclusion is in fact valid.

So if we were to say (without any qualification) that an argument is valid if the
initial premisses absolutely guarantee the final conclusion, then we’d have to
count the two-step argument H as ‘valid’. Which is, to say the least, a very
unhappy way of describing the situation, given that H involves a couple of nasty
fallacies!

The previous chapter reminds us that many arguments involve more than one
inference step. To be sure, we don’t very often set them out as semi-formal
proofs; but multi-step arguments are common enough in any form of extended
enquiry – indeed our initial informal definition of an argument (§1.1) was as a
chain of reasoning. The point of multi-step chains is to show that you can legiti-
mately infer some (perhaps highly unobvious) conclusion by breaking down the
big inferential leap from initial premisses to final conclusion into a series of
smaller, more evident steps. But if an argument goes astray along the way, then it
will be mere good luck if it happens to get back on track to a conclusion that
does genuinely follow via some other route from the starting premisses. 

The moral here is a simple one: we need to make a distinction. Suppose we
have a step-by-step argument from premisses A1, A2, …, An to conclusion C.
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Then it is one thing to say that the overall, big-leap, inference from A1, A2, …,
An to C is valid. It is another thing to say that the argument we give from A1,
A2, …, An to C is deductively cogent. Of course, in the case where the argument
has only one step, then the argument is deductively cogent if and only if the
overall inference is valid. But as example H shows, in the case of multi-step
arguments, this two-way link breaks down. The inferential leap from the prem-
isses to conclusion might still be valid, even if some step-by-step argument we
give to defend the inference is not deductively cogent.

You might think that we are making much ado about very little here. For
doesn’t this just show that we must define a genuine proof – a deductively virtu-
ous multi-step argument, where luck doesn’t enter into it – to be an argument
whose individual inferential steps are all valid? (In fact, that was our first-shot
definition in §5.1.) 

But things aren’t quite that easy. Not only must individual steps be valid, but
they must be chained together in the right kind of way.

To illustrate, consider this one-step inference:

I (1) Socrates is a philosopher.
(2) All philosophers have snub noses.

So (3) Socrates is a philosopher and all philosophers have snub noses.

That’s trivially valid (if you are given A and B, you can infer A-and-B). Here is
another equally trivial but valid inference:

J (1) Socrates is a philosopher and all philosophers have snub noses.
So (2) All philosophers have snub noses.

From A-and-B, you can infer B. And thirdly, this too is plainly valid:

K (1) Socrates is a philosopher.
(2) All philosophers have snub noses.

So (3) Socrates has a snub nose.

Taken separately, then, those three little inferences are quite unproblematic. But
now imagine someone chains them together, not in the usual way (where each
step depends on something that has gone before) but in the following tangle:

L (1) Socrates is a philosopher. (premiss)
(2) Socrates is a philosopher and (from 1, 3: as in I)

all philosophers have snub noses.
(3) All philosophers have snub noses. (from 2: as in J)

So (4) Socrates has a snub nose. (from 1, 3: as in K)

By separately valid steps we seem to have deduced the shape of Socrates’ nose
just from the premiss that he is a philosopher! What has gone wrong?

The answer is obvious enough. In the middle of the argument we have gone
round in a circle. L(2) is derived from L(3), and then L(3) is derived from L(2).
Circular arguments can’t take us anywhere. 

So that suggests we need an improved account of what makes for a deduc-
tively cogent proof: the individual inferential steps must all be valid, and the
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steps must be chained together in a non-circular way, with steps only depending
on what’s gone before in the argument.

That’s an improvement, but more still needs to be said. For recall, we need to
allow for multi-step arguments like the ‘reductio’ arguments we met in §5.4 –
i.e. arguments where we can introduce a new temporary supposition that doesn’t
follow from what’s gone before (and then later ‘discharge’ the assumption by an
inference step that relies, not on prior propositions, but on a prior ‘sub-proof’).
Then there will be more complications when we introduce ‘downward-branch-
ing tree proofs’ (see §20.1). Recognizing such various argument-styles as all
being in good order complicates the task of framing a definition of what makes
for a deductively cogent proof in general. Fortunately, for our purposes in this
book, we don’t need to come up with a general story here: so we won’t attempt
to do so.

6.4 Summary
• Our classical definition of validity counts as valid any inference which has

inconsistent premisses, or has a necessarily true conclusion. Despite being
counter-intuitive, these are upshots we will learn to live with.

• It is unhappy to say that a multi-step argument is ‘valid’ just if there is no
way the initial premisses can be true and the conclusion false. For we don’t
want to endorse arguments where there are inferential steps which are
invalid but where it happens that the fallacies cancel each other out. 



What has been covered so far?

• We have explained, at least in an introductory way, the notion of a classi-
cally valid inference-step.

• We have explained the corresponding notion of a deductively valid one-
step argument.

• We have distinguished deductive validity from other virtues that an argu-
ment might have (like being a good inductive argument).

• We have noted how different arguments may share the same pattern of
inference. And we exploited this fact when we developed the counterexample
technique for demonstrating invalidity.

• We have seen some simple examples of direct and indirect multi-step proofs,
where we show that a conclusion really can be validly inferred from certain
premisses by filling in the gap between premisses and conclusion with evi-
dently valid intermediate inference steps.

What haven’t we done so far?

• We still haven’t given a very sharp characterization of the notion of deduc-
tive validity (we invoked an intuitive notion of ‘possible situation’ without
really spelling out what that came to).

• Nor have we given a really clear story about what counts as a ‘pattern’ of
inference.

• Nor have we given a sharp characterization of what counts as a legitimate
‘well-built’ form of multi-step proof.

• Indeed, we even set aside the question of the nature of the basic constitu-
ents of informal arguments, namely propositions (so in a sense, we don’t
really know the first thing about valid arguments, i.e. what they are made
of).

At this point, then, we could go in a number of directions. We could remain
content with an informal level of discussion, and first explore more techniques

Interlude

Logic, formal and informal
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for teasing out the inferences involved in real-life passages of extended prose
argumentation. Then we could explore a variety of ways of evaluating a wide
range of everyday deductions. We could also turn our attention to various induc-
tive, probabilistic modes of argument, and explore the sorts of fallacies we can
fall into when trying to argue inductively. And that kind of wide-ranging study
in informal logic (as it is often called) would be a highly profitable enterprise.
But this book takes a different direction. We are going to presuppose that we are
already moderately competent at filleting out the bones of an argument from
everyday prose; and we are going to be focusing on just a couple of broad classes
of deductive inferences, with the aim of constructing rigorous, comprehensive,
formal theories about them. 

We are going, in short, for depth rather than breadth. Our approach will give
us a powerful set of tools for dealing with certain kinds of real-life arguments.
But that isn’t the only reason for taking the formal route. For just as in-depth
theories about genes or electrons tell us what genes and electrons really are, we
might hope that these rigorous theories about some core types of argument will
tell us more about what validity for such arguments amounts to. Moreover, in
the course of these discussions we are going to be developing a range of other
ideas which belong in the toolkit of any analytic philosopher. 

I’d claim, in fact, that the now well understood theory of ‘first-order quantifi-
cation theory’ – the main branch of formal logic which we are introducing in
this book – is one of the great intellectual achievements of twentieth-century
logicians. It opens the door into a rich and fascinating field: and although, in this
introductory book, there will only be occasional glimpses through the door,
what follows will take us right to the threshold.

There are, however, different possible routes to the threshold, different (though
ultimately equivalent) ways of starting to develop formal logical systems. Once
upon a time, so-called axiomatic systems were the fashion. More recently, most
students were introduced to serious logic via some sort of ‘natural deduction’
system. More recently still, systems using ‘tree’ proofs have become popular,
being particularly easy to understand and manipulate by those without a mathe-
matical bent. Given world enough and time, we’d develop all three main
approaches, and discuss their pros and cons. But done in enough detail, that sur-
vey would take too long; and done quickly, it would just confuse beginners. We
have to choose. So this book chooses to introduce formal logic by trees. What
that involves will become clear soon enough.



In the next part of the book, we will be concentrating on a very restricted class
of inferences, whose logical structure involves the so-called propositional con-
nectives, ‘and’, ‘or’ and ‘not’. Such arguments may not be very exciting in them-
selves: but the exercise of developing systematic techniques for evaluating them
is the simplest way of introducing a number of the centrally important concepts
and strategies of formal logic. This present chapter explains the advantages of
introducing a formalized language in which to express arguments involving the
propositional connectives.

7.1 ‘And’, ‘or’ and ‘not’
Consider the following argument:

A (1) Either we are out of petrol or the carburettor is blocked.
(2) We are not out of petrol.

So (3) The carburettor is blocked.

That argument is valid; so is this one: 

A′ (1) Either Jill is in the library or she is in the coffee bar.
(2) Jill isn’t in the library.

 So (3) Jill is in the coffee bar.

Evidently, we can generalize here. Our two arguments have the form

Either A or B
Not A
So, B

And any inference sharing the same form will be valid.
Three quick comments about this. First, we are here using ‘A’ and ‘B’ to stand

in for whole propositions, such as ‘We are out of petrol’ or ‘Jill is in the coffee
bar’. We can call these (schematic) propositional variables. We have used such
propositional variables before (e.g. in §§3.3 and 5.4): contrast the use of ‘F’ and
‘G’ which schematically represent predicates, and ‘n’ which holds the place of a
naming or subject term.

7
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Second, what about our representation of the form of the second premiss in
each case? We have written Not A. But the premiss ‘We are not out of petrol’
does not begin with ‘not’. Still, inserting the ‘not’ into ‘We are out of petrol’ has
the result of denying what was asserted by the original sentence. And we can
very naturally represent the proposition which says exactly the opposite of A by
Not A.

Third, note that in representing the structure of the second argument we have
ignored the surface difference between using the name ‘Jill’ and using the pro-
noun ‘she’ to refer to Jill. You might say that we are trying to represent logical
structure, not just surface form (see §3.5).

Here’s another pair of valid arguments:

B (1) It’s not the case that Jack played lots of football and also did well 
in his exams.

(2) Jack played lots of football.
So (3) Jack did not do well in his exams.

B′ (1) It’s not true that Tony supports the policy and George does too.
(2) Tony supports the policy.

So (3) George does not support it.

These two evidently share the same reliable inferential form, which we might
represent as follows:

Not (A and B)
A
So, not B

In each case, the first premiss says that something is not the case, where the
something in question is a combination of two propositions linked by ‘and’.
Why use brackets in representing this structure? Well, we certainly do want to
distinguish

Not (A and B)

– which joins together A and B, and then says that this combination doesn’t
hold – from

(Not-A and B)

which denies A, but then adds that B does hold. For suppose we replace

A: The President orders an invasion.
B: There will be devastation.

Then Not (A and B) represents the hopeful thought that it isn’t true that the
President will order an invasion with consequent devastation; while (Not-A and
B) is the distinctly less cheering claim that although the President will not order
an invasion, there will still be devastation all the same.

We have seen, then, two examples of valid inference patterns where the rele-
vant logical materials are simply ‘and’ ‘or’ and ‘not’. Here is a patently invalid
inference:
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C (1) It is not the case that Alice is clever and Bob is clever too.
So (2) Alice is not clever.

Suppose Alice is clever but Bob is a dunce: then the premiss is true and the con-
clusion false in that situation. More generally; from Not (A and B) you can’t in
general infer Not A – for maybe B is to blame for the falsity of (A and B).

These initial examples are extremely trite; but they give us some first cases of
arguments whose validity or invalidity depends on the distribution among the
premisses and conclusion of the three propositional connectives ‘and’ ‘or’ and
‘not’.

Talk of ‘connectives’ here is obviously apt for ‘and’ and ‘or’. Thus ‘and’ con-
nects two propositions A, B to give us the more complex proposition A and B.
Likewise ‘or’ connects two propositions A, B to give us the more complex prop-
osition A or B. It is a bit stretched to call ‘not’ a connective, since it operates on
just one proposition and (so to speak) turns it on its head. Still, ‘not’ is like ‘and’
and ‘or’ in giving us a way of building more complex propositions from simpler
ones (and we will soon discover some closer similarities). So we will follow con-
vention and count ‘not’ as an honorary connective.

We are going to explore, then, arguments involving these three propositional
connectives; and later we will present a mechanical way of demonstrating valid-
ity for such arguments. But before getting to that point, a fair amount of prelim-
inary but important ground-clearing needs to be done. 

7.2 Quirks of the vernacular
Let’s remark briefly on some of the complexities and quirks of ‘and’, ‘or’ and
‘not’ as they function in vernacular English. 

(1) We can use ‘and’ to conjoin a pair of matched expressions belonging to
almost any grammatical category – as in ‘Jack is fit and tanned’, ‘Jill won
quickly and easily’, ‘Jack and Jill went up the hill’, or ‘Jo smoked and coughed’,
where ‘and’ conjoins respectively pairs of adjectives, adverbs, proper names and
verbs. But set aside all those uses, and consider only the cases where ‘and’ joins
two whole sentences to form a new one. In most such cases what we get is a sen-
tence which expresses the bare conjunction of the propositions expressed by the
original sentences:

The conjunction of two propositions A and B is true when A and B are
both true, and is false otherwise.

However, inserting an ‘and’ between two claims in English doesn’t always
express their bare conjunction. Take the two claims 

(a) There is not a word of truth in the reports that Jill loves Jack.
(b) Jack loves Jill. 

Perhaps both these are true: Jack’s love is sadly unrequited. But you could hardly
assert this just by sticking an ‘and’ between (a) and (b). For that yields
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(c) There is not a word of truth in the reports that Jill loves Jack and 
Jack loves Jill,

which is naturally heard as denying (b) rather than as asserting it! Mechanically
gluing together two claims with ‘and’ isn’t an infallible way of arriving at their
conjunction.

There is another kind of complication: compare

(d) Eve became pregnant and she married Adam.
(e) Eve married Adam and she became pregnant.

These are naturally taken as conveying different messages about temporal order.
Does ‘and’ in English therefore sometimes mean more than bare conjunction and
connote, e.g., temporal succession as well? It might appear so.

But perhaps appearances deceive. For delete the ‘and’ from (d), take what is
left as two separate sentences, and the implication of temporal succession still
remains because of our default narrative practice of telling a story in the order
the events happened. Since the implication remains even without the use of the
connective ‘and’, there is perhaps no need to treat temporal succession as one
possible meaning of the connective itself. 

However, we won’t pursue that debate further. The point is that there is at least
an issue here about whether ‘and’ sometimes means more than pure conjunction. 

(2) Turning next to ‘or’, we can again use this connective to combine a pair of
matched expressions belonging to almost any grammatical category – as in ‘Jack
is cycling or driving’, ‘Jack or Jill went up the hill’, and so forth. But set aside all
those uses, and consider only the cases where ‘or’ is used to join two whole
propositional clauses. The obvious complication here is that sentences of the
kind A or B can often be heard as meaning A or B but not both (‘Either you will
hand your logic exercises in by midday or you will have to leave the class’;
‘Either a peace treaty will be signed this week or the war will drag on another
year’). But about equally often, such sentences can be heard as meaning A or B
or perhaps both (of a student with bad grades, I say ‘Either he didn’t try, or he
really isn’t any good at logic’). 

Those two readings of ‘or’ are called the ‘exclusive’ and ‘inclusive’ readings
respectively. So:

The exclusive disjunction of two propositions A and B is true when
exactly one of A and B is true, and is false otherwise.

The inclusive disjunction of two propositions A and B is true when at
least one of A and B is true, and is false otherwise.

If we are going to consider the logic of ‘or’, then we will need for a start to have
some explicit way of signalling when we are dealing with exclusive disjunctions
and when we are dealing with inclusive cases.

(3) The complexities in the behaviour of ‘not’ are different again. What concerns
us here is the operation which yields the negation of a proposition, which says the
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exact opposite of the original proposition:

The negation of a proposition A is true exactly when A is false and is false
exactly when A is true. 

In English we can often negate a claim by inserting the word ‘not’ at an appro-
priate place and then making any required grammatical adjustments. Thus the
negation of ‘Jo is married’ is ‘Jo is not married’, and the negation of ‘Jack
smokes’ is ‘Jack does not smoke’. 

But contrast: inserting a ‘not’ into the truth ‘Some students are good logicians’
at the only grammatically permissible place in fact gives us another truth, namely
‘Some students are not good logicians’. Hence, inserting ‘not’ isn’t always suffi-
cient to produce the negation of a proposition. Nor is it always necessary (for
example, replacing ‘some’ by ‘no’ in ‘Some students are good logicians’ does give
us the negation). 

It might be supposed that English does have a cumbersome but sure-fire way
of forming negations, namely prefixing a sentence with the phrase ‘It is not the
case that’. For example, ‘It is not the case that some students are good logicians’
is indeed the negation of ‘Some students are good logicians’. And this works in
nearly every case. But not always. Compare 

(f) Jack loves Jill and it is not the case that Jill loves Jack.
(g) It is not the case that Jack loves Jill and it is not the case that Jill 

loves Jack.

Here, (g) results from prefixing ‘It is not the case that’ to (f). Yet on the natural
readings, both (f) and (g) are false if Jack and Jill love each other; so these two
sentences don’t express propositions which are real contradictories. In fact, (g) is
naturally read as having the form (Not-A and Not-B) – while the real negation of
(f) would need to have the form Not (A and Not-B).

(4) Finally, let us note that English sentences which involve more than one con-
nective can be ambiguous. Consider 

(h) Either Jack took Jill to the party or he took Jo and he had some 
fun.

Does this say that Jack went to the party with Jo and had fun, or else he went
with Jill. Or does it say, differently, that he took Jill or Jo to the party and either
way enjoyed himself? 

Logicians talk about the scope of connectives (and other logical operators).
For example, in the natural reading of (g), the scope or ‘coverage’ of the first ‘It
is not the case that’ is just the next clause, ‘Jack loves Jill’. In (h), however, there
is an ambiguity of scope, i.e. an ambiguity in how to group together the clauses.
Thus what is the scope of the ‘and’? Does it (first reading) just conjoin ‘he took
Jo’ and ‘he had some fun’? Or is the scope or ‘coverage’ wider (second reading),
so that the whole of ‘either Jack took Jill to the party or he took Jo’ is being con-
joined with ‘he had some fun’?
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7.3 Formalization
Even the handful of examples in the previous section is enough to establish that
natural-language connectives can behave in some rather quirky and ambiguous
ways. The same goes for other logically salient constructions (as we will see later,
for example, when discussing expressions like ‘all’ and ‘any’ in §21.1). So to
treat the logic of arguments couched in ordinary English really requires taking
on two tasks simultaneously; we need both to clarify the many vagaries of Eng-
lish and to deal with the logical relations of the messages variously expressible in
the language. 

Given our interest is in logic rather than linguistics, is there a way to divide the
labour?

Here is a very inviting, though radical, strategy. We can bulldoze past many of
the problems generated by the quirkiness of natural language if, instead of using
the messy vernacular to express arguments, we use some much more austere and
regimented formal language which is designed to be logically well-behaved and
quite free of ambiguities and shifting meanings. We then assess arguments
involving (for instance) the English ‘and’, ‘or’ and ‘not’ by a two-step process.
We start by (1) rendering the vernacular argument into a well-behaved artificial
language; and then (2) we investigate the validity or otherwise of the reformu-
lated argument. Step (1) of this two-step process may raise issues of interpreta-
tion: but as logicians we can largely focus on step (2). For even given the
premisses and conclusion translated into a perspicuous and unambiguous nota-
tion, the central question of how to assess the argument for validity remains.

This two-step strategy has its roots as far back as Aristotle who used Greek
letters as symbols in presenting syllogisms. But the strategy came of age in the
nineteenth century with the German logician Gottlob Frege (who wrote works
such as the Begriffsschrift which presented a ‘concept-script’ designed for the
perspicuous representation of propositions). Frege was soon followed by, among
others, Bertrand Russell and A. N. Whitehead early in the last century: their
monumental Principia Mathematica aims to derive core chunks of classical
mathematics from a tiny handful of axioms. And in order to enforce total preci-
sion, the derivations are couched not in the informal mix of English and symbols
that mathematicians usually use, but in an artificial symbolic language.

In the rest of this book, we are going to follow this two-step strategy, which
really underlies the whole project of modern formal logic. The defence of this
strategy is its abundant fruitfulness, and that can only become fully clear as we
go along. At this stage, therefore, you’ll have to take it on trust that the (small)
effort required in mastering some simple formal languages will pay off hand-
somely. 

7.4 The design brief for PL
For our immediate purposes, then, we want to design an appropriate language for
regimenting arguments involving conjunction, disjunction and negation, a lan-
guage which must avoid the quirks and ambiguities of ordinary language.
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PL (the label is supposed to suggest ‘Propositional Logic’) is a set of symbolic
devices designed to do this job in an entirely straightforward and simple way. We
can usefully carve up its design brief into three parts.

(1) First, we want symbols for the three connectives.

• So we give PL a connective ‘∧’ which is stipulated invariably to signify bare
conjunction, no more and no less: i.e. (A ∧ B) is always to be true just
when A and B are both true. 

• We add a connective ‘∨’ which is stipulated invariably to signify inclusive
disjunction, no more and no less (we will see later how to deal with exclu-
sive disjunction in PL). So (A ∨ B) is always to be true just when A is true
or B is true or both. ‘∨’ is often read vel, which is Latin for inclusive ‘or’.

• Finally we add a negation prefix ‘¬’ which always works as the English ‘It
is not the case that’ usually works; i.e. ¬A invariably expresses the strict
negation of A, and is true just when A is false.

By all means, read ‘∧’, ‘∨’ and ‘¬’ aloud as respectively ‘and’, ‘or’ and ‘not’ –
but remember too that these new symbols shouldn’t be thought of as mere
abbreviations of their ordinary-language readings. For mere abbreviations
would inherit the ambiguities of their originals, and then what would be the
point of introducing them? These PL connectives are better thought of as
cleaned-up replacements for the vernacular connectives, which unambiguously
express their originals’ core meanings.

(2) Next, we want to avoid any structural scope ambiguities as in ‘Either Jack
took Jill to the party or he took Jo and he had a really good time’. So ambiguous
expressions of the type A ∨ B ∧ C must be banned. How should we achieve
this? Compare arithmetic, where again we can form potentially ambiguous
expressions like ‘1 + 2 × 3’ (is the answer 7 or 9?). Here we can disambiguate by
using brackets, and write either ‘(1 + (2 × 3))’ and ‘((1 + 2) × 3)’, which both
have unique values. We’ll use the same simple device in PL. That is to say, we’ll
insist on using brackets, and write either (A ∨ (B ∧ C)) or ((A ∨ B) ∧ C). So,
more generally: 

• every occurrence of ‘∧’ and ‘∨’ is to come with a pair of brackets to indi-
cate the scope of the connective, i.e. to demarcate exactly the limits of what
they are connecting; 

• but since the negation sign ‘¬’ only combines with a single sentence, we
don’t need to use brackets with that. 

The convention, then, is that (roughly speaking) the negation sign binds tightly
to the PL clause that immediately follows it. So:

• in a sentence of the form (A ∨ (¬B ∧ C)), just B is being negated;

• in (A ∨ ¬(B ∧ C)), all the bracketed conjunction (B ∧ C) is negated;

• and in ¬(A ∨ (B ∧ C)), the whole of (A ∨ (B ∧ C)) is negated.
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(3) Finally, what do these three connectives ‘∧’, ‘∨’ and ‘¬’ (ultimately) connect?
Some simple, connective-free, sentences of the language. So we’ll need to give PL
a base class of items which express propositional messages: we can think of these
as the atoms of an artificial language. Since for present purposes we are not
interested in further analysing what is conveyed by these atomic sentences – we are
concentrating on the logical powers of ‘and’, ‘or’ and ‘not’ when they connect
whole sentences – we might as well waste as little ink as possible and just use sin-
gle letters for them. So, for maximum brevity, the single letters ‘P’, ‘Q’, ‘R’, ‘S’ can
serve as atoms for the language. (Though, since we could well want to use more
than four atoms, we’ll also allow ourselves to cook up as many more as we need
by adding ‘primes’ to yield ‘P′’, ‘P′′’, ‘Q′′′′’, etc.)

And that’s all we need. So, by way of interim summary: PL has a base class of
symbols which express whole ‘atomic’ propositional messages, and which might
as well be as simple as possible. More complex, ‘molecular’, symbolic formulae
are then built up using ‘∧’, ‘∨’ and ‘¬’, bracketing very carefully as we go. And
since PL is purpose-designed for expressing arguments whose relevant logical
materials are just conjunction, disjunction and negation and no more, that is all
the structure which we need to give the language. 

7.5 Some simple examples
Suppose we adopt the following translation key:

‘P’ means Jack loves Jill.
‘Q’ means Jill loves Jack.
‘R’ means Jo loves Jill.
‘S’ means Jack is wise.

Let’s render the following into PL (even with our very quick explanations so far,
these should not cause too much trouble: so try your hand at the translations
before reading on).

1. Jack doesn’t love Jill.
2. Jack is wise and he loves Jill.
3. Either Jack loves Jill or Jo does.
4. Jack and Jill love each other.
5. Neither Jack loves Jill nor does Jo.
6. It is not the case that Jack loves Jill and it is not the case the Jill

loves Jack.
7. Either Jack is not wise or both he and Jo love Jill.
8. It isn’t the case that either Jack loves Jill or Jill loves Jack.

The first four are indeed done very easily:

1′. ¬P
2′. (S ∧ P)
3′. (P ∨ R)
4′. (P ∧ Q)
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Just three comments. First remember that we are insisting that whenever we
introduce an occurrence of ‘∧’ or ‘∨’, there needs to be a pair of matching brack-
ets to indicate the scope of the connectives. To be sure, the brackets in (2′) to (4′)
are strictly speaking redundant; if there is only one connective in a sentence,
there is no possibility of a scope ambiguity needing to be resolved by bracketing.
No matter, our bracketing policy will be strict. Second, note that rendering the
English as best we can into PL isn’t a matter of mere phrase-for-phrase transliter-
ation or mechanical coding. For example, in rendering (2) we have to assume
that the ‘he’ refers to Jack; likewise we need to read (3) as saying the same as
‘either Jack loves Jill or Jo loves Jill’ – and assume too that the disjunction here is
inclusive. Third, note that it is customary not to conclude sentences of our mini-
language PL by full stops.

To continue. We don’t have a ‘neither …, nor …’ connective in PL. But we can
translate (5) in two equivalent ways:

5′. ¬(P ∨ R)
5′′. (¬P ∧ ¬R)

(Convince yourself that these renditions do come to the same.) 
The natural reading of (6), as remarked in §7.2, treats it as the conjunction of

‘It is not the case that Jack loves Jill’ and ‘It is not the case the Jill loves Jack’; so
translating into PL we get:

6′. (¬P ∧ ¬Q)

And the next proposition is to be rendered as follows:

7′. (¬S ∨ (P ∧ R))

(Check you see why the brackets need to be placed as they are.) Finally, we have

8′. ¬(P ∨ Q)

So far, so simple. But now we’ve got going, we can translate ever more compli-
cated sentences. For example, consider

9. Either Jack and Jill love each other or it isn’t the case that either
Jack loves Jill or Jill loves Jack.

This is naturally read as the disjunction of (4) and (8); so we translate it by dis-
joining the translations of (4) and (8), thus:

9′. ((P ∧ Q) ∨ ¬(P ∨ Q))

If we want to translate the negation of (9), we write 

10′. ¬((P ∧ Q) ∨ ¬(P ∨ Q))

And so it goes.
In the next chapter we will begin characterizing PL rather more carefully. This

won’t involve any major new ideas; the aim will be to be maximally clear and
careful about what is going on. But before plunging into those details, let’s just
summarize again why we are engaging in this enterprise.
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7.6 Summary
• There is a class of inferences whose validity (or invalidity) depends on the

way conjunction, disjunction, and negation feature in the premisses and
conclusion.

• ‘And’, ‘or’ and ‘not’ in English are used to express conjunction, disjunction,
and negation; but there are many quirks and ambiguities in the way ordi-
nary language expresses these logical operations.

• So to avoid the quirks of the vernacular, we are going to use a special-pur-
pose language PL to express arguments whose relevant logical materials are
the connectives ‘and’, ‘or’ and ‘not’. The design brief for PL is for the sim-
plest language to do this without any ambiguities or obscurities.

Exercises 7
A The strict negation of a proposition can usually be expressed by prefixing the

operator ‘It is not the case that’. Can you think of any exceptions in addition
to the kind described in §7.2? Can you think of further cases which suggest
that ‘and’ in English might sometimes mean more than bare conjunction?

B What is the most natural way in English of expressing the strict negations
of the following?

1. No one loves Jack.
2. Only unmarried men love Jill.
3. Everyone who loves Jack admires Jill.
4. Someone loves both Jack and Jill.
5. Jill always arrives on time.
6. Whoever did that ought to be prosecuted.
7. Whenever it rains, it pours.
8. No one may smoke.

C Two propositions are contraries if they cannot be true together; they are
contradictories if one is true exactly when the other is false. (Example: ‘All
philosophers are wise’ and ‘No philosophers are wise’ are contraries – they
can’t both be true. But maybe they are both false, so they are not contradic-
tories.) Give examples of propositions which are contraries but not contra-
dictories of B 1–7.

D Using the same translation manual as in §7.5, render the following into PL:

1. Jack is unwise and loves Jill.
2. It isn’t true that Jack doesn’t love Jill.
3. Jack loves Jill and Jo doesn’t.
4. Jack doesn’t love Jill, neither is he wise.
5. Either Jack loves Jill or Jill loves Jack.
6. Either Jack loves Jill or Jill loves Jack, but not both.
7. Either Jack is unwise or he loves Jill and Jo loves Jill.



In the previous chapter, we explained why it is advantageous to introduce an
artificial language PL in which to express arguments involving conjunction,
disjunction and negation. In this chapter, we’ll describe the structure of our new
language much more carefully.

8.1 Syntactic rules for PL
The grammar or syntax of PL determines which strings of symbols count as
potentially meaningful sentences of the language. In other words, to use the
standard terminology, the syntax defines what counts as a well-formed formula
of the language – henceforth ‘wff’ for short. 

First, then, we specify which symbols form the basic building blocks for indi-
vidual wffs:

The basic alphabet of PL is: P, Q, R, S, ′, ∧, ∨, ¬, (, ).  

Later, we will want to string wffs together into arguments, and for those pur-
poses it is useful to have three more symbols, a comma (to separate wffs in lists
of premisses), an inference marker (the PL analogue of ‘therefore’), and an
absurdity marker (meaning ‘Contradiction!’). So let’s add them to the official
alphabet straight away. Hence, 

The full alphabet of PL is the comma, plus: P, Q, R, S, ′, ∧, ∨, ¬, (, ), ∴, ✼.

Now we must specify which strings of symbols from the basic alphabet form
atomic wffs. As explained, we will set the atomic wffs to be as simple as possi-
ble:

P, Q, R, S, P′, Q′, R′, S′, P″, Q″, ….

But how are we supposed to continue the sequence here? We want to be abso-
lutely precise: there should be no obscurity or vagueness about what does or
doesn’t belong to the set of atomic wffs, so an open-ended list won’t really do.
On the other hand, we can’t just list a few more atoms and then stop, since we
don’t want to put an arbitrary finite bound on the size of this set (if there were
e.g. just 14 atoms, we couldn’t use PL to encode an argument that involved 15

8

The syntax of PL



64 The syntax of PL

different propositional components). So, more formally, we will define the set of
atomic wffs as follows:

(A1) ‘P’, ‘Q’, ‘R’ and ‘S’ are atomic wffs.
(A2) Any atomic wff followed immediately by a prime ‘′’ is an atomic wff.
(A3) Nothing is an atomic wff other than what can be shown to be so by

the rules (A1) and (A2).

By (A1) and (A2), ‘P′’ is an atomic wff; and then repeatedly applying (A2) again
shows that ‘P′′’, ‘P′′′’, etc. are atomic wffs. (By the way, a rule like this, which
can be reapplied to the results of its own previous application is standardly
called recursive.) So (A1) and (A2) generate all the atomic wffs we want. But, as
far as those first two rules go, Julius Caesar (for example) could count as an
atomic wff too! To delimit the class of atomic wffs, we therefore need to rule
him out by adding the ‘extremal’ clause (A3). It is then a mechanical task to
determine whether a given string of symbols is an atomic wff according to our
definition (an idiot computer program can check an input string of symbols to
see whether the first symbol is ‘P’ or ‘Q’ etc. and any following ones are primes). 

Having fixed the class of atomic wffs, we next need to give the rules for build-
ing up more complex wffs out of simpler ones to arrive at the full class of wffs.
For the record, we should state explicitly that the atomic wffs do count as
belonging to the full class of wffs, atomic or molecular: so, 

(W1) Any atomic wff is a wff.

Second, we can build up wffs using the one-place (‘monadic’) connective ‘¬’:

(W2) The result of writing a negation sign followed by a wff is also a wff.

The two-place (or ‘binary’ or ‘dyadic’) connectives ‘∧’ and ‘∨’ take two wffs to
yield another. We insisted that to avoid ambiguity, the two-place connectives
always come with a pair of brackets to indicate their ‘scope’. We’ll build that
requirement in as follows:

(W3) The result of writing a left-hand bracket followed by a wff followed
by a conjunction sign followed by a wff followed by a right-hand
bracket is another wff. 

(W4) The result of writing a left-hand bracket followed by a wff followed
by a disjunction sign followed by a wff followed by a right-hand
bracket is another wff.

Finally, we again need an extremal clause which tells us that these initial four
rules essentially wrap things up (we need again to rule out Julius Caesar as a
possible wff): 

(W5) Nothing is a wff other than whatever can be constructed by using
rules W1 to W4.

We can helpfully and perhaps more perspicuously summarize these rules using
an obvious shorthand:
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(W1) Any atomic wff is a wff.
(W2) If A is a wff, so is ¬A.
(W3) If A and B are wffs, so is (A ∧ B).
(W4) If A and B are wffs, so is (A ∨ B).
(W5) Nothing else is a wff.

Here ‘A’ and ‘B’ are schematic variables standing in for whole wffs (wffs of any
complexity, by the way). For example, the wff A might be ‘(Q ∧ P)’, and the wff
B might be ‘¬(Q ∨ S′)’. Then rule W3 tells us that ‘((Q ∧ P) ∧ ¬(Q ∨ S′))’ is a wff.

It is again a mechanical task to determine whether a given string of symbols is
a wff according to these recursive W-rules, though it is not quite so simple to
write a program that will do the trick. (Exercise for enthusiasts: design the flow
chart for an appropriate program. One answer is implicit in §8.3 below.)

And that’s it. The A-rules plus the W-rules, elementary as they are, completely
define the syntax of PL.

8.2 Construction trees
Let’s use our rules to check carefully (if very laboriously) that the sequence of PL
symbols

¬(P ∧ ¬(¬Q ∨ R))

is indeed a wff. We can set out a fully annotated proof in the style of §5.3, listing
on the right the principles of construction that are being appealed to at each
stage:

A (1) ‘Q’ is a wff. (by A1 and W1)
(2) ‘¬Q’ is a wff. (from 1 by W2)
(3) ‘R’ is a wff. (by A1 and W1)
(4) ‘(¬Q ∨ R)’ is a wff. (from 2, 3 by W4) 
(5) ‘¬(¬Q ∨ R)’ is a wff. (from 4 by W2)
(6) ‘P’ is a wff. (by A1 and W1)

 (7) ‘(P ∧ ¬(¬Q ∨ R))’ is a wff. (from 5, 6 by W3)
(8) ‘¬(P ∧ ¬(¬Q ∨ R))’ is a wff. (from 7 by W2)

Here’s another example. To show 

((P ∨ (R ∧ ¬S)) ∨ ¬(Q ∧ ¬P))

is a wff, we can set out the following equally laborious reasoning:

B (1) ‘R’ is a wff. (by A1 and W1)
(2) ‘S’ is a wff. (by A1 and W1)

 (3) ‘¬S’ is a wff. (from 2 by W2)
 (4) ‘(R ∧ ¬S)’ is a wff. (from 1, 3 by W3)

(5) ‘P’ is a wff. (by A1 and W1)
(6) ‘(P ∨ (R ∧ ¬S))’ is a wff. (from 4, 5 by W4)
(7) ‘Q’ is a wff. (by A1 and W1)
(8) ‘¬P’ is a wff. (from 5 by W2)
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(9) ‘(Q ∧ ¬P)’ is a wff. (from 7, 8 by W3)
(10) ‘¬(Q ∧ ¬P)’ is a wff. (from 9 by W2)
(11) ‘((P ∨ (R ∧ ¬S)) ∨ ¬(Q ∧ ¬P))’ is a wff. (from 6, 10 by W4)

Any wff at all will have a ‘constructional history’ that can be set out in this sort
of way because, by rule W5, the wffs are just the strings of symbols that can be
systematically built up using the building rules W1–W4. 

However, these linear proofs aren’t the most revealing way of representing the
constructional history of a wff. We can rather naturally reorganize the proof A
into this form

A′ ‘Q’ is a wff
‘¬Q’ is a wff ‘R’ is a wff

‘(¬Q ∨ R)’ is a wff
‘P’ is a wff ‘¬(¬Q ∨ R)’ is a wff

‘(P ∧ ¬(¬Q ∨ R))’ is a wff
‘¬(P ∧ ¬(¬Q ∨ R))’ is a wff

This presents the same derivation in a tree structure. At the tips of the branches
we note that various atoms are wffs. And as we move down the tree, we derive
further facts about wffs in accordance with the rule W2 (which keeps us on the
same branch), or in accordance with the rules W3 and W4 (when we join two
branches). 

Don’t get fazed by the rather formal look of these trees: they just give us neatly
perspicuous renditions of some perfectly common-or-garden bits of reasoning
about wffs, essentially being carried out in ordinary English!

Here’s proof B redone in tree form: 

B′ ‘S’ is a wff ‘P’ is a wff
‘R’ is a wff ‘¬S’ is a wff ‘Q’ is a wff ‘¬P’ is a wff

‘P’ is a wff ‘(R ∧ ¬S)’ is a wff ‘(Q ∧ ¬P)’ is a wff
‘(P ∨ (R ∧ ¬S))’ is a wff ‘¬(Q ∧ ¬P)’ is a wff

‘((P ∨ (R ∧ ¬S)) ∨ ¬(Q ∧ ¬P))’ is a wff

Now, we could, if we like, make things look even neater by not bothering to
write down the the frame “‘…’ is a wff” which appears at each stage in A′ and
B′, and just take that as understood. This pruning would give us the following
more austere trees:

A″ Q

¬Q R

(¬Q ∨ R)
P ¬(¬Q ∨ R)

(P ∧ ¬(¬Q ∨ R))
¬(P ∧ ¬(¬Q ∨ R))
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B″ S P

R ¬S Q ¬P

P (R ∧ ¬S) (Q ∧ ¬P)
(P ∨ (R ∧ ¬S)) ¬(Q ∧ ¬P)

((P ∨ (R ∧ ¬S)) ∨ ¬(Q ∧ ¬P))

Such trees are often called construction trees for obvious reasons. 
(Warning! Be careful reading these abbreviated construction trees. They do

represent inferences; but of course, at the top of A″ we are not daftly inferring
¬Q from Q. Unpacking the shorthand here, the inference here, to repeat, is the
perfectly valid one from the proposition that ‘Q’ is a wff to the proposition that
‘¬Q’ is a wff.) 

If we adopt the convention that, when branches join, the wffs above the infer-
ence line appear in the same left-to-right order in which they are appear as com-
ponents in the more complex wff below the line, then we have the following
important result: a PL wff has a unique construction tree. (We won’t pause to
establish that this is so; it is one of those results which should seem intuitively
obvious but is a bit of a fuss to prove. Another exercise, then, for enthusiasts.) 

8.3 Main connectives
Because construction trees are unique, we can properly talk of the construction
tree for a wff. That means that the following definition is in good shape: 

The main connective of a non-atomic wff is the connective that is intro-
duced at the final stage of its construction tree.

In our two example wffs above, the main connectives are respectively ‘¬’ and
‘∨’ – for don’t forget, ‘¬’ counts as a connective! Obviously, atomic wffs don’t
have a main connective, because they don’t have any connective.

It is important to fix the main connective of a wff, because that determines the
wff’s logical powers. To explain what that means, note that the following pat-
tern of argument is evidently reliable (compare §7.1):

(A ∨ B), ¬A therefore B

And that of course remains reliable however complex A and B might be. But to
apply this fact to warrant a particular inference in PL we need to know whether
the relevant wff in the argument really does have the structure (A ∨ B), really is
overall a disjunction, and that’s a matter of its main connective’s being the ‘∨’.

In the case of most wffs you’ll actually encounter in practice, there’s no prob-
lem in spotting the main connective. But in fact, it is easy to find the main
connective even in very complex wffs. Here’s how:

• If the first symbol is ‘¬’, that is the main connective – an initial negation
sign must have been the last connective introduced in building up the wff. 

• Otherwise a wff must have the form (A ∧ B) or (A ∨ B), where A and B are
themselves wffs. Now, it is a trivial consequence of our rules that any wff A
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has to have the same number of left-hand and right-hand brackets (the
number may be zero, of course!). So, to the left of the main connective,
there is altogether one more left-hand than right-hand bracket (namely the
opening one before the wff A). So, count from the left, find the first ‘∧’ or
‘∨’ which is preceded by exactly one more left-hand than right-hand
bracket, and that has to be the main connective.

For an example, take the long wff

(((P ∨ (R ∧ ¬S)) ∨ ¬(Q ∧ ¬P)) ∨ ¬(P ∧ ¬(¬Q ∨ R)))

Since this doesn’t start with ‘¬’ we apply the second rule; and a simple bracket-
count then shows that the main connective is the third ‘∨’.

This trick for finding main connectives also gives us a trick for growing
construction trees from the bottom up. Start with the given wff. Find the main
connective. If it is ‘¬’, write the wff again the next line up, without its initial
negation sign. If it is ‘∧’ or ‘∨’, so the wff has the form (A ∧ B) or (A ∨ B), split
the tree and write A (the part before the main connective, minus the opening
bracket) on the left branch, and B (the part after the main connective, minus the
closing bracket) on the right branch. Repeat the process on the new wffs at the
top of the branches, and keep on going until we get to atomic wffs which cannot
be further disassembled. (Exercise: apply this to the two wffs in §8.2.)

We can apply this process, in fact, to any string of symbols, wff or otherwise.
If all goes well, and we end up with a completed construction tree with atoms at
the tips of the branches, that shows the string is indeed a wff. If the process
breaks down, and we get garbage appearing on the tree where a wff should be,
then we know that the original string isn’t a wff.

Here’s a couple of quick examples. First, take the long string

((P ∧ S) ∨ ¬(((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ∨ ¬(S ∧ (¬Q ∨ R)))

Applying the rules for disassembling this into a construction tree, the counting
trick yields 

(P ∧ S) ¬(((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ∨ ¬(S ∧ (¬Q ∨ R))
((P ∧ S) ∨ ¬(((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ∨ ¬(S ∧ (¬Q ∨ R)))

The left-hand side is unproblematic. Tackling the right-hand side, we next strip
off the negation sign, and then apply the counting trick to get

((R ∧ S) ∨¬P) ¬¬Q) ∨ ¬(S ∧ (¬Q ∨ R)

P S (((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ∨ ¬(S ∧ (¬Q ∨ R))

(P ∧ S) ¬(((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ∨ ¬(S ∧ (¬Q ∨ R))
((P ∧ S) ∨ ¬(((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ∨ ¬(S ∧ (¬Q ∨ R)))

And now we are obviously in trouble on the right-most branch: we are not going
to be able to complete a well-formed tree, so the original string we started from
cannot be a wff.

Suppose we’d started instead with the following horrendous string:
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(((((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ∨ ¬(S ∧ (¬Q ∨ R))) ∧ ¬(P ∧ ¬(¬Q ∨ R)))

(Don’t panic, you aren’t really going to encounter this sort of monstrosity in
practice: we’re just making the point that our technique works irrespective of
complexity!) The counting trick tells us to first split the string like this:

((((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ∨ ¬(S ∧ (¬Q ∨ R))) ¬(P ∧ ¬(¬Q ∨ R))
(((((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ∨ ¬(S ∧ (¬Q ∨ R))) ∧ ¬(P ∧ ¬(¬Q ∨ R)))

The rules for bracket-counting and wff-splitting applied on the left, and for
negation-stripping applied on the right, tell us to continue the tree upwards thus:

(((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ¬(S ∧ (¬Q ∨ R)) (P ∧ ¬(¬Q ∨ R))
((((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ∨ ¬(S ∧ (¬Q ∨ R))) ¬(P ∧ ¬(¬Q ∨ R))
(((((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ∨ ¬(S ∧ (¬Q ∨ R))) ∧ ¬(P ∧ ¬(¬Q ∨ R)))

Another cycle of bracket-counting and negation-stripping and we can go
another level up the tree, as follows:

((R ∧ S) ∨ ¬P) ¬¬Q  (S ∧ (¬Q ∨ R)) P ¬(¬Q ∨ R)
(((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ¬(S ∧ (¬Q ∨ R)) (P ∧ ¬(¬Q ∨ R))

((((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ∨ ¬(S ∧ (¬Q ∨ R))) ¬(P ∧ ¬(¬Q ∨ R))
(((((R ∧ S) ∨ ¬P) ∨ ¬¬Q) ∨ ¬(S ∧ (¬Q ∨ R))) ∧ ¬(P ∧ ¬(¬Q ∨ R)))

By this stage it is clear that the tree is going to finish satisfactorily with atoms at
the tip of every branch (complete the tree to that show this claim is true). So the
original horrendous string is a genuine wff.

8.4 Subformulae and scope
Here are two more useful syntactic notions which again are neatly introduced
using the idea of a construction tree:

A wff S is a subformula of a wff A if S appears anywhere on the construc-
tion tree for A.

The scope of a connective in A is the wff on A’s construction tree where
the connective is introduced.

So, a subformula is a string of symbols occurring within a wff which could
equally stand alone as a wff in its own right. 

Returning to example B above, in the wff

((P ∨ (R ∧ ¬S)) ∨ ¬(Q ∧ ¬P))

the strings ‘P’, ‘¬P’, ‘(Q ∧ ¬P)’ and ‘¬(Q ∧ ¬P)’ are sample subformulae, and
the string ‘¬S)) ∨ ¬(Q’ isn’t. 

Note that our definition allows a wff A trivially to count as a subformula of
itself, since it appears on its own construction tree. The subformulae of A which
are shorter than A itself can be called the proper subformulae of A.

Our other definition sharpens up the intuitive idea of scope. By our definition,
the scope of the first ‘∨’ in our sample wff B is ‘(P ∨ (R ∧ ¬S))’, the scope of the
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second ‘∨’ is the whole wff, and the scope of the second negation is ‘¬(Q ∧ ¬P)’.
A wff, or the occurrence of another connective, is then ‘in the scope of’ a given
connective in the intuitive sense if it is literally in, i.e. is part of, the scope as
we’ve just technically defined it. 

For example, compare the wffs ‘(P ∨ (Q ∧ R))’ and ‘((P ∨ Q) ∧ R)’. Intuitively
‘∧’ is in the scope of ‘∨’ in the first of these, and vice versa in the second. And
that tallies with our definition. 

Again, note that a connective counts as being in its own scope by our defini-
tion: but that’s a harmless wrinkle.

8.5 Bracketing styles
So much, then, for the official story. Now a quick suggestion about how to make
life easier – or at least, how to make long wffs more readable: mark up pairs of
brackets which belong together, to reveal more clearly how the wff is con-
structed. You can do this in handwriting by using different sized brackets, or
different coloured inks, to signal matching pairs. Here, in this book, we can
make use of the different available styles for printing brackets. So, for example,
take again the wff:

(((P ∨ (R ∧ ¬S)) ∨ ¬(Q ∧ ¬P)) ∨ ¬(P ∧ ¬(¬Q ∨ R)))

Then, if we bend some of the matching brackets into curly ones ‘{’, ‘}’ and
straighten other pairs into square ones ‘[’, ‘]’, we get

[{(P ∨ (R ∧ ¬S)) ∨ ¬(Q ∧ ¬P)} ∨ ¬{P ∧ ¬(¬Q ∨ R)}]

and the string instantly looks rather more readable (and much more obviously a
wff). But we will use this dodge quite sparingly in what follows, since it is good
to get used to reading less complex wffs without this assistance.

8.6 A final brief remark on symbolism
Languages like PL have been studied and used for a century. In that time, a fair
variety of symbolism has been used. But things have settled down, and the sym-
bolism used in this book is pretty much the standard one. The only divergences
between modern books you are likely to see are these:

• some authors use ‘&’ rather than ‘∧’;

• some authors use ‘∼’ rather than ‘¬’;

• authors differ in which letters count as atoms, and some provide an unend-
ing list of atoms by using numerical subscripts (thus, ‘P0’, ‘P1’, ‘P2’, …).

In addition, some allow a few special conventions for leaving out brackets in
such a way that no ambiguities will arise (e.g. you are allowed to omit outermost
brackets). None of these variations should cause you any problems if you
encounter them elsewhere.

You will find, however, that many books from the outset add to PL a fourth
connective ‘⊃’ (or ‘→’). It will become clear soon enough why we aren’t following
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suit: this additional connective will get introduced in due course, at a more
appropriate place (Chapter 14).

8.7 Summary
• We have described the official syntax of PL, which first defines the class of

atomic wffs, and then gives rules for constructing legitimate complex wffs
out of simpler ones. The constructional history of a wff can be set out as a
unique construction tree.

• The main connective of a (non-atomic) wff is the final connective added to
its construction tree. There are simple rules for finding the main connective
of even very complex wffs, and hence simple rules for ‘disassembling’ a
complex string and recovering its construction tree, if it has one.

• A subformula of a wff is a substring that would make a stand-alone wff.
The scope of a connective is the subformula where it is introduced in the
construction tree.

Exercises 8
A Show the following expressions are wffs by producing construction trees

for them. Which is the main connective of each wff? Also, list all the sub-
formulae of the last two examples.

1. ((P ∨ P) ∧ R)
2. (¬(R ∧ S) ∨ ¬Q)
3. ¬¬((P ∧ Q) ∨ (¬P ∨ ¬Q))
4. ((((P ∨ P) ∧ R) ∧ Q) ∨ (¬(R ∧ S) ∨ ¬Q))
5. (¬(¬(P ∧ Q) ∧ ¬(P ∧ R)) ∨ ¬(P ∧ (Q ∨ R)))
6. (¬((R ∨ ¬Q) ∧ ¬S) ∧ (¬(¬P ∧ Q) ∧ S))

What is the scope of each connective in the wffs (3) and (4)? What wffs are
in the scope of each ‘∧’ in (5) and (6)?

B Which of the following expressions are wffs of PL?

1. ((P ∨ Q) ∧ ¬R))
2. ((P ∨ (Q ∧ ¬R) ∨ ((Q ∧ ¬R) ∨ P))
3. ¬(¬P ∨ (Q ∧ (R ∨ ¬P))
4. ((P ∧ (Q ∨ R)) ∧ (Q ∨ R))
5. (((P ∧ (Q ∧ ¬R)) ∨ ¬¬¬(R ∧ Q)) ∨ (P ∧ R))
6. ((P ∧ (Q ∧ ¬R)) ∨ ¬¬¬((R ∧ Q) ∨ (P ∧ R)))
7. (¬(P ∨ ¬(Q ∧ R)) ∨ (P ∧ Q ∧ R)
8. ¬¬((¬P ∧ (S ∨ ¬S)) ∧ ((Q ∧ (P ∧ ¬R)) ∨ ¬S))

Repair the defective expressions by adding/removing the minimum number
of brackets needed to do the job. Show the results are indeed wffs by pro-
ducing construction trees in each case. What is the main connective in each
case?



Having described the syntax of PL, we now turn to semantics, i.e. to questions
of meaning and truth. And while our syntactic story was thoroughly conven-
tional, now there are more options: the stories in various text books are subtly
but importantly different. Introductory clarity requires that we fix on one
approach and stick to it. Our line follows through the implications of the two-
stage strategy for assessing arguments. The proposal, recall, is that we first render
a vernacular argument into a well-behaved artificial language; and then we
investigate the validity or otherwise of the reformulated argument. But if the
renditions of arguments into PL are still to be arguments, with contentful prem-
isses and conclusions, that means that the atoms of PL cannot be left as mere
uninterpreted symbols: they must be given meaning.

9.1 Interpreting atomic wffs
We interpret the wffs of PL, then, in two stages. First, we assign content to the
atomic wffs; and then we explain how to work out the meanings of molecular
wffs, given we know what their atomic components mean.

We have to specify the content of atoms by a bald list that fixes which propo-
sitions are expressed by which atoms – as follows, perhaps:

‘P’ means Alun loves Bethan.
‘Q’ means Bethan loves Caradoc.
‘R’ means Alun has a dog.
‘S’ means The dog is in the kennel.
‘P′’ means The cat is on the mat.
‘Q′’ means ….

But how long should this list be? We want to be able to render arguments on all
kinds of topics into PL and then assess them: does that mean we need a single
huge English-to-PL dictionary to enable all those translations? 

No. Remember that our central concern is with the way that certain argu-
ments depend for their validity or invalidity on the use of conjunction, disjunc-
tion and negation (rather than on the meaning of the atoms). So the translation
of atoms is a step to be got out of the way as simply as possible, before revealing

9

The semantics of PL
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how the propositional connectives are distributed among premisses and conclu-
sions. We therefore treat the atoms of PL as available to code different messages
on different occasions of use. On any particular occasion, we fix on a code-book
that tells us how to interpret the atoms we need. We’ve just described the begin-
nings of one code-book. We described another in §7.5. And if, for example, we
want to express argument A of §7.1 – ‘Either we are out of petrol or the carbu-
rettor is blocked; we are not out of petrol; so the carburettor is blocked’ – we
can stipulate that on this occasion:

‘P’ means We are out of petrol.
‘Q’ means The carburettor is blocked.

The argument then gets translated

(P ∨ Q), ¬P ∴ Q

(Now you see what the comma, and the familiar symbol ‘∴’ for therefore, are
going to be needed for!) If encoding that argument is our only current concern,
then we don’t need to interpret any of the myriad other atoms of PL which are
potentially available to code propositions. 

Similarly, if we want to express argument B′ of §7.1 – ‘It’s not true that Tony
supports the policy and George does too; Tony supports the policy; so George
does not support it’ – then we can stipulate that on this occasion

‘P’ means Tony supports the policy.
‘Q’ means George supports the policy. 

So the whole argument gets translated

¬(P ∧ Q), P ∴ ¬Q

In summary, then, the plan is to let the interpretation of atoms (enough atoms
for the purposes at hand) vary between different applications of PL to encode
arguments. What stays permanently fixed as the reading of the atoms changes is
the interpretation of the connectives. 

9.2 Interpreting molecular wffs
As already explained in Chapter 7, the three connectives get the following con-
stant interpretations.

• ‘∧’ invariably signifies bare conjunction, no more and no less. So a con-
junctive wff of the form (A ∧ B) – i.e. a wff whose main connective is ‘∧’ –
means just that A holds and B does too. 

• Similarly, the vel sign ‘∨’ invariably signifies bare inclusive disjunction, no
more and no less. In other words, a disjunctive wff of the form (A ∨ B) –
i.e. a wff whose main connective is ‘∨’ – expresses no more than that A
holds, or B holds, or both hold. 

• The basic rule for interpreting wffs starting with a negation sign is even
simpler: a wff of the form ¬A expresses the contradictory of A, i.e. that
proposition which denies exactly what plain A asserts. 
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Given the meanings of the atoms in a wff, it is then easy to work out the corres-
ponding meanings of complex wffs (we’ve already implicitly assumed an ability
to do this in the translation examples in §7.5). The only problems will be in
hitting on reasonably natural vernacular versions that unambiguously express
the relevant message.

For example, suppose we set:

‘P’ means Jack took Jill to the party.
‘Q’ means Jack took Jo to the party.
‘R’ means Jack had some real fun.

Then it won’t do to interpret 

(P ∨ (Q ∧ R))

as

Either Jack took Jill to the party or he took Jo and he had some
real fun,

for that just reintroduces the very kind of ambiguity which the careful bracket-
ing in PL is there to eliminate (see §7.2, point (4)). An English rendition that
expresses the correct interpretation unambiguously would be e.g.

Either Jack took Jill to the party or else he both took Jo and also
had some real fun.

9.3 Valuations
On the first set of interpretations above, ‘P’ means Alun loves Bethan. So ‘P’ says
something true just so long as Alun really does love Bethan. Likewise, ‘Q’ means
Bethan loves Caradoc. So ‘Q’ says something true just so long as Bethan loves
Caradoc. And so on. Now, it is up to us under what conditions ‘P’ and ‘Q’ say
something true, for that’s a matter of the meanings we assign. But having
assigned the meanings, and so fixed the conditions which have to hold for the
various atomic wffs to be true, it is up to the world whether the relevant condi-
tions actually obtain. If Alun does love Bethan, then ‘P’ is true; if not, ‘P’ is false.
Likewise if Bethan indeed loves Caradoc, then ‘Q’ is true; if not, then ‘Q’ is false.
In this way, our readings of ‘P’, ‘Q’ etc. combine with the facts about Welsh life
to determine a truth-valuation of those interpreted atomic wffs, i.e. an assign-
ment of a truth-value, one of true or false, to each of them.

But you might ask: does an interpretation for ‘P’ combined with the facts
always fix a determinate truth-value for the atomic wff? Here are four sorts of
case to think about:

• Perhaps ‘P’ still means Alun loves Bethan, but Alun’s feelings are mixed, on
the borderline of love. So maybe it is neither definitely true that he loves
Bethan nor definitely false.

• Perhaps you are told ‘P’ means Mr Brixintingle loves Bethan. But the name
‘Mr Brixintingle’ has just been made up on the spur of the moment and
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denotes no one. We might be inclined to say that in this case ‘P’ doesn’t
express a complete proposition – there is, so to speak, a gap in it – and
hence ‘P’ doesn’t get to the starting line for being assessed for truth or false-
hood. Arguably, it is neither true nor false.

• Perhaps ‘P’ is interpreted as one of those paradoxical claims which says of
itself that it is false. So if ‘P’ is false, it is true; and if it is true it is false.
Contradiction! What should we say about such so-called ‘liar sentences’?
Perhaps here too we have a case in which ‘P’ is neither true nor false.

• Here’s a more sophisticated worry. It can be tempting to think of the truth
of some mathematical propositions as consisting in their provability, and
their falsehood as consisting in their refutability. Or at least that view can
be tempting if you are puzzled by the alternative idea that mathematical
propositions are made true by how things are in a mysterious Platonic
realm inhabited by abstract mathematical entities. But then, on the truth-
as-provability view, if ‘P’ is interpreted as a mathematical proposition, we
again may not be able to say that is determinately true or determinately
false (for there needn’t be a proof one way or the other).

Well, these are difficult issues. But here we will just have to ignore questions of
vagueness – their proper logical treatment is a mightily vexed topic that it would
take another book to explore: our concern will have to be with arguments where
vagueness isn’t an issue. We will also have to largely ignore the question of
‘empty names’, and set aside the issue about paradoxical ‘liar’-type sentences.
The issue of the so-called ‘intuitionistic’ interpretation of mathematical truth is
also far too big a question to take on here. 

So, for our purposes, we just have to stipulate:

We will henceforth take any atom of PL to be so interpreted that it is
appropriate to treat it as either determinately true or determinately false. 

Then the ‘classical two-valued logic’ we are about to explore can apply.

9.4 Evaluating complex wffs
Given a truth-valuation of some atomic wffs, we can then go on to work out the
truth-values of more complex, molecular, wffs built up from those atoms.

For example, we stipulated that a conjunctive wff of the type (A ∧ B) expresses
a proposition which is true just when A and B both obtain. In other words, if A
and B are both true, then (A ∧ B) must be true too; otherwise it is false.

It is convenient at this point to introduce some shorthand: let’s abbreviate ‘A is
true’ (or in the standard phrase, ‘A has the truth-value true’) by ‘A ⇒ T’, and
abbreviate ‘B is false’ (or equivalently, ‘B has the truth-value false’) by ‘B ⇒ F’.
Then the rule for conjunctions is:

(P1) For any wffs, A, B: if A ⇒ T and B ⇒ T then (A ∧ B) ⇒ T; otherwise
(A ∧ B) ⇒ F.
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Likewise, we stipulated that a disjunctive wff of the type (A ∨ B) expresses a
proposition which is true when one of A and B, or maybe both, obtain. Hence,
however complex A and B might be, if at least one of A and B is true, then
(A ∨ B) must be true too; otherwise it is false. Or put another way,

(P2) For any wffs, A, B: if A ⇒ F and B ⇒ F then (A ∨ B) ⇒ F; otherwise
(A ∨ B) ⇒ T.

And thirdly, negation simply flips values: a wff of the form ¬A takes the value
true in just those situations when plain A is valued false. In other words

(P3) For any wff A: if A ⇒ T then ¬A ⇒ F; otherwise ¬A ⇒ T.

These three rules can be summed up and displayed in an even clearer tabular
form – read off the lines of each table horizontally in the obvious way: 

Truth tables for the connectives

Suppose, then, that we are given the truth-values of some atoms. We can then
apply and re-apply these truth tables for the connectives, and so work out the
value of any wff built up from the given atoms using the connectives. A valua-
tion of the atoms determines the valuation of all the wffs constructed from them.
We’ll look at some initial examples of how this works in the next section. 

But first let’s pause to emphasize again the difference between giving an
interpretation of some atoms (i.e. giving their propositional content) and giving
a truth-valuation. Assigning an interpretation, in our sense, involves specifying
the situations in which ‘P’, ‘Q’ etc. would be true; a valuation specifies whether
the wffs are true or not. You may know the content of ‘P’, and so know that it
says something true just so long as Alun loves Bethan, without knowing its
truth-value (for you may not be well acquainted with Welsh affairs). Conversely
you may be told that ‘Q′’ is true, i.e. that it corresponds to a situation which
actually obtains, without thereby coming to know which situation ‘Q′’ corre-
sponds to. 

In what follows, for reasons that will become clear, we say a lot more about
possible valuations than about the particular contents of wffs. Indeed, many
logic books in effect ignore the contents of wffs and immediately focus just on
what we are calling valuations (perhaps confusingly, they then call the valua-
tions ‘interpretations’). But if wffs aren’t given content, they don’t convey deter-
minate propositions, and apparent ‘arguments’ couched in PL will not be
genuine arguments with meaningful premisses and conclusions at all. Our
approach, where we allow PL atoms to express propositional messages (albeit
different messages on different occasions of use) at least means that we still

A B (A ∧ B)
T T T
T F F
F T F
F F F

A B (A ∨ B)
T T T
T F T
F T T
F F F

A ¬A

T F
F T



9.5 Calculating truth-values 77

count as studying real arguments when we move from English to PL examples
(rather as if we were moving from English to e.g. Polish examples).

9.5 Calculating truth-values
Take for example the wff

¬(P ∧ ¬(¬Q ∨ R))

and suppose that the interpretations of the atoms and the facts of the matter
conspire to generate assignments of truth-values to the atoms as follows:

‘P’ ⇒ T, ‘Q’ ⇒ F, ‘R’ ⇒ T

Then we can easily work out that the whole wff is true. The key point to bear in
mind when evaluating bracketed expressions is that we need to do our working
‘from the inside out’, just as in arithmetic. Here’s the derivation in its tedious
detail:

A (1) ‘Q’ ⇒ F (premiss)
(2) ‘¬Q’ ⇒ T (from 1 by table for ‘¬’)
(3) ‘R’ ⇒ T (premiss)
(4) ‘(¬Q ∨ R)’ ⇒ T (from 2, 3 by table for ‘∨’)
(5) ‘¬(¬Q ∨ R)’ ⇒ F (from 4 by table for ‘¬’)
(6) ‘P’ ⇒ T (premiss)

 (7) ‘(P ∧ ¬(¬Q ∨ R))’ ⇒ F (from 5, 6 by table for ‘∧’)
(8) ‘¬(P ∧ ¬(¬Q ∨ R))’ ⇒ T (from 7 by table for ‘¬’)

It is perhaps more perspicuous, though, to lay out the reasoning in a tree form: 

A′ ‘Q’ ⇒ F
‘¬Q’ ⇒ T ‘R’ ⇒ T

‘(¬Q ∨ R)’ ⇒ T
‘P’ ⇒ T ‘¬(¬Q ∨ R)’ ⇒ F

‘(P ∧ ¬(¬Q ∨ R))’ ⇒ F
‘¬(P ∧ ¬(¬Q ∨ R))’ ⇒ T

Note the direct parallelism between these derivations (in linear and tree form)
and the corresponding derivations A and A′ in §8.2 which showed that the wff
in question is genuinely well-formed. This is no accident! We have expressly
designed PL so that the syntactic structure of a wff, the way that the symbols are
put together into coherent strings, is a perfect guide to its semantic structure and
the way the truth-value of the whole depends on the truth-values of the atoms.

Here’s another example. Take the wff

((P ∨ (R ∧ ¬S)) ∧ ¬(Q ∧ ¬P))

and suppose ‘P’ ⇒ F, ‘Q’ ⇒ F, ‘R’ ⇒ T, ‘S’ ⇒ F. Then we have (in linear, step by
step, detail)

B (1) ‘R’ ⇒ T (premiss)
(2) ‘S’ ⇒ F (premiss)
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 (3) ‘¬S’ ⇒ T (from 2 by table for ‘¬’)
 (4) ‘(R ∧ ¬S)’ ⇒ T (from 1, 3 by table for ‘∧’)

(5) ‘P’ ⇒ F (premiss)
(6) ‘(P ∨ (R ∧ ¬S))’ ⇒ T (from 4, 5 by table for ‘∨’)
(7) ‘Q’ ⇒ F (premiss)
(8) ‘¬P’ ⇒ T (from 5 by table for ‘¬’)
(9) ‘(Q ∧ ¬P)’ ⇒ F (from 7, 8 by table for ‘∧’)

(10) ‘¬(Q ∧ ¬P)’ ⇒ T (from 9 by table for ‘¬’)
(11) ‘((P ∨ (R ∧ ¬S)) ∧ ¬(Q ∧ ¬P))’ ⇒ T (from 6, 10 by W3)

Or putting the same derivation in tree form

B′ ‘S’ ⇒ F ‘P’ ⇒ F
‘R’ ⇒ T ‘¬S’ ⇒ T ‘Q’ ⇒ F ‘¬P’ ⇒ T

‘P’ ⇒ F ‘(R ∧ ¬S)’ ⇒ T ‘(Q ∧ ¬P)’ ⇒ F
‘(P ∨ (R ∧ ¬S))’ ⇒ T ‘¬(Q ∧ ¬P)’ ⇒ T

‘((P ∨ (R ∧ ¬S)) ∧ ¬(Q ∧ ¬P))’ ⇒ T

Again, notice the exact parallelism with B and B′ in §8.2 above, where we
showed that the wff in question is indeed a wff.

9.6 Three points about valuations
(1) Note that we can do these calculations of the truth-values of complex wffs
even when we’ve forgotten what their constituent atoms are supposed to mean.
That’s because the truth-values of wffs in PL depend only on the truth-values of
their parts, and not on the interpretation of those parts. More on this very
important point in Chapter 11.

(2) The fact that we evaluate a wff by in effect working down its construction
tree means that the values of atoms which aren’t on the construction tree can’t
matter for the value of the final wff. In other words, the truth-value of a wff
depends only on the assignment of values to the atoms it actually contains.

(3) A valuation of the atoms in a wff determines the value of that wff uniquely.
That’s because a complex wff has a unique construction tree; and once values
are assigned to the atoms at the tips of the branches, the values of the increas-
ingly complex subformulae encountered as you work down the tree are uniquely
fixed at each stage by applying the truth-table for the connective introduced at
that stage. 

Suppose we hadn’t adopted our strict policy requiring brackets to be used
with the (two-place) connectives. Suppose, in other words, that we allowed
expressions like ‘P ∨ Q ∧ R’ to count as well formed. Then this expression would
be structurally ambiguous in the sense that it wouldn’t have a unique construc-
tion tree. It could built up in either of the following ways:

‘P’ is a wff ‘Q’ is a wff ‘Q’ is a wff ‘R’ is a wff
‘P ∨ Q’ is a wff ‘R’ is a wff ‘P’ is a wff ‘Q ∧ R’ is a wff

‘P ∨ Q ∧ R’ is a wff ‘P ∨ Q ∧ R’ is a wff
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Imagine that ‘P’ ⇒ T, ‘Q’ ⇒ T, ‘R’ ⇒ F. The wff would then evaluate in both
these ways:

‘P’ ⇒ T ‘Q’ ⇒ T ‘Q’ ⇒ T ‘R’ ⇒ F
‘P ∨ Q’ ⇒ T ‘R’ ⇒ F ‘P’ ⇒ T ‘Q ∧ R’ ⇒ F

‘P ∨ Q ∧ R’ ⇒ F ‘P ∨ Q ∧ R’ ⇒ T

Here the final valuations differ because, on the left, the wff is being seen as con-
joining a truth and a falsehood (‘∧’ has wider scope than ‘∨’), and on the right
as disjoining a different truth and falsehood (‘∨’ has wider scope). The syntactic
structural ambiguity leads to a semantic ambiguity: fixing the truth-values of the
atoms does not uniquely fix the truth-value of the whole unbracketed expression
‘P ∨ Q ∧ R’.

Moral: leaving out brackets from PL formulae introduces the risk of semantic
ambiguity. Don’t do it!

9.7 Short working
And that’s it as far as the basic semantics of PL is concerned. This final section
merely introduces a way of presenting truth-value calculations rather more
snappily. 

Go back to example A again, and consider the following table of calculations:

On the left, we display the initial assignment of values to the atomic subformu-
lae. On the right, we’ve copied the same values directly under the corresponding
atoms and then, as we calculate the values of more and more complex parts of
the final formula, we write the value under the connective whose impact is being
calculated at each stage. For example, when we are evaluating ‘(¬Q ∨ R)’ by
considering how ‘∨’ operates on the truth-values of ‘¬Q’ and ‘R’, we write the
result of evaluating that disjunction under the ‘∨’. (To aid comparison with the
calculation in §9.5, we have numbered the stages at which values are calculated
by the corresponding line number. For clarity, the final result is underlined.)

Here, in the same short form is the second calculation from §9.5:

This time, the numbers correspond to the lines of the derivation B.
For a third example, take the wff

((S ∧ ¬(Q ∧ ¬P)) ∨ (R ∨ ¬¬Q))

and suppose ‘P’ ⇒ T, ‘Q’ ⇒ F, ‘R’ ⇒ F, ‘S’ ⇒ F. This time, let’s do the working
directly in short form. Looking at the wff, and bracket counting, we see that the
main connective is the first ‘∨’; so evaluating this wff involves evaluating the two

P Q R ¬ (P ∧ ¬ (¬Q ∨ R))

T F T T T F F T F T T
8 6 7     5   2 1 4   3

P Q R S ((P  ∨ (R ∧ ¬ S)) ∧  ¬(Q ∧ ¬ P))

F  F T    F F T T T T F T T F F T F
5 6 1 4 3 2     11 10 7 9 8 5
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disjuncts ‘(S

 

∧

 

¬(Q

 

∧

 

¬P))’ and ‘(R

 

∨

 

¬¬Q)’. It doesn’t matter, of course, which
half of the disjunction you tackle first, and the numbers here just indicate the
order of steps in one way of doing the calculation (and we’ve used different
shapes of brackets to highlight the structure of wff):

For a fourth example, let’s evaluate the same wff for ‘P’

 

⇒ F, ‘Q’

 

⇒ T, ‘R’

 

⇒ T,
‘S’

 

⇒ T (and henceforth let’s not repeat the values of atoms on the right; and
we’ll just number off the remaining steps of the calculation): 

Finally, let’s take the same valuation of atoms but this time evaluate the new dis-
played wff (again, we’ve not repeated the values of the atoms on the right):

Once more, we work from the inside outwards, evaluating the two subformulae
in curly brackets, ‘{P

 

∧ (¬S ∨ Q)}’ (step 3), and ‘{¬R ∧ ¬P}’ (step 6) which
immediately yields the value of ‘¬{¬R ∧ ¬P}’ (step 7). That gives us the value of
the square-bracketed conjunction (step 8), and so the value of the whole wff.

We will introduce some more ways of cutting down working in Chapter 11:
but we’ve explained enough to enable you to tackle some first examples. Of
course, you don’t actually need to write down the step numbers: that’s inessen-
tial commentary. Practice quickly makes perfect.

9.8 Summary
• Atomic wffs in PL get interpreted, on a particular occasion of use, by being

directly assigned meanings (we do this for as many atoms as we need for
the purposes at hand). The connectives get meanings – expressing bare
conjunction, inclusive disjunction, and strict negation – which remain con-
stant across different uses of PL.

• The factual meaning of an atom fixes its ‘truth-conditions’ (i.e. tells us
which situation has to obtain for the atom to be true). The factual meaning
and the state of the world combine to fix the truth-value of (interpreted)
atoms. Or at least, they do so given that we are setting aside cases of vague-
ness, paradoxical sentences, etc.

• The standard interpretation of the connectives means that fixing the truth
or falsity of each of the wffs A and B will also fix the truth or falsity of the
whole conjunction (A ∧ B), the disjunction (A ∨ B), and the negation ¬A.

P Q R S ({S ∧ ¬ (Q ∧ ¬ P)} ∨ {R ∨ ¬¬Q})

T     F F    F F F T   F F F T    F F F F T F
   1 7 6 2   5 4 3     13   8   12 1110 9

P Q R S ({S ∧ ¬ (Q ∧ ¬ P)} ∨ {R ∨ ¬¬Q})

F  T T T       F F       T T      T T T F
     4 3          2   1        8        7 6 5

P Q R S  ¬[{P ∧ ( ¬S ∨ Q)} ∧ ¬{ ¬R ∧ ¬P}]

F  T T T T     F F T  F T F F T
9        3      1      2            8 7 4      6 5
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• This means that a valuation of the atoms in a wff of PL (i.e. an assignment
of the value true or false to each of the relevant atoms) will in fact determine
a valuation for the whole wff, however complex it is; and this valuation will
be unique because of the uniqueness of its constructional history.

Exercises 9
A Suppose ‘P’ means Plato is a great philosopher; ‘Q’ means Quine is a great

philosopher; ‘R’ means Russell is a great philosopher. Translate the follow-
ing sentences into PL.

1. Either Quine is a great philosopher or Russell is.
2. Neither Plato nor Quine is a great philosopher.
3. Plato, Russell and Quine are great philosophers.
4. Not both Quine and Russell are great philosophers.
5. Quine is a great philosopher and Russell isn’t.
6. Either Quine and Russell are great philosophers, or Plato is.
7. It isn’t the case the Quine is and Russell isn’t a great philosopher.

B Suppose ‘P’ means Fred is a fool; ‘Q’ means Fred knows some logic; ‘R’
means Fred is a rocket scientist. Translate the following sentences into PL
as best you can. (What do you think is lost in the translations, given that
PL only has the ‘colourless’ connectives ‘

 
∧’, ‘

 
∨’ and ‘¬’?)

1. Fred is a rocket scientist, but he knows no logic.
2. Fred’s a fool, even though he knows some logic.
3. Although Fred’s a rocket scientist, he’s a fool and even knows no

logic.
4. Fred’s a fool, yet he’s a rocket scientist who knows some logic.
5. Fred is not a rocket scientist who knows some logic.
6. Fred is a fool despite the fact that he knows some logic.
7. Fred knows some logic unless he is a fool.

C Confirm that all the following strings are wffs by producing construction
trees. Suppose that ‘P’ and ‘R’ are both true and ‘Q’ false. Evaluate the wffs
by working down the trees. Then do the working again in the short form.

1. ¬(P ∧ R)
2. ¬¬¬¬(Q ∨ ¬R)
3. (¬(P ∨ ¬R) ∧ Q)
4. ((R ∨ ¬Q) ∧ (Q ∨ P))
5. ¬(P ∨ ((Q ∧ ¬P) ∨ R))
6. ¬(¬P ∨ ¬(Q ∧ ¬R))
7. (¬(P ∧ ¬Q) ∧ ¬¬R)
8. (((P ∨ ¬Q) ∧ (Q ∨ R)) ∨ ¬¬(Q ∨ ¬R))
9. (¬(¬P ∨ ¬(Q ∧ ¬R)) ∨ ¬¬(Q ∨ ¬P))
10. ¬((¬(P ∧ ¬Q) ∧ ¬¬R) ∧ ¬(¬(P ∨ ¬R) ∧ Q))



Before putting PL to use in the following chapters, we should pause to make it
absolutely clear how the ‘A’s and ‘B’s, the ‘P’s and ‘Q’s, are being used, and why
it is very important to differentiate between them. We should also explain the
rules governing the use of quotation marks. By all means, skip this chapter for
the moment if you are impatient to get to see our work on PL being put to use:
but return later, because it is important to get clear on these points.

10.1 Styles of variable: our conventions
We have been using two styles of symbols, both of which may sensibly be called
‘propositional variables’ – namely, italicized letters from early in the alphabet,
and roman letters (from a different font) from much later in the alphabet. Why
two styles? What’s the difference? 

• ‘A’, ‘B’, etc. are handy augmentations of English: they are devices which we
are employing in order to help us speak snappily about patterns of infer-
ence, forms of propositions, etc. For example, in §7.1, we used them to
enable us to talk briskly and clearly, in a slightly expanded English, about
patterns of argument involving conjunction and disjunction and couched in
English. In §9.4, we used the same variables in order to talk equally briskly
and clearly – still in the same augmented English – about wffs in PL.

As we noted before, such variables, used in presenting patterns in sen-
tences and arguments, are often called schematic variables (the Concise
Oxford Dictionary’s entry for ‘schematic’ includes ‘representing objects by
symbols’). Their use is always dispensable. At the expense of some long-
windedness, we could always use plain unadorned English prose instead.
Schematic variables do the work that could instead be done by expressions
like ‘a first proposition’, or ‘the second wff’ and more cumbersome variants.
And hence, like those ordinary-language devices, these variables are used to
talk about propositions or wffs but do not themselves express propositions.

• On the other hand, ‘P’, ‘Q’, etc. do not belong to English (augmented or
otherwise) but instead are sentences of a new artificial language, PL. And
unlike the schematic variables, these new symbols do themselves potentially

10

‘A’s and ‘B’s, ‘P’s and ‘Q’s
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express propositions; they encode whole messages, as it might be about
Alun’s loving Bethan, or George’s supporting the policy, or whatever. 

We noted that, on different occasions when we translate into PL, we may
use ‘P’, ‘Q’, etc. to express different messages. We can choose different
code-books for associating PL atoms with specific messages, depending on
circumstances (what stays fixed from case to case is the meaning of the con-
nectives). In this sense, the atomic letters can reasonably be thought of as a
kind of ‘variable’, meaning that the atoms are open to various interpreta-
tions. But the contrast remains: schematic variables like ‘A’, ‘B’, etc. are used
in augmented English to talk about propositions and arguments; ‘P’, ‘Q’
etc. belong to PL and express propositions on all kinds of subject matter,
depending on the code-book or interpretation-manual currently in force.

Sometimes the point is put like this. ‘P’, ‘Q’ and so on belong to the language PL
which is – for the moment – the object of our logical studies. In short, these sym-
bols belong to the object-language. And we must in general distinguish the lan-
guage which is the object of investigation from the metalanguage, i.e. the
language in which we conduct the investigation and discuss what is going on in
the object-language. In this book, the metalanguage is English augmented with
variables like ‘A’, ‘B’, etc. (so those schematic variables are often also called
metalinguistic variables). In a Spanish translation of this book, the object lan-
guage will again be PL, but then the metalanguage will be Spanish. (Of course,
we may often want to discuss facts about the logical features of English
sentences in English – and then the metalanguage subsumes the object language:
but in the general case they are distinct.)

In this book we adopt the convention that the elements of formal lan-
guages like PL will always be printed in sans-serif type, like ‘P’ and ‘Q’.
Symbols printed in serif italics, like ‘A’, ‘n’, ‘F’, etc., are always augmenta-
tions of our English metalanguage.

An alternative convention widely adopted in other books is to use Greek letters
as metalinguistic variables.

10.2 Basic quotation conventions
Now for some quick remarks about our related usage of quotation marks. We
start by warming up with a few general observations. 

If we want to mention a certain man, we may use his name – as it might be

Socrates.

But sometimes we want to discuss not the man but his name. There are various
ways of picking out that philosopher’s name, e.g. laboriously

The name consisting of the nineteenth letter of the alphabet, followed
by the fifteenth letter, followed by the third letter, ….

Or indirectly, e.g.
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The name which is displayed on the fourth line of this section.

Most simply, we can use quotation marks, thus:

‘Socrates’

with the convention that the whole expression including the quotation marks is to
be construed as standing for the word displayed inside the quotes. 

So, compare

(1) Socrates is snub-nosed.
(2) Socrates contains the first letter of the alphabet.
(3) ‘Socrates’ is snub-nosed.
(4) ‘Socrates’ contains the first letter of the alphabet.

The first is true; the second false (people don’t contain letters of the alphabet).
The third is false too (names don’t have noses to be snub or otherwise); the
fourth is true. Again, consider the sentence

(5) Charles is called Chuck by his friends and Dad by his children.

Observing our convention of using quotation marks when we are talking about
an expression, this strictly speaking needs to be marked up

(5′) Charles is called ‘Chuck’ by his friends and ‘Dad’ by his children.

And how could we insert quotes in the following to yield a truth? – 

(6) The first expression in our third example is Socrates

That would need to be marked up

(6′) The first expression in our third example is ‘ ‘Socrates’ ’,

for to refer to the expression at the beginning of (3), which already involves quo-
tation marks, we need to put the whole expression in quotes – hence the double
ration. For clarity’s sake, to make it plain that there are two pairs of quotation
marks here, we could use different styles of quotation marks like this:

(6″) The first expression in our third example is “‘Socrates’ ”.

Here’s another series of examples. In PL, we can use the disjunction sign to
express various claims. Thus, on one interpretation of PL which we met before,

(P ∨ S)

says that either Alun loves Bethan or he has a dog. But sometimes we want to
talk about the disjunction sign itself, i.e. to mention it in English. We can do that
in various ways. We could, as we have just done twice, use the description

the disjunction sign;

or we can call it

the vel sign.

The vel sign itself is no part of English, though the expression ‘vel’ is used as part
of logician’s English: it is the name they use for the PL connective. We could also
use quotation marks again, thus:
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‘∨’

And this composite expression is available for use in English to refer to the
disjunction sign in PL, as when we say that ‘∨’ is a two-place connective.
(Compare: the word

soleil

is no part of English. However we can use the expression

‘soleil’

in an English sentence – as when we say that the French word ‘soleil’ means sun.) 
Similarly for the atomic letters of PL. With a translation manual in place, we

can use them as sentences of PL (to talk about Welsh affairs, or whatever it
might be). But we also want to mention the atoms, i.e. talk about them in
English, our metalanguage. Again the easiest way of doing that is to use quota-
tion marks to form expressions (augmenting English!) to refer to expressions in
PL. Thus we may write, in English,

(7) The atomic sentences ‘P’ and ‘S’ are constituents of the molecular
sentence ‘(P ∨ S)’.

Likewise, we may write, still in English,

(8) ‘P’ takes the value true.

So compare

(9) ‘P’ is a sentence of PL
(10) ‘P’ is a sentence of English
(11) “‘P’” is an expression which can occur in PL sentences
(12) “‘P’” is an expression which can occur in English sentences

The first is true, but the second is false; the third is false too (since PL doesn’t
contain quotation names of anything, only atomic sentences and their molecular
compounds). The last, however, is true; for example, (10) provides an instance
of an English sentence where the quotation of ‘P’ occurs.

In summary: it is important to grasp both the distinction between object-
language and metalanguage ‘variables’ (signalled in this book by the use of dif-
ferent fonts), and also the distinction between the use and mention of expres-
sions (standardly signalled by quotation marks). And because the distinctions
matter and ignoring them can lead to confusion, it is important to fix on official
conventions for marking them clearly. 

However, having said that, sometimes we can forgivably relax the conventions
when doing so promotes readability, and there is no danger of confusion – after
all, we are in charge, and we don’t need to be slaves to our own conventions! For
example, strictly we should write e.g.

‘P’ takes the value true, ‘Q’ takes the value false.

Or (as we did in the last chapter)

‘P’ ⇒ T, ‘Q’ ⇒ F
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But from now on we will typically take ‘⇒’ to come with unwritten quotation
marks affixed, and write more causally

P ⇒ T, Q ⇒ F

and so forth. That’s a bit tidier, cutting down on a rash of quotation marks. But
it must just be remembered these are still metalinguistic claims: the expression
‘⇒ T’ does not belong to PL, but is shorthand added to English. 

10.3 A more complex convention
This section notes a wrinkle, and straightens it out.

In §8.1, we stated the wff-building rule W3 in abbreviated form as

If A and B are wffs, so is (A ∧ B).

The intended reading of this rule would probably have been entirely obvious,
even if we hadn’t given a non-abbreviated version of the rule at the same time.
But our shorthand version does mix augmented English (the schematic variables
‘A’ and ‘B’) with expressions from PL (the conjunction sign, of course, but also
the two brackets as well). And we can’t untangle things by writing

If A and B are wffs, so is ‘(A ∧ B)’,

for what is inside the quotes here is not a wff of PL (remember, ‘A’ and ‘B’ are
not symbols of that language). 

If we want to be really accurate, then we will need to introduce a new brand
of quotation marks (‘corner quotes’, often called ‘Quine quotes’ after their
inventor). So we write

If A and B are wffs, so is «(A ∧ B)»

Here, ‘«(A ∧ B)»’ is short for

the result of writing ‘(’ followed by A followed by ‘∧’ followed by B
followed by ‘)’.

For example, suppose A is the wff ‘(P ∨ S)’, and B is the wff ‘Q’. Then the con-
junction of those two wffs is indeed «(A ∧ B)», i.e. it is the result of writing ‘(’
followed by ‘(P ∨ S)’ followed by ‘∧’ followed by ‘Q’ followed by ‘)’, which is
‘((P ∨ S) ∧ Q)’, just as we want.

Here’s another sort of case where we can use Quine-quotes. As we’ll note in
§12.2,

Whatever truth-value A has, ¬(A ∧ ¬A) is true.

Again, it is entirely clear what is meant here. But again ‘¬(A ∧ ¬A)’ mixes
object-language and meta-language expressions. More carefully, then, we should
say: given a wff A, then whatever its value, the result of writing ‘¬’ followed ‘(’
followed by A followed by ‘∧’ followed by ‘¬’ followed by ‘A’ followed by ‘)’ is
true. Or, abbreviating that, 

Whatever truth-value A has, «¬(A ∧ ¬A)» is true.

Generalizing, the basic convention governing Quine-quotes can be summed up
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in the slogan object-language symbols inside them are mentioned while meta-
language variables are used.

However, the explicit use of these Quine-quotes is perhaps unnecessarily punc-
tilious, and we won’t follow this practice in this book. After all, to repeat, we are
in charge of our conventions. So we will simply take our version of W3, 

If A and B are wffs, so is (A ∧ B),

and similarly the claim

Whatever truth-value A has, ¬(A ∧ ¬A) is true,

as acceptable just as they stand (read such claims, if you like, as if they have
invisible Quine-quotes).

10.4 Summary
• In the general case, we need to distinguish the object language under dis-

cussion (whether it is PL or some natural language) from the metalanguage
that it is being discussed in (here, slightly augmented English).

• Italicized letters like ‘A’, ‘n’, ‘F’ belong to augmented English, are dispensa-
ble devices to enable us to speak briskly about e.g. patterns of argument, or
formation rules for wffs. Contrast ‘P’, ‘Q’, etc., which belong to the artifi-
cial language PL.

• When we want to mention an expression, rather than use it in the ordinary
way, quotation marks give us a standard way of doing this.

Exercises 10
Insert quotation marks into the following where necessary to make them accord
to the customary conventions and come out true.

1. ∧ means much the same as and.
2. P can be interpreted as meaning that grass is green.
3. P is a subformula of (Q ∧ ¬P).
4. If (Q ∧ ¬P) is a subformula of A so is P.
5. The first word in this sentence is the.
6. This is not a verb, but is is.
7. George Orwell is the same person as Eric Blair.
8. George Orwell was Eric Blair’s pen-name.
9. The Evening Star and The Morning Star denote the same planet.
10. Sappho is a Greek poet.
11. Sappho is the name of a Greek poet.
12. If we want to refer not to Sappho but her name, we need to use

the expression Sappho. 



We noted in §9.6 that if we assign truth-values to the atoms in a wff of PL, then
this will uniquely determine the truth-value of the whole wff. This feature of the
language is called truth-functionality: it is the topic of the present chapter.

11.1 Truth-functional vs. other connectives
Let’s start with a definition. 

A way of forming a complex sentence out of one or more constituent
sentences is truth-functional if fixing the truth-values of the constituent
sentences is always enough (whatever those values are) to determine the
truth-value of the whole complex sentence. 

Note that this definition applies quite generally, to ordinary-language construc-
tions as well as to constructions in formal languages like PL.

Some ordinary-language devices do indeed seem to be truth-functional in this
sense (e.g. many uses of ‘and’ as a propositional connective). For a contrasting
case, consider the two-place connective ‘because’. Suppose

(1) The bridge fell down,

and
(2) There was a storm yesterday, 

are both true. That plainly doesn’t settle the truth-value of

(3) The bridge fell down because there was a storm yesterday. 

The joint truth of (1) and (2) is compatible with the truth of (3); it’s equally com-
patible with the falsehood of (3). Hence fixing the truth-values of the constituent
sentences (1) and (2) isn’t always enough to determine the truth-value of the
complex sentence (3). Hence ‘because’ is not truth-functional.

Of course, if A is false or B is false, A because B will be false too. For example,
(3) must be false if the bridge in fact didn’t fall down, or if there wasn’t a storm.
But for full truth-functionality, as we defined it, the truth-values of the constitu-
ents must always determine the truth-value of the whole, whatever the values

11

Truth functions
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are. As we’ve just seen, that doesn’t hold for ‘because’. 
The same goes for many other constructions which embed sentences inside

more complex ones. For example, consider:

It is widely believed that A.
It is more likely that A than that B.
It is necessarily true that A.

In each case, merely settling the truth-values of A and B won’t settle (or at least,
won’t invariably settle) the truth-value of the whole sentence. 

It is worth pausing on the last of these. Compare, e.g.

(4) The President of the USA in 2008 was male.
(5) If someone is a brother, then he is male.

Both are true. But the first might not have been so: we can readily imagine an
alternative historical scenario which leads to a woman President occupying the
White House in 2008. The second, however, is necessarily true: just in virtue of
what it is to be a brother (i.e. to be a male with at least one sibling), we cannot
coherently conceive of anyone who is a brother but not male. So despite the fact
that (4) and (5) both take the truth-value true, the following differ in truth-
value:

(4′) It is necessarily true that the President of the USA in 2008 was male.
(5′) It is necessarily true that if someone is a brother, then he is male.

In short, the truth-value of ‘It is necessarily true that A’ is sensitive to the partic-
ular content of the embedded proposition A, and not just to A’s truth-value. 

However, every wff of pure PL (no matter its degree of complexity) is a truth-
functional combination of the atoms it contains. That is to say, fixing the truth-
values of atoms always uniquely fixes the truth-value of the whole wff. As we
noted in §9.6, the basic valuation rules for the three connectives in PL plus our
fussiness about bracketing secures this result.

11.2 A very brief word about ‘functions’
Why is the term ‘truth-functional’ apt?

You will be familiar with the idea of an arithmetical function which takes as
input one or more numbers, and spits out a unique value. For example, ‘the
square of x’ denotes a function mapping a given number x to a definite value, the
result of multiplying x by itself. ‘x + y’ denotes another function, this time map-
ping two numbers to their sum. 

We can generalize this idea of a function to cover any sort of mapping that
relates one or more objects to a single determinate ‘value’. For example, ‘the bio-
logical mother of x’ denotes a function mapping people to other people. ‘The age
in years of x’ denotes another function defined over people, this time correlating
each person with a number. ‘The distance in metres between a and b’ maps two
spatially located objects to another number.

By contrast, ‘teacher of x’, ‘house belonging to x’, and ‘daughter of x’ don’t
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express functions; they don’t express ways of mapping people to unique ‘values’.
Some people have more than one teacher, more than one house and more than one
daughter.

Given our general notion of a function, what is expressed by a truth-functional
mode of sentence combination is indeed a truth-function. For by definition, a
complex sentence which is truth-functional combination of simpler embedded
sentences will always map the truth-values of its constituents sentences to a
single determinate truth-value for the combination as a whole.

11.3 Full truth-tables
Consider again the wff ‘¬(P ∧ ¬(¬Q ∨ R))’. In §9.5, we specified one particular
valuation for its atoms. Because this is a truth-functional mode of combining the
atoms, settling on that valuation sufficed to fix the value of the whole wff. But that
was just one possible valuation out of many. There are in all eight possible valu-
ations of three atoms. There are two ways we can assign a value to ‘P’, each of
these can combine with either value for ‘Q’, and each of these combinations can
combine with either value for ‘R’, and 2 × 2 × 2 = 8.

Running through these eight valuations in turn, we can mechanically compute
the truth-value of our sample wff in every case. We can set out the working in a
neat tabular form. Putting in absolutely all the details, we have: 

On the left, we systematically display the eight different possible assignments of
truth-values to the three atoms. On the right we record the calculation of the
truth-value of the wff using (as before) the convention that we write the value of
each subformula under the connective whose effect is being calculated. The sup-
plementary numbers at the foot of the columns indicate the order in which we’ve
worked out the columns. We’ve first copied across the assignments of values to
atoms. Then at subsequent stages we evaluate subformulae of increasing
complexity, until – at the final stage, yielding the underlined values – we get to
evaluate the whole wff.

Here’s another example, this time involving four atoms, and so requiring six-
teen lines of working: 

[¬{(R ∨ ¬Q) ∧ ¬S} ∨ {¬(¬P ∧ Q) ∧ S}]

P Q R ¬ (P ∧ ¬ (¬ Q ∨ R))
T T T T T F F F T T T
T T F F T T T F T F F
T F T T T F F T F T T
T F F T T F F T F T F
F T T T F F F F T T T
F T F T F F T F T F F
F F T T F F F T F T T
F F F T F F F T F T F

8 1 7 6 4 2 5 3



11.4 ‘Possible valuations’ 91

Note again how the little dodge introduced in §8.5 of using different styles of
brackets can promote readability: the main connective is evidently the second
disjunction. And this time, as in the last examples in §9.7, let’s not bother
repeating the values of the atoms on the right of the table (which saves time even
if it perhaps slightly increases the risk of error): 

Take careful note of the system used in listing the possible assignments of
values to a sequence of atoms. The last atom in the sequence gets alternating Ts
and Fs; the previous one gets alternating blocks of two Ts and two Fs; moving left-
wards, we get next alternating blocks of four Ts and four Fs; and so it goes. This
system is guaranteed to cover all the possible valuations. Any other systematic lay-
out will do, of course. But ours is pretty much the standard convention.

Suppose there are n different atoms in the wff A. There will be 2 × 2 × … × 2
(n times) = 2n different possible valuations of these n atoms. We can then always
construct a full truth-table for A, working out the truth-values of all the increas-
ingly large subformulae of A until we reach the overall value of A for each possi-
ble valuation of the atoms. As n increases, however, the amount of labour
required will explode exponentially.

11.4 ‘Possible valuations’
Before continuing, an important word of clarification here. In the last section,
we set out a couple of complete truth-tables without any attention to the inter-
pretations of the atoms in our example wffs. Truth-functionality means precisely
that the truth-values of complexes can be settled by attending only to the truth-
values of their atoms. Yet shouldn’t interpretations come back into the story
after all? Suppose that (according to the code-book currently in play) ‘P’ has the

P Q R S [¬{(R ∨ ¬Q) ∧ ¬S} ∨ {¬(¬P ∧ Q) ∧ S}]
T T T T T T F F F T T F F T
T T T F F T F T T F T F F F
T T F T T F F F F T T F F T
T T F F T F F F T T T F F F
T F T T T T T F F T T F F T
T F T F F T T T T F T F F F
T F F T T T T F F T T F F T
T F F F F T T T T F T F F F
F T T T T T F F F T F F T F
F T T F F T F T T F F T T F
F T F T T F F F F T F T T F
F T F F T F F F T T F T T F
F F T T T T T F F T T T F T
F F T F F T T T T F T T F F
F F F T T T T F F T T T F T
F F F F F T T T T F T T F F

9 4 1 7 2 10 6 3 5 8
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content All brothers are male, and therefore expresses a necessary truth. In this
case there is no valuation which respects the meaning of ‘P’ yet assigns it the
value false. Or again, suppose that ‘P’ has the content Jack is married, and ‘Q’
the content Jack is single. In this case there is no valuation which respects the
meanings of ‘P’ and ‘Q’ yet gives them the same truth-value.

Return then to our sample wff ‘¬(P ∧ ¬(¬Q ∨ R))’ which contains three
atoms. Maybe not all eight different assignments of values to these atoms are
genuinely possible ones: won’t that depend on the interpretations of the atoms?
So shouldn’t we take that into account when setting out the truth-table for an
interpreted wff?

No. Or at least, not given the wider setting of our interest in PL. For our target
in developing this language is to give an account of the logic of arguments whose
relevant logical materials are just the connectives ‘and’, ‘or’ and ‘not’, i.e. argu-
ments whose validity does not rely on the meaning of their atomic propositional
constituents. Given this target, we can and should temporarily ignore the facts
about the meaning of atoms, and concentrate only on those constraints on the
overall assignments of truth-values to wffs which are due to the meanings of the
connectives ‘∧’, ‘∨’ and ‘¬’. Hence, given our particular target, we should put
no restrictions on the valuation of atoms. That means that we will continue to
treat any assignment of T or F to the atoms ‘P’, ‘Q’, etc., as equally legitimate for
our special purposes, whatever the meanings of the atoms. In short, we will con-
tinue to allow any valuation of atoms.

11.5 Short cuts
With a bit of practice, we can learn to skip much of the laborious detail involved
in setting out full truth tables. For a start, it quickly becomes easy to do some of
the working ‘in our heads’. Suppose the formula to be evaluated is 

(¬(P ∧ ¬Q) ∨ (R ∨ (Q ∧ P))).

This wff is the disjunction of the subformulae ‘¬(P ∧ ¬Q)’ and ‘(R ∨ (Q ∧ P))’,
and it is relatively easy to work out the truth values of these disjuncts on a given
valuation of the atoms in your head. That gives us the entries under the subfor-
mulae in the following table, leaving just the value of whole disjunction to be
worked out at the final step:

P Q R (¬(P ∧ ¬Q) ∨ (R ∨ (Q ∧ P)))
T T T T T T
T T F T T T
T F T F T T
T F F F F F
F T T T T T
F T F T T F
F F T T T T
F F F T T F

1 3 2
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We can, however, speed things up even more by leaving out any redundant
working. In particular, note these two obvious truisms:

• Once a disjunct has been shown to be true, the whole disjunction must be
true (so it is redundant to evaluate the other disjunct). 

• Once a conjunct has been shown to be false, the whole conjunction must be
false (so it is redundant to evaluate the other conjunct). 

Hence, in our last example, as soon as we have evaluated the first disjunct, we
can get to the following: 

So we only need to evaluate the second disjunct on just two lines in order to
complete the table. 

Here’s another example. Suppose we are faced with the wff

(¬{Q ∨ [(S ∧ R) ∨ ¬(R ∨ ¬Q)]} ∧ { P ∧ ¬ S})

Bracket-counting confirms that the main connective is indeed the second ‘∧’. So
this is a conjunction whose second conjunct ‘{ P ∧ ¬ S}’ is simple to evaluate:

P Q R (¬(P ∧ ¬Q) ∨ (R ∨ (Q ∧ P)))
T T T T T
T T F T T
T F T F ?
T F F F ?
F T T T T
F T F T T
F F T T T
F F F T T

1

P Q R S (¬{Q ∨ [(S ∧ R) ∨ ¬(R ∨ ¬Q)]} ∧ { P ∧ ¬ S})
T T T T F F
T T T F ? T
T T F T F F
T T F F ? T
T F T T F F
T F T F ? T
T F F T F F
T F F F ? T
F T T T F F
F T T F F F
F T F T F F
F T F F F F
F F T T F F
F F T F F F
F F F T F F
F F F F F F

1
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Since the big conjunction must be false whenever its second conjunct is false,
that has immediately settled the value of the wff on twelve of the sixteen lines.
Which leaves just four lines to go. The second and fourth lines are relatively easy
too. ‘{Q ∨ ((S ∧ R) ∨ ¬(R ∨ ¬Q))}’ is a disjunction whose first disjunct is simply
‘Q’. Hence whenever ‘Q’ is true, that curly-bracketed subformula will be true. So
its negation is false. Thus we can quickly fill in two more lines of working:

Very quickly we are left with just two final lines of working to fill out. And then
the table is speedily completed (do it!).

To be sure, even with these short cuts (which you soon get the hang of using),
working out complete truth-tables for complex formulae is a tedious business.
Fortunately, when it comes to using truth-tables in earnest, we rarely need to
consider other than pretty simple formulae. There’s no need for panic!

11.6 Truth-functional equivalence
Suppose we evaluate ‘((P ∧ ¬Q) ∨ (¬P ∧ Q))’ and ‘((P ∨ Q) ∧ ¬(P ∧ Q))’ for
each possible assignment of values to ‘P’ and ‘Q’. Suppressing the detailed work-
ing, we get

The two wffs thus share the same values on each valuation: the full tables with
the working laid out in all its detail will of course be different, but the resulting
table of final values for the whole wffs are exactly the same. We will say that
wffs like this are (truth-functionally) equivalent. A little more carefully: 

The PL wffs A and B are truth-functionally equivalent just if, on each val-
uation of all the atoms occurring in them, A and B take the same value.

Equivalent wffs A and B are true in exactly the same circumstances. That means,
for example, that if A can be inferred to be true on the basis of certain prem-
isses, then so can B. Likewise, if A can be used as a premiss in drawing a certain

P Q R S (¬{Q ∨ [(S ∧ R) ∨ ¬(R ∨ ¬Q)]}∧ { P∧ ¬S})
T T T T F F
T T T F F T T F T
T T F T F F
T T F F F T T F T
T F T T F F
T F T F F ? ? T
T F F T F F
T F F F F ? ? T
… … … … 4 2 3 1

P Q ((P ∧ ¬Q) ∨ (¬P ∧ Q)) ((P ∨ Q) ∧ ¬(P ∧ Q))
T T F F
T F T T
F T T T
F F F F
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logical conclusion, then B could equally well be used for the same purposes.
In short, equivalent wffs have the same logical powers.

So when translating ordinary claims into PL for logical purposes, it cannot
matter greatly which of two truth-functionally equivalent translations we
choose. Suppose then we want to translate ‘Either Jack drank beer or he
drank cider’ where the ‘or’ is in this case intended to be exclusive. Using ‘P’ for
Jack drank beer and ‘Q’ for Jack drank cider, we want a translation which comes
out true when exactly one of ‘P’ and ‘Q’ is true: we have just seen that ‘((P ∧ ¬Q)
∨ (¬P ∧ Q))’ or ‘((P ∨ Q) ∧ ¬(P ∧ Q))’ will do equally well.

That last point fulfils a much earlier promise to show how to express exclusive
disjunction in PL (§7.4). We could have introduced a new symbol ‘⊕’ into the
language with the stipulation that a wff of the form (A ⊕ B) is true when exactly
one of A and B is true. But we can now see that this would be strictly speaking
redundant; we can capture exclusive disjunction using the three connectives
already to hand. More precisely: for any wff we could construct using ‘⊕’ in an
extension of PL, there is a truth-functionally equivalent wff already available in
original, unaugmented PL.

11.7 Expressive adequacy
That last point generalizes. Take any possible truth-functional combination of
atoms (which we might perhaps express using a new connective added to PL):
then we can construct an equivalent wff using just the original three connectives
of PL. This result is a very important one – for it shows that PL, despite its
meagre resources, can express a lot more than you might guess. Its resources are
enough to capture any truth-functional way of combining propositions, and so
the language is adequate for the whole of the logic of truth-functions.

The proof of this result is pretty straightforward, but is interesting enough to
be worth setting out in a little detail. (This is our first significant ‘metalogical’
result: i.e., it is a general result about our formal logical apparatus.)

We start with a trivial notational point and then a definition. First, we are
going to be writing down some expressions which look like the following

(A ∧ B ∧ C)
{A ∨ B ∨ C ∨ D ∨ E}

when strictly speaking – given our rule that each occurrence of ‘∧’ and ‘∨’ comes
with its own set of brackets – we ought to write something like

((A ∧ B) ∧ C)
((((A ∨ B) ∨ C) ∨ D) ∨ E)

Still, the particular choice of internal bracketing for long unmixed conjunctions
or for long unmixed disjunctions evidently doesn’t affect the truth-value of the
resulting wffs (see Exercise 11D). So leaving out the bracketing in such cases will
for once do no real harm, and will make for readability.

Now for our definition. Take any set of atomic wffs, as it might be {P, Q, S, P′};
a basic conjunction is formed by taking each of the atoms in turn, either naked
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or negated but not both, and then (if we start with more than one atom) conjoin-
ing the results, yielding e.g.

(P ∧ ¬Q ∧ ¬S ∧ P′)
(¬P ∧ ¬Q ∧ S ∧ ¬P′)
(¬P ∧ ¬Q ∧ ¬S ∧ ¬P′)

A basic conjunction is true on one and only one assignment of values to its
constituent atoms. In our examples, the first wff is true just when P ⇒ T, Q ⇒ F,
S ⇒ F, P′ ⇒ T; the second true just when P ⇒ F, Q ⇒ F, S ⇒ T, P′ ⇒ F; and the
third when P ⇒ F, Q ⇒ F, S ⇒ F, P′ ⇒ F. In an obvious sense, then, a basic con-
junction corresponds to a particular valuation of its atoms. (Incidentally, note
that our definition allows a basic conjunction to consist in a single atom, if that’s
all we start off from!)

With those preliminaries, here’s the proof we want.

• A way of constructing a sentence out of PL atoms is truth-functional if
fixing the truth-values of the constituent atoms is enough to determine the
value of the complex sentence. Hence, we can write down a truth-table
displaying how the value of the truth-functional construction depends on
the values of its components. So our task is effectively this: to show that for
any given truth-table, we can write down a PL wff with exactly that truth-
table. Now, there are an unlimited number of different modes of truth-
functional composition of atoms. But however many atoms are in question,
one of three things must happen in the resulting truth-table for the combi-
nation: either it has ‘F’s all the way down; or it has ‘T’ on exactly one line; or
it has ‘T’ on more than one line. Take these cases in turn.

• First case When the truth-function is invariably false, it is easy to write
down a PL wff using the same atoms which is also invariably false. Just
conjoin or disjoin some contradictions. If ‘!(P, Q, R, S)’ is defined to be a
function of those four atoms which is false on every valuation, then e.g.

((P ∧ ¬P) ∨ (Q ∧ ¬Q) ∨ (R ∧ ¬R) ∨ (S ∧ ¬S))

is, careless bracketing apart, a corresponding wff of PL which involves the
same atoms and is also always false. 

• Second case When the truth-function in question takes the value true on
exactly one valuation of atoms, simply write down the PL basic conjunc-
tion that corresponds to that particular valuation, and again we have a wff
with the desired truth table. For example, if ‘%(P, Q, R, S)’ is true just when
P ⇒ F, Q ⇒ T, R ⇒ F, S ⇒ T, then

(¬P ∧ Q ∧ ¬R ∧ S)

is a wff with the right truth-table.

• Third case When the truth-function in question takes the value true on a
number of different valuations of atoms, then (a) write down the PL basic
conjunction corresponding to each valuation of atoms which makes the
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function come out true, and then (b) disjoin the results – i.e. write down a
long disjunction, where each disjunct is one of those basic conjunctions.
This wff will come out true when and only when some disjunct is true, i.e.
when one of those basic conjunctions is true, i.e. on the lines where the tar-
get truth-function is true. So our PL wff has the desired truth-table.

For example, the following table defines a perfectly good truth-function
of the three atoms ‘P’, ‘Q’ and ‘R’:

This dollar truth-function might not be a terrifically interesting one: still,
we might want to express it, and we can express it in PL, without having to
expand the language. Write down a basic conjunction corresponding to
each assignment of values where $(P, Q, R) is true, and then disjoin them.
That yields

{(P ∧ Q ∧ ¬R) ∨ (¬P ∧ Q ∧ R) ∨ (¬P ∧ Q ∧ ¬R) ∨ (¬P ∧ ¬Q ∧ R)
∨ (¬P ∧ ¬Q ∧ ¬R)}

This is custom built to have the right truth-table, for it comes out true on
each line where one of the basic conjunctions is true. By construction, then,
it is truth-functionally equivalent to $(P, Q, R). It may not be the simplest
way of capturing the truth-function $ in PL – ‘(¬P ∨ (Q ∧ ¬R))’ does the
job, as you can easily verify – but it is certainly one way. 

We can sum all that up as follows in another definition and a result:

A set of connectives is expressively adequate if a language containing just
those connectives is rich enough to express all truth-functions of the
atomic sentences of the language (i.e. rich enough to enable us to
construct a formula with any given truth-table). We have proved that the
standard set of PL connectives {∧, ∨, ¬} is expressively adequate.

11.8 ‘Disjunctive normal form’
Just for the record, and because you might come across the idea elsewhere, here’s
a corollary of our result about expressive adequacy. (But you can skip this!)

Start with some more definitions. Let’s say that a wff is a primitive wff if it is
either an atom or a negated atom (sometimes the alternative term ‘a literal’ is
used). And let’s say that a wff is a basic* conjunction if it consists of a conjunction

P Q R $(P, Q, R)
T T T F
T T F T
T F T F
T F F F
F T T T
F T F T
F F T T
F F F T
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of one or more primitives. The big difference between a basic and a basic* con-
junction is that the latter allows the same atom to appear both negated and un-
negated, i.e. it allows contradictions. So basic conjunctions are basic*, but not
always vice versa. (Note again we allow basic* conjunctions with only one ‘con-
junct’!) Further, we say that a wff is in disjunctive normal form (DNF) if it con-
sists of one or more disjuncts each of which is a basic* conjunction. (Note that
we also allow the limiting case of a single ‘disjunct’; in other words, a basic*
conjunction by itself counts as being in DNF.) 

In these terms, then, what we have just shown is that any truth-functional
combination of atoms can be expressed by an equivalent wff in DNF. As we saw,
in the first type of case in the proof in the last section, where the combination is
always false, we can use a disjunction of basic* conjunctions which are contra-
dictions. In the second type of case, where the combination is true on just one
assignment of values to atoms, we use a single basic (and hence basic*) conjunc-
tion. And in the third type of case, where the combination is true on more than
one assignment of values to atoms, we use a disjunction of two or more basic
(and hence again basic*) conjunctions.

Since any PL wff expresses a truth-functional combination of atoms, that
shows that any wff is truth-functionally equivalent to one in DNF.

11.9 Other adequate sets of connectives.
The key adequacy result is the one proved in the §11.7. But it is worth noting that
we can do even better: the set of connectives {∧, ¬} is adequate by itself. For a
wff of the form (A ∨ B), which rules out A and B being both false, is equivalent
to the corresponding wff of the form ¬(¬A ∧ ¬B). So, given a wff involving
occurrences of ‘∧’, ‘∨’ and ‘¬’, we can always construct an equivalent wff
involving just ‘∧’ and ‘¬’: replace the disjunctions with equivalent negation-
conjunction combinations.

We can likewise show that the set of connectives {∨, ¬} is adequate: simply
note the result that (A ∧ B) is equivalent to ¬(¬A ∨ ¬B), and then the argu-
ment goes similarly.

However, it is easily seen that {∧, ∨} is not expressively adequate. Looking at
the truth-tables for those connectives, we see that any wff built using just con-
junction and disjunction must be true when its atoms are all true. So using con-
junction and disjunction we can never get anything equivalent to a wff like ‘¬P’
or ‘(¬P ∨ ¬Q)’ which happens to be false when its atoms are true. Hence there
are truth-functions which can’t be expressed using conjunction and disjunction
alone.

The result that any truth-function can be expressed using just a pair of con-
nectives is surely enough to satisfy any sensible taste for economy. But it is
mildly diverting to show in conclusion there are in fact single connectives which,
just by themselves, are expressively adequate.

Given that {∧, ¬} is expressively adequate, it is enough to find a single connec-
tive in terms of which both those connectives can in turn be defined. Clearly it
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must be at last a two-place connective, and one candidate is the following:

An expression of the form (A ↓ B) says neither A nor B, i.e. that the connected
expressions are both false: so we have

¬A is equivalent to (A ↓ A), since that says that A and itself are both false.

 (A ∧ B), which says that neither ¬A nor ¬B, is equivalent to (¬A ↓¬B)
and so can be expressed by ((A ↓ A) ↓ (B ↓ B)).

Thus any PL wff built up by conjunction and negation can in principle be labori-
ously rewritten using just the down-arrow. Hence, putting everything together,
any truth-function can be expressed using {∧, ∨, ¬}; and wffs using only these
three connectives can be recast into formulae using just {∧, ¬}; and these latter
can in turn be recast using just ‘↓’. So that single connective is expressively
adequate. QED.

We can similarly introduce the up-arrow which stands to the down-arrow as
‘∨’ stands to ‘∧’: i.e. while (A ↓ B) signals that both ¬A and ¬B, (A ↑ B) will say
that either ¬A or ¬B, i.e. it is false just when A and B are both true. It is imme-
diate that ¬A equivalent to (A ↑ A), so that (A ∨ B) is equivalent to
((A ↑ A) ↑ (B ↑ B)). That means that any wff built up using only {∨, ¬}, and
hence any wff at all, is re-expressible using just the up-arrow. (Incidentally, the
up-arrow was first noted by H. Sheffer in 1913, and was written by him as ‘|’ –
hence the common label, ‘the Sheffer stroke’.)

11.10  Summary
• A way of forming a complex sentence out of one or more constituent

sentences is truth-functional if fixing the truth-values of the constituent
sentences is always enough to determine the truth-value of the complex
sentence.

• All wffs of PL are truth-functions of their atoms. The value of a wff is fully
determined by fixing the values of the atoms – and we can calculate and set
out in a truth-table the values that the wff takes on each possible assign-
ment of values to the atoms. This is tedious mechanical labour (though
there are short-cuts that, if judiciously chosen, can reduce the work)

• Conversely, any truth-function of atoms can be expressed using the
resources of PL.

• Indeed, any truth-function of atoms can be expressed using just ‘∧’ and
‘¬’, or just ‘∨’ and ‘¬’, or even solely the up-arrow or down-arrow.

A B (A ↓ B)
T T F
T F F
F T F
F F T
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Exercises 11
A Give truth-tables for the following wffs (i.e. calculate the value of the wff for

every assignment of values to the atoms: you can, however, use short-cuts).

1. ¬(P ∧ ¬P)
2. (P ∧ ¬(P ∧ Q))
3. ((R ∨ Q) ∨ ¬P)
4. (¬(P ∧ ¬Q) ∧ ¬¬R)
5. ((P ∧ Q) ∨ (¬P ∨ ¬Q))
6. ¬((P ∧ ¬Q) ∨ (¬R ∨ ¬(P ∨ Q)))
7. (((P ∨ ¬Q) ∧ (Q ∨ R)) ∨ ¬¬(Q ∨ ¬R))
8. (¬(¬P ∨ ¬(Q ∧ ¬R)) ∨ ¬¬(Q ∨ ¬P))
9. (¬((R ∨ ¬Q) ∧ ¬S) ∧ (¬(¬P ∧ Q) ∧ S))

B Give equivalent wffs in DNF for each of A.1 to 7. (Read off the truth-table
and use the construction in §11.7.)

C Show that ‘↓’ and ‘↑’ are the only two-place connectives which are expres-
sively adequate taken by themselves.

D Show that ‘((P ∧ Q) ∧ R)’ and ‘(P ∧ (Q ∧ R))’ have the same truth-table.
Show, more generally, that pairs of wffs of the forms ((A ∧ B) ∧ C) and
(A ∧ (B ∧ C)) will have the same truth-table. Generalize to show that how
you bracket an unmixed conjunction, A ∧ B ∧ C ∧ D ∧ …, doesn’t affect
truth-values. Show similarly that it doesn’t matter how you bracket an
unmixed disjunction.

E Show that for any A, B,¬(A ∧ B) is equivalent to (¬A ∨ ¬B), and ¬(A ∨ B)
is equivalent to (¬A ∧ ¬B). Along with the equivalences of ¬(¬A ∧ ¬B)
with (A ∨ B), and ¬(¬A ∨ ¬B) with (A ∧ B), these are called De Morgan’s
Laws. Use De Morgan’s Laws to show that every PL wff is equivalent to
one where the only negation signs attach to atoms.

F Instead of denoting the truth-value ‘T’ and ‘F’, use ‘1’ and ‘0’; and instead
of writing the connectives ‘∧’, ‘∨’, write ‘×’ and ‘+’. What rule of binary
arithmetic corresponds to our rule for distributing the ‘T’ and ‘F’s to a
sequence of atoms when constructing a truth-table? Explore the parallels
between the truth-functional logic of ‘∧’ and ‘∨’ and binary arithmetic.
What is the ‘arithmetic’ correlate of negation? 



In this chapter, we note a particularly important class of truth-functional propo-
sition, namely the tautologies. Their status illuminates the strong notion of
necessity that is involved in logical theory.

12.1 Tautologies and contradictions
For any wff of PL, we can mechanically calculate its truth-value for each and
every valuation of its atoms. Usually, the wff will be true on some valuations and
false on others. However, we occasionally get a uniform result: 

A wff of PL is a tautology if it takes the value true on every valuation of
its atoms. 

A wff is a contradiction if it takes the value false on every such valuation.

The following, for example, are three very simple tautologies:

(1) ¬(P ∧ ¬P)
(2) (P ∨ ¬P)
(3) ((P ∧ Q) ∨ (¬P ∨ ¬Q))

As is easily checked, it doesn’t matter what value we assign to ‘P’ and ‘Q’, these
wffs are invariably true. And even without doing the calculations, we can see
that these wffs should always be true: 

(1) must hold because a proposition and its negation cannot both be true
(since negation flips values): this is Aristotle’s ‘Law of Non-contradiction’;

(2) reflects our stipulation that interpreted wffs of PL take one truth-value or
the other; there is no middle option: this is the ‘Law of Excluded Middle’;

(3) obtains because either ‘P’ and ‘Q’ are both true or at least one of them is
false.

But tautologies need not be quite as obvious as this! Here, for example, is
another, as we can confirm by doing a truth-table:

(4) (¬{¬(P ∧ Q) ∧ ¬(P ∧ R)} ∨ ¬{P ∧ (Q ∨ R)})

12

Tautologies
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As the bracketing reveals, this is a disjunction, each of whose disjuncts is of the
form ‘¬{…}’. Evaluating the simpler disjunct first and then completing the work-
ing as necessary, we get

So the wff is indeed a tautology. And there can, of course, be tautologies involv-
ing arbitrarily many connectives.

If A always takes the value true, then ¬A will always take the value false.
Hence we have the following simple result: the negations of tautologies are con-
tradictions. Conversely, the negations of contradictions are tautologies.

Thus ‘¬((P ∧ Q) ∨ (¬P ∨ ¬Q))’, the negation of the tautology (3), counts as a
contradiction. Note therefore that, in our customary but slightly stretched usage
of the term, not all contradictions have the form (A ∧ ¬A), where a wff is
directly conjoined with its negation (compare §5.4).

12.2 Generalizing about tautologies
There is, of course, nothing special here about the Ps and Qs in the examples
above. For example, ‘¬(R ∧ ¬R)’ and ‘¬(P′′ ∧ ¬P′′)’ are equally good instances
of the law of non-contradiction. Indeed, any wff of the logical form

(1′) ¬(A∧ ¬A)

is a tautology, whether A stands in for an atom or a complex wff. 
Why so? Well, whatever wff we replace A by, and whatever valuation we give

its atoms, the wff will be either true or false. And the same calculation which
shows that ‘¬(P ∧ ¬P)’ is true whatever the value of ‘P’ will equally show that
¬(A∧ ¬A) is true whatever the value of A.

The point generalizes. Take any tautology. Systematically replace its atoms
with schematic variables like ‘A’, ‘B’, etc. (i.e. do it uniformly – same atom, same
replacement variable). That gives us a template for wffs, that displays the basic
form of the tautology, and encodes all the information required to show that the
wffs of this form are indeed tautologies. So any instance of this template, got by
uniformly substituting wffs for the schematic variables, will be another tautology. 

So, the claim that e.g. ‘¬(P ∧ ¬P)’ or ‘¬((P ∧ Q) ∨ (¬P ∨ ¬Q))’ is a tautology
is implicitly general in two ways. First, it remains true however we interpret the
atoms. That’s because the status of a wff as a tautology depends only on truth-

P Q R (¬{¬(P ∧ Q) ∧ ¬(P ∧ R)} ∨ ¬{P ∧ (Q ∨ R)})
T T T T F T F T F T T
T T F T F T F T F T T
T F T T T F F F T T F T T
T F F T T F F
F T T T T F
F T F T T F
F F T T T F
F F F T T F

9 5 4 8 7 6 10 3 2 1
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table calculations which don’t involve any assumptions about what its atoms
actually mean. And second the claim remains true however we (uniformly) sub-
stitute wffs for atoms.

12.3 A point about ‘form’
We just used the phrase ‘any wff of the logical form ¬(A ∧ ¬A)’. Much earlier
we also talked about logical form (§3.5), and at that point we left the idea vague
and inchoate. Now we can do much better. For when we say e.g. that a PL wff
has the form ¬(A∧ ¬A), we just mean that the wff can be constructed from the
negation sign, followed by a left-hand bracket, some wff A, the conjunction sign,
A again, and a closing right-hand bracket. Or equivalently, we mean the wff can
be produced from the template ‘¬(A∧ ¬A)’ by replacing each occurrence of the
schematic variable by the same wff.

In short, the notion of form here is a syntactic one, a matter of the surface
shape of a wff. By contrast, when we previously talked informally about the
form of some vernacular claims, we found ourselves tempted to make the notion
in part a semantic one (recall, we found it tempting to say that ‘All dogs have
four legs’ and ‘Any dog has four legs’ in some sense have the same logical form,
despite the surface differences, because they mean much the same). The semantic
character of the informal notion made it slippery: just how close in meaning to
sentences have to be to share logical form? We left such questions on hold. But
we can now explain why we don’t need to answer them for our purposes in the
rest of this book. Henceforth, when we talk about ‘form’, we will be making use
of a notion that can be characterized purely syntactically, i.e. it is a notion hav-
ing to do with the surface pattern in a wff or collection of wffs.

Of course, this syntactic notion is of interest to us because, in PL, surface form
shadows semantic structure in the intuitive sense (§§9.5, 9.6). But the point is
that we can define form in a quite unproblematic syntactic way.

12.4 Tautologies and necessity
Recall again our stipulation in §9.3. We are taking it that atoms of PL are such
as to be either determinately true or determinately false. So if we run through all
the different assignments of values to the relevant atoms and construct a full
truth-table for a wff W, then we exhaust the possible ways things might turn out.
And if each such possibility makes W true, then W is necessarily true. In sum,
truth-functional tautologies are necessary truths. 

But not all necessary truths encoded by wffs of PL are truth-functional
tautologies. Suppose we read the atom ‘Q′′’ as expressing the proposition that
all sisters are female. Then ‘Q′′’ expresses a necessary truth. Yet it obviously
isn’t a tautology; no mere atom can be a tautology, for it won’t be true on a
valuation which assigns the value F to the atom. To be sure, a valuation which
assigns F to ‘Q′′’ won’t respect the intended content of this atom. But for reasons
we sketched before (§11.4), we are not requiring that valuations of atoms
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respect their meanings: i.e. for our purposes we can treat the assignment of T or
F to any atom as equally allowed, whatever its content – that’s because we want
to isolate those logical facts that don’t depend on the meanings of atoms.

The tautologies, then, are the necessary truths of PL whose necessity can be
derived purely from the meaning of the connectives. In other words, the content
of the atoms doesn’t matter in making e.g. ‘((P ∧ Q) ∨ (¬P ∨ ¬Q))’ a tautology;
rather, it’s because that wff has the form ((A ∧ B) ∨ (¬B ∨ ¬A)) that it is a tau-
tology. So there is a good, sharp, technical sense in which we can say that tautol-
ogies are true in virtue of their logical form (i.e., to put it more carefully, they are
true in virtue of the way they are formed using the connectives). 

We can also describe claims in ordinary English as being tautologies, if they
involve truth-functional connectives and their natural translation into PL is a
tautology. And these claims too might be said rather more loosely to be true in
virtue of their logical form.

12.5 A philosophical aside about necessity
Philosophers have drawn a number of distinctions within the family of notions
to do with kinds of necessity and possibility. (To keep things simple, we’ll
consider the distinctions as they apply within the class of truths; there are similar
distinctions to be made among the falsehoods.)

• Necessary vs. contingent There does seem to be an intuitive distinction
between those claims that just contingently happen to be true and which
could have been false, and those claims which are necessarily true (in the
strong sense of being true in all conceivable possible worlds: see §2.1). So it
happens to be the case that Jack has a sister; that’s a contingent truth about
the actual world. But it is necessarily true that if Jack has a sister, then he
isn’t an only child (that is true of any possible situation). Again, it just hap-
pens to be the case that there are nine planets (if we still count Pluto) but it
is surely necessary that eight plus one is nine.

• A priori vs. a posteriori The previous distinction is a metaphysical dis-
tinction, concerning how things are; our second distinction is an epistemo-
logical one, a distinction among the sorts of grounds on which we can
know propositions to be true. And again there does seem to be an intuitive
distinction between those claims that require relevant experiences for a
knower to establish them as true, and those claims that can be shown to be
true without relying on any particular course of experience. It needs
empirical investigation to establish that Jack has a sister; that’s only know-
able ‘a posteriori’ (on the basis of relevant experiences – maybe seeing her
being born to Jack’s mother, or being reliably informed of the fact). But by
pure thought alone, we can spot that if Jack has a sister, then he isn’t an
only child: we can know that ‘a priori’. Again, it is a posteriori that there
are nine planets (experience of the world is needed to establish that) but it
is knowable a priori, it is a ‘truth of reason’, that eight plus one is nine. Of



12.5 A philosophical aside about necessity  105

course, you can get to know arithmetical truths by empirical means, as
when we justifiably rely on a pocket calculator. But the claim is that you
don’t need to rely on empirical enquiry to justify a belief that eight plus one
is nine, because rational reflection is enough by itself.

Or so the traditional story goes. 
Of course, the story raises a number of questions. How is that some proposi-

tions are true however the world is (true, as they say, with respect to any possible
world)? Why shouldn’t there be, so to speak, unco-operative worlds? How can
we know something to be true just by sitting in our armchairs and thinking,
without checking the truth against the world? Why do the same examples so
often invite treatment both as necessary truths and as knowable a priori? – do
the notions really pick out the same class of truths?

There’s a once-popular theory (though much less popular today) that aims to
answer such questions. Supposedly, we can make a third distinction:

• Analytic vs. synthetic Some claims are ‘merely verbal’, i.e. they are true in
virtue of the meanings of the words involved. These are said to be ‘analytic’
truths. Other truths, the non-analytic ones which aren’t merely verbal, are
said to be ‘synthetic’. It is analytic, true merely in virtue of the meanings of
the words involved, that if Jack has a sister, then he isn’t an only child.
Again, once the meanings of ‘eight’, ‘nine’ etc. are fixed, that fixes that
eight plus one is nine is true.

And the theory is that the necessary truths are exactly the a priori truths which
are exactly the analytic truths. That is to say, some propositions remain true
however the world is because they say nothing substantive about the world, but
are merely verbal truths: and that’s how we can know them a priori, merely by
reflection – because they are empty of substantive content. Which is a nicely
demystifying theory about necessity and aprioricity.

Note, by the way, the difference in status among the distinctions here. The
necessary/contingent and the a priori/a posteriori distinctions are supposed to be
graspable pre-theoretically, and have a fairly intuitive appeal. We think: some
things happen to be so, others couldn’t have been otherwise; some truths can
only be established empirically, others can be justified by pure thought. The ana-
lytic/synthetic distinction, by contrast, belongs to a philosophical theory about
what grounds these other, intuitively appealing, distinctions.

It’s a neat theory. And whatever the general difficulties with identifying the
necessary with the analytic, the PL tautologies do seem to provide us with a
plausible case, where (rightly or wrongly) the idea of analyticity looks particu-
larly attractive. We stipulated the meanings of the three connectives precisely in
order to make PL wffs truth-functional. And it is a direct result of our
stipulations that a wff will take the value it does on a given valuation of its
atoms. Hence (in particular) it is a direct result of our stipulations that certain
wffs come out true on every valuation. In this case, at least, it might seem that
there is therefore nothing very puzzling about the resulting necessary truths; they
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are just a spin-off from our linguistic stipulations. There is nothing mysterious
either about our knowledge of the necessities here; we don’t need to inspect any
worlds at all to calculate that a certain wff comes out true, however things are.

It is a very moot question whether all other candidates for necessary truth can
also usefully be regarded as analytic, as somehow resulting from linguistic con-
ventions in the same sort of way. For example, are the deep theorems of number
theory really, in the last analysis, ‘merely verbal’, simply distant spin-offs from
the basic linguistic conventions governing number talk?

Luckily, we don’t need to face up to such questions here. All we need now is
the thought (no doubt itself still in need of further elucidation but surely point-
ing in the right direction) that the necessary truth of tautologous wffs looks to be
relatively unmysterious.

12.6 Summary
• Wffs of PL which are true on every valuation of their atoms are tautologies.

Wffs that are false on every valuation are contradictions: contradictions do
not have to be of the form (A ∧ ¬A).

• A PL tautology remains a tautology whatever the meaning of the atoms;
and uniformly substituting wffs for the atoms will yield further tautologies.

• PL tautologies are necessary truths: but not all necessary truths expressible
in PL are tautologies.

• The necessity of tautologies is arguably unpuzzling, a result of the semantic
rules governing the connectives.

Exercises 12
Which of the following wffs are tautologies, which contradictions, which
neither?

1. (P ∧ ((¬P ∨ Q) ∧ ¬Q))
2. ((Q ∧ (¬¬P ∨ R)) ∨ ¬(P ∧ Q))
3. ({P ∨ ¬(Q ∧ R)} ∨ {(¬P ∧ Q) ∧ R})
4. ({P ∨ (Q ∧ ¬R)} ∨ ¬{(¬P ∨ R) ∨ Q})
5. ({P ∧ (¬Q ∨ ¬R)} ∨ ¬{(P ∨ ¬R) ∨ ¬Q})
6. ¬({¬(P ∧ ¬R) ∧ ¬(Q ∧ ¬S)} ∧ ¬{¬(P ∨ Q) ∨ (R ∨ S)})



In this pivotal chapter, all our work on the language PL – at long last! – gets put
to real use in the assessment of arguments. We introduce the crucial ‘truth-table
test’ for demonstrating the validity of some inferences whose essential logical
materials are conjunction, disjunction and negation.

13.1 Two introductory examples
Consider the argument

A Jack is logical. It isn’t the case that Jack is logical but Jill isn’t. Hence 
Jill is logical.

Rendered into PL via a suitable code-book, the argument can be re-expressed
with premisses ‘P’ and ‘¬(P ∧ ¬Q)’, and conclusion ‘Q’. Now, for each possible
assignment of values to the atoms, let’s evaluate the premisses and the conclu-
sion, setting out all the results in a table as follows:

(Here and henceforth, we will use a double line to separate off the list of possible
valuations of atoms from the part of the table which records the values of the
premisses on each valuation, and then use another double line before giving the
corresponding value of the conclusion.) Look along the rows. We find that there
is no assignment that makes the premisses true and the conclusion false. Hence
there is no way the world could be with respect to ‘P’ and ‘Q’ that would make
the premisses true and conclusion false. So argument A must be valid.

That was intuitively obvious at the outset: but note that we have now proved
that the argument is valid, by examining all the different ways things might turn
out as far as the truth-values of the premisses and conclusion are concerned.

Take another example. Consider the argument

P Q P ¬(P ∧ ¬Q) Q

T T T T T
T F T F F
F T F T T
F F F T F

13
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B Either Jack or Jill went up the hill. It isn’t the case that Jack went up 
the hill and Jo didn’t. Hence it isn’t the case that Jo went up the hill 
and Jill didn’t.

This argument can be rendered into PL with premisses ‘(P ∨ Q)’ and ‘¬(P ∧ ¬R)’,
and conclusion ‘¬(R ∧ ¬Q)’. Again, we will evaluate each premiss and the
conclusion for each assignment of values to the three propositional atoms, yield-
ing the next table (we just give the final results of the calculations). 

This time, inspection reveals that there is an assignment which makes the prem-
isses of B true and the conclusion false, namely P ⇒ T, Q ⇒ F, R ⇒ T. This
assignment evidently represents a way the world could be (i.e. Jack and Jo’s going
up the hill without Jill) which makes the premisses true and conclusion false. So
the argument is invalid. That was also probably obvious at the outset. But we
have now proved the point by a mechanical search through the possibilities.

The rest of this chapter sharpens and generalizes the simple but powerful ideas
that we’ve just illustrated.

13.2 Tautological entailment in PL
First, let’s give a formal definition:

The PL wffs A1, A2, …, An tautologically entail the wff C if and only if
there is no valuation of the atoms involved in the Ai and C which makes
A1, A2, …, An simultaneously all true and yet C false. 

If a bunch of premisses tautologically entails some conclusion, we’ll also say that
the inference in question is tautologically valid.

The terminology here should seem quite natural. Compare: C is a tautology if
it is true on any valuation; C is tautologically entailed by some bunch of wffs Ai
if it is true on any valuation which makes all the Ai true. 

And what is the relation between this technical notion of tautological entail-
ment and our informal idea of logical entailment (§2.1)? The key result is:

If the PL wffs A1, A2, …, An tautologically entail C, then A1, A2, …, An
logically entail C.

In other words, if the inference from a bunch of premisses to conclusion C is

P Q R (P ∨ Q) ¬(P ∧ ¬R) ¬(R ∧ ¬Q)
T T T T T T
T T F T F T
T F T T T F
T F F T F T
F T T T T T
F T F T T T
F F T F T F
F F F F T T
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tautologically valid, then it is deductively valid. Here’s a proof (you can skip it
on a first reading: and to avoid clutter, we’ll just run through the case where there
is a single premiss A, as the generalization to the many-premiss case is easy).

Suppose that the inference from A to C is invalid. Then there must be
some possible situation which would make A true and C false. But when
A and C are wffs of PL, a situation can only make A true and C false by
imposing certain values on their atoms (remember, we are assuming that
atoms are determinately true or false; and the values of the atoms are all
that matter for fixing the values of truth-functional wffs). Hence if the
inference from A to C is invalid, there must be a valuation of their atoms
which makes A true and C false – and that means that A doesn’t tauto-
logically entail C. So, putting that the other way about, if A does tauto-
logically entail C, then the inference from A does logically entail C in the
classical sense. QED.

The converse result, however, does not always hold. Even if an argument is
not tautologically valid, it might yet be valid for some other reason. For exam-
ple, take the reading of PL where ‘R’ expresses the proposition that Jo is a sister
and ‘S’ expresses the proposition that Jo is female. ‘R’ doesn’t tautologically entail
‘S’ – witness the valuation ‘R’ ⇒ T, ‘S’ ⇒ F. Yet the inference from premiss ‘R’ to
conclusion ‘S’ is still deductively valid: there is no possible world in which some-
one is a female sibling without being female. Showing that an inference is not
tautologically valid only shows it is plain invalid if one of truth-value assign-
ments that makes the premisses true and conclusion false corresponds to a real
possibility, as it did in case B.

Of course, the valuation ‘R’ ⇒ T, ‘S’ ⇒ F does not respect the intended mean-
ing of the atoms on the described interpretation: but no matter (see §10.4).
When we do a truth-table, we always run through a complete set of valuations
for the relevant atoms, because the aim is to see which inferences are valid
purely in virtue of the way the three connectives work, without paying any
regard to the meaning of the atoms. 

So much, then, for basic matters of principle: now for practicalities. How do
we establish whether a bunch of wffs tautologically entails some conclusion?

There are various ways to do this, and we’ll meet a much neater way of tack-
ling the task in Chapter 16. But the most direct way to settle the matter is by a
brute force calculation, exactly as in the last section. We simply set out every valua-
tion of the relevant atoms in a table, and then laboriously track through calculating
the values of the various wffs on the successive valuations until either we hit a ‘bad’
valuation which does make the premisses true and conclusion false, or else we run
out of possibilities. In short, we run a truth-table test.

It has to be admitted that the brute-force truth-table method is often a highly
inefficient technique, sometimes quite ludicrously so. Take the fifty premisses
‘¬P, ¬P′, ¬P′′, ¬P′′′, …,¬P′′...′’: it is obvious that these don’t tautologically
entail the conclusion ‘Q’. But suppose we set out a truth table (with all the ‘P’s
listed on the left before the ‘Q’). Then we have to wait until the very last assign-
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ment in the truth-table, which assigns F to all the ‘P’s and to ‘Q’, before we get a
line making all the ‘¬P’ premisses true and the conclusion ‘Q’ false. So if we had
set out to do an entirely mechanical truth-table test, even if we could write down
a complete line per second, it would take half a million years before we got to
that last line of the full 251 line truth-table! That’s why we will soon move on to
look at a much more elegant (and usually much faster) way of testing for tauto-
logical entailment. For the present chapter, however, we stick to using brute force.

13.3 Expressing inferences in PL
A brief aside. We’ve just described the argument A, when rendered in PL, as hav-
ing premisses ‘P’ and ‘¬(P ∧ ¬Q)’ and conclusion ‘Q’. But how would we
present such a one-step inference in PL itself (remember, this is supposed to be a
language in which we can phrase real, contentful arguments: cf. §7.4)? 

An argument in English might consist of a list of premisses, and then a conclu-
sion signalled by an inference marker like ‘so’, or ‘hence’, or ‘therefore’. Now, an
inference marker does not describe what follows as being the conclusion of an
inference: rather, it conventionally signals that an inference is being drawn. PL
users should presumably have some similar way of signalling when an inference
is being drawn. That’s why, in §8.1, we put into our list of the language’s sym-
bols the familiar sign ‘∴’ (to be read ‘therefore’) to use as an inference marker in
PL. Further, though it isn’t strictly necessary, we’ll use the comma in PL in order
to punctuate lists of premisses. We quietly put these symbols to use in §9.1.

So, with these additional devices in place, we can neatly present the PL rendi-
tions of the two arguments above as follows:

A P, ¬(P ∧ ¬Q) ∴ Q
B (P ∨ Q), ¬(P ∧ ¬R) ∴ ¬(R ∧ ¬Q)

Rather oddly, counting ‘∴’ as part of PL is not standard; but we are going to be
very mildly deviant. However, our policy fits with our general view of the two-
stage strategy for testing inferences. We want to be able to translate vernacular
arguments into a language in which we can still express arguments; and that
surely means not only that the individual wffs of PL should be potentially
contentful, but also that we should have a way of stringing wffs together which
signals that an inference is being made.

13.4 Truth-table testing in PL
Next example: is this inference tautologically valid?

C (P ∨ Q), (R ∨ ¬P), (¬¬R ∨ ¬Q) ∴ R

Tautological validity doesn’t depend on the interpretation of the atoms: so imag-
ine whatever reading of the atoms you like, though they need some interpreta-
tion if this is to be a real argument. There are three different atoms and so eight
different possible assignments of values to the atoms to consider. Here’s the com-
plete truth-table (again omitting the working for the premisses and the
conclusion, and just giving the overall values):
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A quick check shows that there is again no ‘bad line’, i.e. no valuation which
makes the premisses true and the conclusion false. So the premisses do indeed
tautologically entail the conclusion. 

Note, however, that as we searched through all the possible valuations, we
could have speeded up the working considerably by using a couple of simple
tactics:

• A line where the conclusion is true cannot be a bad one – i.e. one with true
premisses and a false conclusion. So an obvious tactic is to evaluate the con-
clusion first (at least, when this is not much more complex than other wffs
yet to be evaluated), and we can then avoid doing any further work evaluat-
ing the premisses on the lines where the conclusion comes out true. 

• Similarly, a line where a premiss is false cannot be a bad one: so another
obvious tactic is to evaluate any simple premiss, and we can then avoid
doing any further work evaluating the other premisses or the conclusion on
the lines where the evaluated premiss comes out false. 

Adopting these tactics, suppose we had (1) evaluated the conclusion of argument
C, and then (2) we had evaluated the simple first premiss on the four lines which
are still potentially ‘bad’ (i.e. where the conclusion is false). That would have
given us the following partial table, where we now only have to fill in at most six
slots to complete the task of checking for ‘bad’ lines:

Proceeding to evaluate (stage 3) the next simplest premiss, we find that it is false
on two of the relevant valuations, ruling those out as candidate bad lines: 

P Q R (P ∨ Q) (R ∨ ¬P) (¬¬R ∨ ¬Q) R

T T T T T T T
T T F T F F F
T F T T T T T
T F F T F T F
F T T T T T T
F T F T T F F
F F T F T T T
F F F F T T F

P Q R (P ∨ Q) (R ∨ ¬P) (¬¬R ∨ ¬Q) R

T T T T
T T F T ? ? F
T F T T
T F F T ? ? F
F T T T
F T F T ? ? F
F F T T
F F F F F

2 1
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So at stage (4) we are left with just one candidate bad line, and the final premiss
evaluates as false on that line, to reveal that there is no bad line and hence that
the argument is valid.

Here’s another example of our short cuts in operation. Consider the argument

D (¬P ∨ R), (P ∨ Q), ¬(Q ∧ ¬S) ∴ (R ∨ S)

There are four atoms, and hence this time sixteen possible valuations to con-
sider. Are there any bad lines where the premisses are true and conclusion false?
Start the table again by (1) evaluating the conclusion, and we find that it is true
on no fewer than twelve lines; so that immediately leaves only four potential bad
lines. Next, evaluate the simplest premiss on those four lines – stage (2); and we
reach the following:

We are down to just three candidate bad lines. Evaluating the next simplest
premiss (stage 3) eliminates two more, and finally (stage 4) we knock out the last
candidate bad line: see the completed table. Hence D is another valid argument.

P Q R (P ∨ Q) (R ∨ ¬P) (¬¬R ∨ ¬Q) R

T T T T
T T F T F F
T F T T
T F F T F F
F T T T
F T F T T F F
F F T T
F F F F F

2 3 4 1

P Q R S (¬P ∨ R) (P ∨ Q) ¬(Q ∧ ¬S) (R ∨ S)

T T T T T
T T T F T
T T F T T
T T F F ? T ? F
T F T T T
T F T F T
T F F T T
T F F F ? T ? F
F T T T T
F T T F T
F T F T T
F T F F ? T ? F
F F T T T
F F T F T
F F F T T
F F F F F F

2 1
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For a further example, what of the inference

E ¬((¬S ∧ Q) ∧ (R ∨ Q)), (P ∧ R), ¬(Q ∧ S) ∴ ((P ∨ Q) ∧ ¬(R ∨ S)) ? 

This time, the conclusion is a relatively complex wff, so let’s first evaluate the
simplest premiss. That yields:

We can ignore all twelve lines where the premiss turns out to be false, for they
cannot be bad lines (where premisses are true and conclusion false). So we now
tackle the remaining wffs in order of increasing complexity:

P Q R S (¬P ∨ R) (P ∨ Q) ¬(Q ∧ ¬S) (R ∨ S)

T T T T T
T T T F T
T T F T T
T T F F F T F
T F T T T
T F T F T
T F F T T
T F F F F T F
F T T T T
F T T F T
F T F T T
F T F F T T F F
F F T T T
F F T F T
F F F T T
F F F F F F

3 2 4 1

P Q R S ¬((¬S∧ Q)∧ (R ∨ Q)) (P ∧ R) ¬(Q ∧ S) ((P ∨ Q) ∧ ¬(R ∨ S))
T T T T T
T T T F T
T T F T F
T T F F F
T F T T T
T F T F T
T F F T F
T F F F F
F T T T F
F T T F F
F T F T F
F T F F F
F F T T F
F F T F F
F F F T F
F F F F F

1
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To explain: when we evaluate the next simplest premiss (stage 2), that rules out
the first line from being a bad one. Then (3) we evaluate the first premiss on the
remaining three lines, which leaves just two potential bad lines with all true
premisses. So we at last must start evaluating the conclusion (4). But we find that
the first potential bad line indeed has a false conclusion. And one bad line is bad
enough: we can stop there: there is no need to carry on further. The argument is
not tautologically valid.

For more worked examples, tackle the Exercises! But for the moment, let’s just
summarize the idea of the truth-table test, together with our recommended
devices for cutting down working.

To determine tautological validity by a truth-table test, we do a brute-
force search, looking for a valuation which makes all the premisses true
and conclusion false. If there is such a ‘bad line’ in the table, the argument
is invalid; if there is no such line the argument is valid.

We can suspend work on any line of the truth-table as soon as a premiss
turns out to be false on that valuation, or as soon as the conclusion turns
out to be true (such a line cannot be a bad one). 

If we find a bad line, we needn’t proceed any further. One bad line in the
table is enough to show that the inference is not tautologically valid.

13.5 Vernacular arguments again
We motivated the introduction of formalized languages such as PL by recom-
mending a two stage strategy for evaluating arguments presented in ordinary
English: first reformulate the vernacular argument in some appropriate formal-
ized language, then assess the validity of the formalized argument. We started

P Q R S ¬((¬S∧ Q)∧ (R ∨ Q)) (P ∧ R) ¬(Q ∧ S) ((P ∨ Q) ∧ ¬(R ∨ S))
T T T T  T  F
T T T F  F T  T 
T T F T F
T T F F F
T F T T  T T   T F
T F T F  T T  T
T F F T F
T F F F F
F T T T F
F T T F F
F T F T F
F T F F F
F F T T F
F F T F F
F F F T F
F F F F F

3 1 2 4
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putting the strategy into practice with a couple of very simple examples in §13.1
above. Here, to repeat, are the principles we used.

• Suppose the vernacular English inference Ie can be recast into an inference
Ipl in PL while remaining adequately faithful to the original, at least as far
as anything relevant to truth and validity is concerned. Then, if Ipl is a tau-
tological entailment, Ipl is deductively valid, and hence the original infer-
ence Ie is valid too. 

• But if Ipl isn’t a tautological entailment, things get more complex, for it is
then left open whether Ipl (and so Ie) is valid or not. The cases where Ipl is
tautologically invalid yet is still informally valid will be the cases where the
‘bad’ valuations don’t correspond to genuinely possible situations. If an
inference Ipl is tautologically invalid, it is a purely mechanical exercise to
find the bad valuations which make the premisses true and conclusion
false. But it is not in general a mechanical matter to decide whether any
such bad valuation corresponds to a genuinely possible situation which
reveals the inference to be deductively invalid in the informal sense. In
some cases the decision may be easy; but it needn’t be.

So much for the general principles again. Back to some examples. So consider:

F Either Jack is a philosopher or he is a physicist. Jack isn’t both a phi-
losopher and a fool. He is not a physicist. So Jack is not a fool.

Translating this into PL, using ‘P’ for ‘Jack is a philosopher’, ‘Q’ for ‘Jack is a
physicist’, ‘R’ for ‘Jack is a fool’, we get an argument which can be symbolized

F′ (P ∨ Q), ¬(P ∧ R), ¬Q ∴ ¬R

Is this tautologically valid? If we first evaluate the conclusion (1), and then (2)
the simplest premiss on the potentially bad lines (i.e. where the conclusion is
false) we are left with just two remaining potential bad lines. Finishing the job
(3) gives us

There is no line where the premisses are true and the conclusion false: so the
argument is tautologically valid. Hence the argument (as encoded in PL) is plain
valid. But is the translation accurate? Perhaps the first premiss is intended as an
exclusive disjunction. However, this wouldn’t in fact make a difference to the

P Q R (P ∨ Q) ¬(P ∧ R) ¬Q ¬R

T T T F F
T T F T
T F T T F T F
T F F T
F T T F F
F T F T
F F T F T T F
F F F T

3 3 2 1
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argument’s tautological validity (check that claim). So on either reading, the
original argument is valid too.

What about this argument: 

G It is not the case that either Jack or Jill will be at the party. At least
one of Jack and James will be at the party. Hence it isn’t the case that
James and not Jill will be at the party.

Using the obvious translation, and setting out a truth-table (with the same ‘con-
clusion-first’ short cut) we get:

In this case, there is a ‘bad line’. So the argument is not tautologically valid. And
the bad assignment where P ⇒ F (Jack won’t be at the party) and Q ⇒ F (Jill
won’t be there) and R ⇒ T (James is at the party) is evidently a genuine possibility
– so we’ve found a way the premisses could be true and the conclusion false: the
PL argument is invalid. Assuming that there are no worries about the transla-
tion, the original argument is invalid too.

Consider thirdly this example: 

H Jill’s either in the library or she’s in the coffee bar. And she’s either
not in the library, or she’ll be working on her essay. It sure isn’t the
case that she’s there in the coffee bar but not talking to her friends.
So she’s either working on her essay or talking to friends.

Is the inference here valid? Read the PL atoms to encode the following messages: 

P: Jill is in the library.
Q: Jill is in the coffee bar.
R: Jill is working on her essay. 
S: Jill is talking to her friends.

Then a possible translation for the first premiss is simply ‘(P ∨ Q)’ – for after all,
the premisses don’t rule the coffee bar being in the library! If we take the ‘And’
at the beginning of the second premiss as just stylistic glue without logical func-
tion, then that premiss translates as ‘(¬P ∨ R)’. The third premiss translates as
‘¬(Q ∧ ¬S)’, though we lose in translation the rhetorical flourish of ‘It sure isn’t
the case that’ when we replace it by plain negation, and we also lose any fine dif-
ferences of tone between ‘but’ and plain conjunction. Finally, we could translate
the conclusion as ‘(R ∨ S)’. So, one rendition of the original argument into PL is: 

P Q R ¬(P ∨ Q) (P ∨ R) ¬(R ∧ ¬Q)
T T T T
T T F T
T F T F T F
T F F T
F T T T
F T F T
F F T T T F
F F F T

3 2 1
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H′ (P ∨ Q), (¬P ∨ R), ¬(Q ∧ ¬S) ∴ (R ∨ S)

But compare §13.4 D: the premisses here do tautologically entail the conclusion
(for recall, the order in which premisses are presented can’t make any difference
to questions of validity). So the PL inference is a valid one. Hence assuming the
adequacy of the translation, the original argument is valid too.

But there are complications. It is probably more natural to suppose that the
initial disjunctive premiss is meant exclusively; so it might be said that our first
shot at a translation into PL is inadequate, and ((P ∨ Q) ∧ ¬(P ∧ Q)) would
render the first premiss better. However, if that’s the only change we make, the
argument will remain tautologically valid. Adding a wff as a conjunct to a prem-
iss has the same effect as adding the wff as a separate premiss (why?): and add-
ing an extra premiss cannot destroy validity (why? see §13.8 below). 

What, however, if the disjunctive conclusion is also intended exclusively? Then
the argument translates as 

H″ ((P ∨ Q) ∧ ¬(P ∧ Q)), (¬P ∨ R), ¬(Q ∧ ¬S) ∴ ((R ∨ S) ∧ ¬(R ∧ S))

and this is quickly shown by a truth-table test not to be tautologically valid. The
valuation P ⇒ T, Q ⇒ F, R ⇒ T, S ⇒ T makes the premisses true and the conclu-
sion false. And this remains the case even if the second premiss is also read as an
exclusive disjunction. So H″ isn’t a tautological entailment. Moreover, the bad
valuation which shows this corresponds to a situation which is evidently fully
possible – namely the situation where Jill is in the library, not the coffee bar,
working on her essay but talking to her friends at the same time. So this inference
is not only non-tautological but plain invalid. In sum, then, our sample vernacu-
lar inference is valid if the conclusion is meant inclusively, invalid otherwise. 

13.6 ‘Validity in virtue of form’
Let’s gather together a number of observations about tautological entailment:

• To emphasize again: there are PL inferences which are valid entailments,
but not tautological entailments. But the tautologically valid inferences are
those that hold irrespective of the particular interpretations of the atoms,
just in virtue of the distribution of the logical connectives in the premisses
and conclusion. 

• Note that an inference like A or C remains tautologically valid however we
re-interpret the atomic letters. And if we systematically replace the atoms in
A or C with other wffs, again the result is a tautologically valid argument.
So there is an implicit double generality in saying that e.g. A and C are
valid (in short, what we said about tautologies in §12.2 evidently carries
over to the idea of tautological validity). 

• We suggested in the last chapter that the necessity of tautological wffs is
relatively unmysterious, in some sense resulting from the stipulations gov-
erning the meanings of the connectives. Similarly, the validity of tautologi-
cally valid arguments is equally unmysterious (it isn’t some metaphysical
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superglue that ties premisses to conclusions; it’s a matter of the meanings of
the connectives).

• Since the content of the atoms is irrelevant, we might say that the tautolog-
ical entailments hold in virtue of their logical form (see §12.4 where we
made a similar point about tautologies). The notion of form here is entirely
transparent; for in PL where syntactic structure exactly reflects semantic
structure, we can go by surface form. Start with a tautological entailment.
Systematically replace its atoms with schematic variables, and this gives the
form of the inference in the sense of encoding all the information that is
needed to show that the inference is tautologically valid. And instances of
this schematic form got by systematically substituting wffs for the variables
will all be tautologically valid.

Note, that last point helps us see exactly how the truth-table test relates to the
informal technique for the evaluation of inferences that we described in
Chapter 4. Looking for a ‘bad line’ in a table is a stripped-down version of look-
ing for a counterexample. To explain: recall that a counterexample is an infer-
ence of the same form as the target inference up for assessment, which has true
premisses and a false conclusion. In the case of a PL argument, that would mean
abstracting away from the particular atoms and then finding a substitution
instance of the resulting schematic form with true premisses and a false conclu-
sion. But in PL, all that matters for the truth of premisses and falsity of conclu-
sion is the values of the atoms. So what ultimately matters about a
counterexample is the values the atoms take in it. We can therefore streamline
things by skipping the step of actually writing down the full counterexample and
just latch on to the corresponding valuation of the atoms which makes the prem-
isses true and conclusion false. So in PL terms, looking for a counterexample
comes down to looking for a ‘bad line’ in the truth-table. 

Now, as we noted in Chapter 4, failing to find a counterexample doesn’t nor-
mally demonstrate validity. But in the special case of PL arguments, we can do a
systematic search through all the relevantly different types of counterexample –
i.e. all the different valuations of atoms that they produce. So in this special case,
failure to find a counterexample, i.e. failure to find a bad valuation, does demon-
strate validity.

To return to the point about ‘form’: 

• We complained before (§3.6) about over-generalizing the thought that
valid arguments are valid because of their form. But, just as the concept of
a tautology gives sharp content to the idea of truth-in-virtue-of-form
(§12.4), the concept of tautological entailment gives a sharp content to the
idea of validity-in-virtue-of-form for one class of arguments.

As applied to arguments couched in PL, then, the idea of validity-in-virtue of
form is clear-cut. What of arguments framed in English? Well, in so far as a
vernacular argument can be well represented by a tautologically valid PL trans-
lation, it too might readily be counted as tautologically valid and so, in the
explained sense, valid in virtue of form. (But questions of translation can be
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rather indeterminate, so the question whether a PL tautological entailment
adequately captures the original vernacular argument can in turn be rather
indeterminate.)

13.7 ‘ffff’ and ‘∴’
That’s the main business of this chapter done. However, there’s another bit of
standard shorthand symbolism we really should introduce and comment on.
Then in the next section we’ll use the symbolism in stating some general results
about tautological validity. (But by all means skip this and the next section on a
first reading). 

It is standard to abbreviate the claim that the wffs A1, A2, …, An tautologi-
cally entail C by writing

(1) A1, A2, …, An f C

(The symbol ‘f’ here is often called the ‘double turnstile’ – and perhaps a useful
mnemonic is to think of it as made up by superimposing the two ‘t’s from ‘tauto-
logical’.)

Note, this symbol is being added to English. It is a metalinguistic shorthand
for talking about the relationship of some wffs in PL, and it doesn’t belong to PL
itself. This point can get obscured because it is both convenient and absolutely
conventional to write, e.g.

(2) (P ∨ Q), ¬P f Q

rather than write (as we should do, since we are talking metalinguistically)

(3) ‘(P ∨ Q)’, ‘¬P’ f ‘Q’

In other words, it is conventional to take ‘f’ as – so to speak – generating its own
quotation marks. 

There is a very important contrast, then, between (2) and 

(4) (P ∨ Q), ¬P ∴ Q

(4) is an argument couched in some dialect of PL. So it makes three assertions,
with the inference marker ‘∴’ signalling that the third assertion is being inferred
from the other two. By contrast, (2) is not an argument at all, it is a single state-
ment made in shorthand English. It’s short for

(2′) The PL inference whose premisses are ‘(P ∨ Q)’ and ‘¬P’ and
whose conclusion is ‘Q’ is tautologically valid.

So don’t confuse ‘f’ with ‘∴’!
Finally, note again that (1) says that C is always true, on the condition that the

Ai are true: so

(5) f C

is naturally read as saying that C is true on no condition at all, i.e. that C is a
tautology.
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13.8 Some simple metalogical results
In §§13.1–5, we’ve demonstrated a number of logical results, showing that vari-
ous arguments are either tautologically valid or invalid. Finally in this chapter,
we go up a level, so to speak, and give some metalogical results – i.e. results
about the idea of tautological validity.

First, some further terminology that will come into its own later:

A set of PL wffs A1, A2, …, An is satisfiable or tautologically consistent if
there is at least one possible valuation of the relevant atoms which makes
the wffs all true together. The set is otherwise unsatisfiable or tautologi-
cally inconsistent.

To start, note that

(i) A1, A2, …, An f C if and only if A1, A2, …, An, ¬C are tautolog-
ically inconsistent.

This is immediate. A1, A2, …, An, f C if and only if there is no valuation which
makes the Ai true and C false, i.e. just when there is no valuation which makes
the Ai and ¬C all true, i.e. just when that set of wffs is unsatisfiable.

Next, note three more results:

(ii) For any B, if A1, A2, …, An f C then A1, A2, …, An, B f C.
(iii) If C is a tautology, then A1, A2, …, An f C for any Ai.
(iv) If the wffs A1, A2, …, An are tautologically inconsistent, then

A1, A2, …, An f C for any C.

If a valuation of the relevant atoms which makes the Ai all true makes C true as
well, then a valuation which makes the Ai all true and B as well will still make C
true (note, if any of the atoms in B are new ones, their values cannot affect the
values of the other wffs – see §9.6). In other words, (ii) adding further premisses
cannot destroy a tautological entailment. Again, if C is true on any valuation of
its atoms, then it is true on any valuation of a wider collection of atoms, and so
true on any valuation which makes the Ai true. Hence (iii) a tautology is tauto-
logically entailed by any bunch of premisses. Checking (iv) is left as an exercise.
(These three results reflect the fact that tautological validity is a ‘classical’ notion
of validity in the sense we explored in §6.1. Tautologically valid inference doesn’t
require any relation of relevance between the premisses and the conclusion.)

Next, recall the notion of truth-functional equivalence introduced in §11.6. A
and B are equivalents just if they take the same value on all valuations of their
atoms. So whenever A is true, B is, and vice versa. Hence we have

(iv) A and B are equivalents just when A f B and B f A.

And finally let’s note a result that justifies the use of reductio ad absurdum
arguments to establish tautological entailments (for the general idea of such
arguments, see again §5.4): 

(v) If C is a contradiction, and A1, A2, …, An, B f C, then A1, A2,
…, An, f ¬B
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Suppose A1, A2, …, An, B f C. Then whenever A1, A2, …, An and B are all true,
C is true too. But if C is a contradiction, C is never true on any valuation. So
given C is a contradiction, then A1, A2, …, An and B can never all be true
together on any valuation. But if A1, A2, …, An and B can never be true together,
then whenever A1, A2, …, An are true, B is false. Which shows, as we wanted,
that A1, A2, …, An f ¬B.

13.9 Summary
• Given an argument involving just ‘and’, ‘or’, ‘not’ as its relevant logical

materials, we can evaluate it as follows:

1. Represent the argument in PL using ‘∧’, ‘∨’ and ‘¬’ as the
connectives.

2. Consider all the possible ways of assigning truth-values to
the atoms in the premisses and conclusion.

3. Work out in each case (for each possible assignment) the
truth-values of the premisses and conclusion of the argument. 

4. Ask: Is there a bad assignment, i.e. one that makes the prem-
isses all true and yet the conclusion false? 

5. If there is no bad assignment, then the argument is tautolog-
ically valid. If there is a bad assignment, then the argument
is tautologically invalid.

• Steps (2) to (5) involve an entirely mechanical procedure; a computer can
test whether an inference presented in PL is tautologically valid. 

• As before, we are assuming that we are interpreting atoms of PL to express
the sort of propositions where are determinately true or false. Tautological
validity implies plain validity. Tautological invalidity does not always imply
plain invalidity, but means that the original argument, if valid at all, must
depend for its validity on something other than the distribution of the
propositional connectives in the premisses and conclusion. 

• The test procedure, however, can be speeded up if we note that a line on the
truth-table where any premiss is false or the conclusion is true cannot be a
bad line. Such lines can be ignored in the search for bad assignments.

• We introduced the symbol ‘f’ as an augmentation of English, to express the
relation of tautological entailment. It is important to distinguish the meta-
linguistic ‘f’ from the object-language inference marker ‘∴’.

Exercises 13
A Use the truth-table test to determine which of the following arguments are

tautologically valid:

1. ¬(P ∨ Q) ∴ ¬P
2. (P ∧ Q) ∴ (P ∨ ¬Q)
3. (P ∨ ¬Q), ¬P ∴ ¬¬Q
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4. (P ∧ S), ¬(S ∧ ¬R) ∴ (R ∨ ¬P)
5. P, ¬(P ∧ ¬Q), (¬Q ∨ R) ∴ R
6. (P ∨ Q), ¬(P ∧ ¬R), (R ∨ ¬Q) ∴ R
7. (¬P ∨ ¬(Q ∨ R)), (Q ∨ (P ∧ R)) ∴ (¬P ∨ Q)
8. (P ∨ Q), ¬(Q ∧ ¬¬R) ∴ ¬(R ∨ P)
9. (P ∧ (Q ∨ R)) ∴ ((P ∧ Q) ∨ (P ∧ R))
10. (P ∨ Q), (¬P ∨ R), ¬(Q ∧ S) ∴ ¬(¬R ∧ S)

B Evaluate the following arguments:

1. Either Jack went up the hill or Jill did. Either Jack didn’t go up the
hill or the water got spilt. Hence, either Jill went up the hill or the
water got spilt.

2. It isn’t the case the Jack went up the hill and Jill didn’t. It isn’t the
case that Jill went up the hill and the water got spilt. So either
Jack didn’t go up the hill or the water got spilt.

3. Either Jack is lazy or stupid. It isn’t true that he is both lazy and a
good student. Either Jack isn’t a good student or he isn’t stupid.
Hence he isn’t a good student.

4. Either Jill hasn’t trained hard or she will win the race. It isn’t true
that she’ll win the race and not be praised. Either Jill has trained
hard or she deserves to lose. Hence either Jill will be praised or
she deserves to lose.

C (Now read §§13.7–8 if you took up the invitation to skip them on a first
reading.) Which of the following are true; which false; and why?

1. Any two tautologies are truth-functionally equivalent.
2. If A tautologically entails C, then A entails any wff truth-

functionally equivalent to C.
3. If A and B tautologically entail C and B is a tautology, then A by

itself tautologically entails C.
4. If A f B, then ¬A f ¬B.
5. If A f B, then ¬B f ¬A.
6. If A is a contradiction, then A f B, for any B.
7. If the set of wffs A1, A2, …, An is unsatisfiable, the set ¬A1, ¬A2,

…, ¬An is satisfiable.
8. If the set of wffs A1, A2, …, An is unsatisfiable, then A1, A2, …, An

f B, for any B.
9. If A f C, then f (¬A ∨ C).
10. If A, B, C are tautologically inconsistent, then A f (¬B ∨ ¬C).
11. If A, B are tautologically inconsistent, so are ¬A, ¬B.
12. If the wffs A, B together make a satisfiable set, and B, C do too,

then the wffs A, C together make a satisfiable set.



Let’s review the state of play again:

• We have explained why it can be advantageous to adopt a two-stage strategy
in logical theory – first translating inferences into a well-designed artificial
language (eliminating obscurity and ambiguity), and then evaluating the
neatly regimented results.

• We have seen how to execute the first stage of this strategy in a very plausi-
ble and attractive way for arguments whose essential logical materials are
the propositional connectives ‘and’, ‘or’ and ‘not’, by deploying the artifi-
cial truth-functional language PL.

• We then developed a tight definition of ‘tautological validity’ for arguments
in PL; this is validity in virtue of the distribution of the connectives. And
we have seen how we can mechanically test for tautological validity, by the
truth-table test.

• We are assuming we are interpreting atoms of PL to express the sort of
propositions where are determinately true or false. Then, if an argument is
tautologically valid, it is valid in the informal sense – though not always
vice versa.

Along the way, we have started the work of tidying some of the loose ends we
noted in the last Interlude.

• We acknowledged in the previous Interlude that we hadn’t given a very
sharp characterization of the general notion of deductive validity. We now,
at any rate, have a very clear notion of tautological validity that captures
the intuitive notion as applied to one class of arguments.

• We also acknowledged earlier that we hadn’t given any clear account of the
idea of a proposition, nor of what counts as the ‘logical form’ of a proposi-
tion or the ‘pattern’ of an inference. But we can at least now talk crisply
and accurately about forms of PL wffs or schematic patterns of PL infer-
ences: we can display such patterns by replacing atoms with metalinguistic
variables. The surface forms of PL wffs encode all the semantic facts (about

Interlude

Propositional logic
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the distribution of connectives) that matter for the tautological validity of
PL inferences, transparently and without any ambiguity. So we don’t need
to dig any deeper. We don’t need here any murkier notion of ‘underlying’
logical form. Nor indeed need we fuss about distinguishing (interpreted)
wffs from the propositions they express. 

Since PL is expressively adequate – i.e. has the resources to express any possi-
ble truth-functional way of combining atoms – there’s a good sense in which our
discussion so far covers the whole of the logic of truth-functions. Something that
we haven’t talked about yet is how we might express proofs (chains of tautolog-
ical valid inference steps) in PL. But in a way, we don’t need to. The whole point
of using proofs, recall, is to enable us to warrant complex inferences by breaking
down the big inference step from premisses to conclusion into a number of
smaller steps, each one of which is indubitably a valid move. However, we’ve
just found a nicely mechanical and direct way of demonstrating tautological
validity. Run a truth-table test and that settles the matter! So why bother with
proofs?

Still, despite the fact that we have – in a sense – already dealt with the whole
logic of truth-functions, we are going to proceed over the next few chapters to
discuss one more truth-function in some detail. We’ll be examining the so-called
‘material conditional’ which is a truth-functional connective that purports to
capture (something of) the ordinary language conditional construction ‘if A,
then B’. Conditional propositions of that kind are so important in reasoning that
it would be odd indeed to have no way of treating them in our logic. But as we’ll
see, they raise a whole raft of contentious problems (which is why we’ve kept
their treatment sharply separate from the relatively uncontentious truth-func-
tional logic of ‘and’, ‘or’ and ‘not’). 

And despite the fact that it is – in a sense – otiose to lay down formal proce-
dures for chaining together PL inferences into proofs, we’ll also spend some time
developing what can be regarded as one proof system for propositional logic
(though we’ll introduce it as a way of doing truth-tables faster). That’s because
later, when investigating ‘quantificational logic’ we’ll need to consider proof sys-
tems (there is no equivalent of a mechanical truth-table test for establishing
quantificational validity). 

Overall, our menu

the basic syntax/semantics of PL
truth-table testing
discussion of the material conditional
a proof system

is, in one form or another, in one ordering or another, pretty much the standard
offering in the first part of any elementary text on formal logic. Together, its
elements constitute classical propositional logic.



We have seen how to evaluate arguments whose logical materials are the three
connectives ‘and’, ‘or’ and ‘not’. Can our truth-table techniques be extended to
deal with arguments involving the conditional construction ‘if …, then …’?
Easily, if the core meaning of the conditional can be captured by a truth-
function. The present chapter explores the only candidate truth-function, the so-
called material conditional.

14.1 Why look for a truth-functional conditional?
Consider the following simple arguments:

A If Jack bet on Eclipse, then Jack lost his money. Jack did bet on
Eclipse. So Jack lost his money.

B If Jack bet on Eclipse, then Jack lost his money. Jack did not lose his
money. So Jack did not bet on Eclipse. 

C If Jack bet on Eclipse, then Jack lost his money. So if Jack didn’t lose
his money, he didn’t bet on Eclipse.

D If Jack bet on Eclipse, then Jack lost his money. If Jack lost his money,
then Jack had to walk home. So if Jack bet on Eclipse, Jack had to
walk home.

E Either Jack bet on Eclipse or on Pegasus. If Jack bet on Eclipse, he lost
his money. If Jack bet on Pegasus, he lost his money. So, Jack lost his
money.

These are all intuitively valid inferences, and are presumably valid in virtue of
what ‘if …, then …’ means. 

Contrast the following arguments:

F If Jack bet on Eclipse, then Jack lost his money. Jack lost his money. So
Jack bet on Eclipse.

G If Jack bet on Eclipse, then Jack lost his money. Jack did not bet on
Eclipse. So Jack did not lose his money.

14

PLC and the material conditional
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These are plainly fallacious arguments. The premisses of F can be true and
conclusion false; foolish Jack may have lost his money by betting on Pegasus,
another hopeless horse. For the same reason, the premisses of G can be true and
conclusion false. 

It would be good to have a systematic way of evaluating such arguments
involving conditionals. Now, on the face of it, ‘if …, then …’ seems to be a
connective like ‘… and …’ and ‘… or …’, at least in respect of combining two
propositions to form a new one. So the obvious question is: can we directly
extend our techniques for evaluating arguments involving those other two-place
connectives to deal with the conditional as well? 

Here is a quick reminder how we dealt with arguments involving conjunction
and disjunction.

• The strategy has two stages: (a) we translate the arguments into PL, and
then (b) we evaluate the translated arguments, by running the truth-table
test.

• Step (a) presupposes that the ordinary language connectives ‘and’ and ‘or’
are close in their core meanings to the corresponding connectives of PL. (If
the translation were too loose, then a verdict on the PL rendition couldn’t
be carried back into a verdict on the original argument.)

• Step (b) depends on the PL connectives being truth-functional. The truth-
table test requires that, given any assignment of values to the relevant prop-
ositional atoms, we can always work out whether or not that assignment
makes the premisses and conclusion false. 

So, if the approach of the previous chapters is to be extended to cover arguments
involving the conditional, we need to find some way of rendering conditional
statements with tolerable accuracy using a dyadic truth-function. Can we do the
trick?

14.2 Introducing the material conditional
First, let’s introduce some entirely standard terminology: 

Given a conditional if A then C, we refer to the ‘if’ clause A as the anteced-
ent of the conditional, and to the other clause C as the consequent.

An inference step of the form if A then C, A; hence C is standardly
referred to by the label modus ponens. An inference step of the type if A
then C, not-C; hence not-A is called modus tollens. 

Those two medieval Latin labels for the valid inference-moves in our examples A
and B above are still in such common use that you just need to learn them. 

Now, it is quite easy to see that there is only one truth-function which is a seri-
ous candidate for capturing conditionals: this much is agreed on all sides. We’ll
first give a longer argument which identifies this truth-function by exhaustion of
cases, and then a second, shorter, argument for the same conclusion.
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(1) Let’s for the moment informally use the symbol
‘⊃’ to represent a truth-function which is intended to
be conditional-like. The issue is how to fill in the ‘?’s
in its truth-table. To repeat, there must be no indeter-
minate slots left in this table: if there were, we
wouldn’t be able to apply the truth-table test to this
conditional connective, and the whole point of the
current exercise would be thwarted. 

Step one Suppose we claim if A, then C. Then plainly we are ruling out the
case where the antecedent A holds and yet the consequent C doesn’t hold – i.e.
we are ruling out the situation A ⇒ T, C ⇒ F. Putting it the other way about, if
we do have A ⇒ T, C ⇒ F, then it would plainly be wrong to claim if A, then C.
Hence, if ‘⊃’ is to be conditional-like, A ⇒ T, C ⇒ F
must likewise make (A ⊃ C) false. Hence the entry on
the second line of the table has to be F.

Step two A main point (maybe the main point) of
having a conditional construction in the language is
to set up modus ponens inferences, from the prem-
isses if A then C and A to the conclusion C. In assert-
ing if A then C, I am as it were issuing a promissory
note, committing myself to assent to C should it turn out that A is true. 

But if modus ponens inferences are ever to be sound, it must be possible for
the two premisses if A then C and A to be true together. Hence the truth of A
can’t always rule out the truth of if A then C.

Similarly, if ‘⊃’ is to be conditional-like, and so feature in useful modus pon-
ens inferences, the truth of A can’t always rule out the truth of (A ⊃ C). That
means that the first line of the table for
‘⊃’ can’t be F too. Hence, the entry on
the first line needs to be T.

Step three The table for (A ⊃ C)
must therefore be completed in one of
the ways (a) to (d).

We can now argue simply by elimina-
tion:

• Column (d) can’t be right: for then
the full truth-table would be identical to the table for (A ∧ C), and ifs
aren’t ands.

• Column (b) can’t be right because that would make (A ⊃ C) truth-function-
ally equivalent to plain C; and conditionals aren’t always equivalent to
their consequents (compare ‘If Jack bet on Eclipse, he lost his money’ and
plain ‘Jack lost his money’).

• Column (c) won’t do either: for that column would make (A ⊃ C) always
equivalent to (C ⊃ A), and real conditionals are not in general reversible

A C (A ⊃ C)

T T ?
T F F
F T ?
F F ?

A C (A ⊃ C)

T T ?
T F ?
F T ?
F F ?

A C (A ⊃ C)

T T T
T F F
F T T T F F
F F T F T F

a b c d
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like that (compare ‘If Jo is a man, Jo is a human being’ and ‘If Jo is a
human being, Jo is a man’).

• And so … cue drums and applause … the winner is column (a).

(2) Here’s a shorter argument for the same result. A proposition like If Jo is tall
and dark then Jo is tall is a necessary truth. Now suppose we translate it PL-
style, using ‘⊃’ for a truth-functional conditional. We get, say, ‘((P ∧ Q) ⊃ P)’.
This too should be a necessary truth, true in virtue of the truth-functional mean-
ings of ‘∧’ and ‘⊃’; so it should in fact be a tautology. Consider, therefore, the
following truth-table: 

In the right-hand column we record the desired result that this conditional is a
tautology. The middle columns give the values of the antecedent ‘(P ∧ Q)’ and
the consequent ‘P’ of that conditional. And by inspection, to get from the assign-
ments in the middle columns to the values in the final column, a truth-functional
conditional (A ⊃ C) must be true when A and C are both true; when A is false,
and C true; and when A is false and C false. That fixes three lines of the table.
Which leaves the remaining case when A is true, C is false: in that case (A ⊃ C)
must be false (otherwise all conditionals will be tautologous). So, again, …

The only candidate that even gets to the starting line as an approximately
conditional-like truth-function is the material conditional, defined by:

Why ‘material conditional’? Let’s not worry about that. It’s one of those
standard labels that has stuck around, long after the original connotation has
been forgotten. (This truth-function is also sometimes known as the Philonian
conditional, after the ancient Stoic logician Philo, who explicitly defined it.)

14.3 ‘�’ is conditional-like
A bit later (§14.5 below), we’ll officially add the horseshoe symbol ‘⊃’ to PL,
adjusting the syntax and semantics of that language to get an extended language

P Q (P ∧ Q) P ((P ∧ Q) ⊃ P)

T T T T   T
T F F T   T
F T F F   T
F F F F   T

A C (A ⊃ C)

T T T
T F F
F T T
F F T
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we’ll call PLC. But for the moment we’ll proceed casually, pretend that ‘⊃’ is
already part of our language, and quickly check that if we translate the examples
in §14.1 using ‘⊃’, and run a truth-table test, we get the right verdicts. Thus, 

A If Jack bet on Eclipse, then Jack lost his money. Jack did bet on
Eclipse. So Jack lost his money.

Translation: (P ⊃ Q), P ∴ Q

Truth-table test:

There are no bad assignments, where all the premisses are true and the conclu-
sion is false: so argument A is tautologically valid as well as being intuitively
valid. Skipping the next two simple cases (left as exercises!), we next treat

D If Jack bet on Eclipse, then Jack lost his money. If Jack lost his money,
then Jack had to walk home. So if Jack bet on Eclipse, Jack had to
walk home.

Translation: (P ⊃ Q), (Q ⊃ R) ∴ (P ⊃ R)

Truth-table test:

Here we use the now familiar short cut of evaluating the conclusion first, and
then only pursuing potential bad lines, i.e. lines where the conclusion is false.
There are no bad lines, so again the argument is tautologically valid. 

The next argument exemplifies a common form of inference, often called
argument by cases:

E Either Jack bet on Eclipse or on Pegasus. If Jack bet on Eclipse, he lost
his money. If Jack bet on Pegasus, he lost his money. So, Jack lost his
money.

P Q (P ⊃ Q) P Q

T T T T T
T F F T F
F T T F T
F F T F F

P Q R (P ⊃ Q) (Q ⊃ R) (P ⊃ R)

T T T T
T T F T F F
T F T T
T F F F F
F T T T
F T F T
F F T T
F F F T

2 3 1
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Translation: (P ∨ Q), (P ⊃ R), (Q ⊃ R) ∴ R

Truth-table test:

Again the argument is tautologically valid. So turn next to

F If Jack bet on Eclipse, then Jack lost his money. Jack lost his money. So
Jack bet on Eclipse.

We noted before that the inference here is a gross fallacy (traditionally called
affirming the consequent). And the translation of F is tautologically invalid.

Translation: (P ⊃ Q), Q ∴ P

Truth-table test:

The bad line here evidently corresponds to a possible state of affairs – Jack’s not
betting on Eclipse yet losing his money all the same – so that confirms that the
original argument is plain invalid. 

Likewise for

G If Jack bet on Eclipse, then Jack lost his money. Jack did not bet on
Eclipse. So Jack did not lose his money.

That’s another horrible fallacy (traditionally called denying the antecedent).
Translating and running a truth-table test confirms this.

In sum, we see from examples A to G that the representation of some ordinary
conditionals using the truth-functional conditional ‘⊃’ yields the right verdicts
about validity and invalidity. So at least in some respects, ‘⊃’ approximates to
the vernacular ‘if …, then …’. In the next chapter, we consider at length just how
close this approximation is.

P Q R (P ∨ Q) (P ⊃ R) (Q ⊃ R) R

T T T T
T T F T F F
T F T T
T F F T F F
F T T T
F T F T T F F
F F T T
F F F F F

2 3 4 1

P Q (P ⊃ Q) Q P

T T T T T
T F F F T
F T T T F
F F T F F
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14.4 ‘If’, ‘only if’, and ‘if and only if’
So far, we have only discussed ‘if’ conditionals, i.e. conditionals of the forms

(i) If A then C.

We can also write ‘if’ conditionals in the form

(i′) C, if A.

We take these two versions, without further ado, to be mere stylistic variants.
However, there are other kinds of conditional which need to be discussed, in
particular ‘only if’ conditionals. Consider the pair

(ii) A only if C.
(ii′) Only if C, then A.

Again, we’ll take this second pair to be trivial variants of each other. The interest-
ing question concerns the relation between (i) if A then C and (ii) A only if C.

Consider the following line of thought. Given if A then C, this means that A’s
truth implies C, so we will only have A if C obtains as well – i.e. A only if C
holds. Conversely, given A only if C, that means that if A is true, then, willy-
nilly, we get C as well. So plausibly, (i) and (ii) imply each other. To take an
example, consider

Hi If Einstein’s theory is right, space-time is curved.
Hii Einstein’s theory is right only if space-time is curved.

These two do indeed seem equivalent. 
However, we can’t always equate if A then C with the corresponding A only if

C in this simple way. Compare:

Ii If I drink malt whisky, then I get stupid.
Iii I drink malt whisky only if I get stupid.

The latter, but not the former, surely suggests that I have to be stupid first before
I make things worse by turning to the whisky. And note another complexity:
these conditionals are naturally read to be about general habits, not about
particular situations. But we’ll set aside such quirks of the vernacular. Take the
cases where A only if C and if A then C do come to the same; and then both will
be rendered into our extension of PL using the material conditional, by some-
thing of the shape (A ⊃ C), with the antecedent and consequent translated
appropriately.

Be careful: translating ‘only if’ conditionals does get many beginners into a
tangle! The basic rule is: first put ‘only if’ conditionals into the form A only if C
and then replace the ‘only if’ with the horseshoe ‘⊃’, to get (A ⊃ C). The condi-
tional A if C is of course translated the other way about, since that is trivially
equivalent to if C then A and so is to be rendered by (C ⊃ A).

What then about the two-way conditional or biconditional, i.e. A if and only
if C (quite often, in philosophical English, this is written A iff C)? This is equiva-
lent to the conjunction of A only if C and A if C. The first conjunct we’ve just
suggested should be translated into our formal language as (A ⊃ C); the second
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conjunct is to be rendered by (C ⊃ A). Hence the whole biconditional can be
rendered by ((A ⊃ C) ∧ (C ⊃ A))

However that is a bit cumbersome. And so, although it isn’t necessary, it is
common to introduce another dyadic truth-functional connective, ‘�’, to replace
that construction. This, then, is the so-called material biconditional; and a sim-
ple calculation shows that its truth-table will be as dis-
played.

Finally, we should pause to connect the use of condi-
tionals and biconditionals with talk of necessary and
sufficient conditions. A condition C is necessary for A to
hold just when we have A only if C. For example, it is a
necessary condition of Jo’s being a sister that Jo is
female – for Jo is a sister only if she is female. But being
female isn’t a sufficient condition for being a sister: some
females are only children. A condition C is sufficient for A to hold just when we
have if C then A. For example, it is a sufficient condition for Jo’s being a sister that
she is a female twin – for if Jo is a female twin, then she is a sister. But being a
female twin isn’t a necessary condition for being a sister: some sisters aren’t twins.
Finally, C is a necessary and sufficient condition for A just when A if and only if C. 

14.5 The official syntax and semantics of PLC
The material conditional – like any truth-function – can be expressed using the
existing resources of PL. For example it is easily checked that (¬A ∨ C) has the
right truth-table to do the job. Likewise ¬(A ∧ ¬C) has the same truth-table. 

Similarly the material biconditional can be expressed using ‘∧’, ‘∨’ and ‘¬’.
For example, we could directly conjoin two translations of if A then C and if C
then A to get something of the form ((¬A ∨ C) ∧ (¬C ∨ A)). Or looking at the

truth-table for the biconditional, we see that ((A ∧ C)
∨ (¬A ∧ ¬C)) also has the right table. So we certainly
don’t need to add special symbols for the conditional
or biconditional. 

But there are trade-offs between various kinds of
simplicity here. On the one hand, there is the pleasing
economy of having just three connectives in our lan-
guage: the cost is that the translation of conditionals
and biconditionals into standard PL isn’t particularly

pretty. On the other hand, if we add new symbols for the conditionals, we
thereby get neater translations: the cost will be that when we develop formal
proof devices for dealing with arguments things get a bit more complicated (e.g.
we need more inference rules). On balance, however, it is worth taking the sec-
ond trade: so we’ll now officially expand PL by adding two new connectives for
the material conditional and biconditional. We’ll call the new language PLC. Its
additional syntactic and semantic rules should be obvious, but here they are, for
the record.

A C (A � C)

T T T
T F F
F T F
F F T

A C (¬A ∨ C)

T T T
T F F
F T T
F F T
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Syntax The full alphabet of PLC is the same as that for PL (see §8.1), with the
addition of the two symbols ‘⊃’ and ‘�’.

The rules for what counts as an atomic wff in PLC stay the same. But we need
add two new rules for building complex molecular wffs with ‘⊃’ and ‘�’. Syn-
tactically, however these behave like the other dyadic connectives. So the rules
(in short form) are W1 to W4 as before (§8.1), plus the two new rules:

(W1) Any atomic wff is a wff.
(W2) If A is a wff, so is ¬A.
(W3) If A and B are wffs, so is (A ∧ B).
(W4) If A and B are wffs, so is (A ∨ B).
(W5) If A and B are wffs, so is (A ⊃ B).
(W6) If A and B are wffs, so is (A � B).
(W7) Nothing else is a wff.

Semantics We’ll say quite a bit more about the pros and cons of the translation
of ‘⊃’ as ‘if’ in the next chapter. Here we’ll concentrate on valuations (see §9.3).
The rules for evaluating wffs with the old three connectives stay the same, of
course. So we just need to add:

(P4) For any wffs, A, B: if A ⇒ T and B ⇒ F then (A ⊃ B) ⇒ F; otherwise
(A ⊃ B) ⇒ T.

(P5) For any wffs, A, B: if both A ⇒ T and B ⇒ T, or if both A ⇒ F and
B ⇒ F, then (A � B) ⇒ T; otherwise (A � B) ⇒ F.

In Chapter 9, we gave rules in this style first and then summed them up in truth-
tables. This time, we’ve already given the truth-tables for ‘⊃’ and ‘�’, and these
new semantic rules evidently reflect those tables.

Finally, just for the record, the notions of a tautology and of tautological
entailment are defined for PLC exactly as they were for PL. A PLC wff is a tau-
tology if it is true on all valuations of its atoms; a PLC inference is tautologically
valid if there is no valuation of the atoms in the premisses and conclusion which
makes the premisses true and conclusion false.

14.6 ‘ffff’, ‘∴’, ‘�’, ‘�’, and ‘→’
Recall that in §13.7 we drew a very sharp distinction between the object lan-
guage inference marker ‘∴’ and the metalinguistic sign ‘f’ for the entailment
relation. We now have another sign we must also distinguish very clearly from
both of these, namely the object language conditional ‘⊃’. Let’s spell things out
carefully.

As we stressed before

(1) (P ∧ Q) ∴ Q

is a mini-argument expressed in PL (or in PLC, since this extended language
includes the original one). Someone who asserts (1), assuming that some content
has been given to the atoms, is asserting the premiss, asserting the conclusion,
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and indicating that the second assertion is based on the first. Compare the Eng-
lish Jack is a physicist and Jill is a logician. Hence Jill is a logician.

By contrast

(2) ((P ∧ Q) ⊃ Q)

is a single proposition in PLC; someone who asserts (2) asserts neither ‘(P ∧ Q)’
nor ‘Q’. Compare the English If Jack is a physicist and Jill is a logician, then Jill
is a logician.

(3) (P ∧ Q) f Q

is another single proposition, but this time in our extended English metalan-
guage, and the PLC wffs there are not used but mentioned. For (3) just abbrevi-
ates the English

(3′) ‘(P ∧ Q)’ tautologically entails ‘Q’.

Note too the difference between the grammatical category of the PLC connec-
tive ‘⊃’ and the English-augmenting sign ‘f’. The horseshoe sign is a connective,
which needs to be combined with two sentences (wffs) to make a compound sen-
tence. The double turnstile expresses a relation between a premiss (or a set of
premisses) and a conclusion, and needs to be combined with two denoting
expressions referring to wffs (or sets of wffs) to make a sentence. 

There’s a bad practice of blurring these distinctions by talking, not of the
‘material conditional’, but of ‘material implication’, and then reading (A ⊃ B) as
‘A materially implies B’. If we also read A f B as ‘A logically implies B’, this makes
it sound as if (A ⊃ B) is just the same sort of claim as A f B, only weaker. But not
so. Compare (2) and (3) again: one involves an object-language connective, the
other a metalanguage relation.

The following important result, however, does link ‘logical implication’ in the
sense of entailment to ‘material implication’:

E/C  A f C if and only if f (A ⊃ C).

Or in plain words: the one premiss argument A ∴ C is tautologically valid iff
(i.e. if and only if) the corresponding material conditional (A ⊃ C) is a tautology. 

Proof: A f C, i.e. A ∴ C is tautologically valid, 
iff there is no assignment of values to the atoms which appear in A and C

which makes A true and C false (by definition),
i.e. iff there is no assignment of values to the atoms which appear in A

and C which makes (A ⊃ C) false (by the truth-table for ‘⊃’),
i.e. iff every assignment of values to the atoms which appear in A and C

makes (A ⊃ C) true,
i.e. iff (A ⊃ C) is a tautology (by definition).

By similar reasoning, we can show that the argument A1, A2, …, An ∴ C is valid
just when {(A1 ∧ A2 ∧ … ∧ An) ⊃ C}, properly bracketed, is a tautology.

Here’s a related result, relating equivalence to the biconditional:

E/B  A and C are truth-functionally equivalent if and only if f (A � C).
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Or in plain words: two wffs A and C have the same truth-table if and only the
corresponding single wff (A � C) is a tautology. 

Proof: A and C are truth-functionally equivalent 
iff every assignment of values to the atoms which appear in A and C gives

the same values to A and to C (by definition),
i.e. iff every assignment of values to the atoms which appear in A and C

makes (A � C) true (by the truth-table for ‘�’),
i.e. iff (A � C) is a tautology (by definition).

Finally, we should note that ‘→’ is very often used as an alternative symbol for
the conditional. But I recommend the convention of using ‘⊃’ when the truth-
functional material conditional is definitely meant, keeping ‘→’ for more general
use.

14.7 Summary
• The only truth-functional connective that is a candidate for translating the

conditional of ordinary discourse is the so-called material conditional. If
we represent this connective by ‘⊃’, then (A ⊃ C) is true just when A is
false or C is true. 

• A number of ordinary-language arguments using conditionals can be ren-
dered using ‘⊃’ while preserving their intuitive validity/invalidity.

• In many cases, corresponding pairs of the form if A then C and A only if C
are equivalent. (But of course if A then C and only if A then C are not equiv-
alent and their conjunction yields a biconditional.)

• The only truth-functional connective that is a candidate for translating the
biconditional A if and only if C is the material biconditional. Representing
this by ‘�’, (A � C) is true just when A and C are both true or both false.

• Since PL is expressively complete, we don’t need to add new symbols to the
language to express the material conditional and material biconditional.
But it is convenient to do so. The extended language, with the symbols ‘⊃’
and ‘�’ added in the obvious ways, will be termed PLC.

• It is important to distinguish the metalinguistic ‘f’ from the object-
language conditional ‘⊃’ and the object-language inference marker ‘∴’.

Exercises 14
A Given

‘P’ expresses Plato is a philosopher
‘Q’ expresses Quine is a philosopher
‘R’ expresses Russell is a philosopher
‘S’ expresses Socrates is a philosopher

translate the following into PLC as best you can:
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1. Quine is a philosopher only if Russell is.
2. If either Quine or Plato is a philosopher, so is Russell.
3. Only if Plato is a philosopher is Russell one too.
4. Quine and Russell are both philosophers only if Socrates is.
5. Russell’s being a philosopher is a necessary condition for Quine’s

being one.
6. Plato is a philosopher if and only if Quine isn’t.
7. If Plato is a philosopher if and only if Socrates is, then Russell is

one too.
8. Only if either Plato or Russell is a philosopher are both Quine

and Socrates philosophers.
9. That Socrates is a philosopher is a sufficient condition for it to be

a necessary condition of Quine’s being a philosopher that Russell
is one.

10. Quine is a philosopher unless Russell is one.
11. Provided that Quine is a philosopher, Russell is one too.

B Use truth-tables to determine which of the following arguments are tauto-
logically valid:

1. P, (P ⊃ Q), (Q ⊃ R) ∴ R
2. P, (P � Q), (Q � R) ∴ R
3. (P ⊃ R) ∴ ((P ∧ Q) ⊃ R)
4. ¬R, (¬P ⊃ R) ∴ P
5. (P � R) ∴ (¬R � ¬P)
6. (P ⊃ R) ∴ (¬R ⊃ ¬P)
7. ¬R, (P ⊃ R), (¬P ⊃ Q) ∴ Q
8. (P ∨ Q), (P ⊃ R), ¬(Q ∧ ¬R) ∴ R
9. (R � (¬P ∨ Q)), ¬(P ∧ ¬R) ∴ ¬(¬R ∨ Q)
10. (¬P ∨ Q), ¬(Q ∧ ¬R) ∴ (P ⊃ R)
11. (P ∧ ¬R), (Q ⊃ R) ∴ ¬(P ⊃ Q)
12 ¬(P � (Q ∧ R)), (S ∨ ¬Q) ∴ ¬(S ⊃ P)

C Which of the arguments that you have just shown to be tautologically valid
correspond to intuitively valid arguments when ‘⊃’ is replaced by ‘if …,
then …’, and ‘�’ is replaced by ‘… if and only if …’?

D Which of the following are true and why?

1. If A doesn’t tautologically entail B, then f ¬(A � B).
2. If A and B tautologically entail each other, then f (A � B).
3. If ¬A f ¬B, then f (B ⊃ A).
4. If A, B f C then A f (B ⊃ C)
5. If f (A ⊃ B) and f (B ⊃ C), then f (A ⊃ C).
6. If f (A ⊃ B) and f (A ⊃ ¬B), then f ¬A.
7. If f (A � B), then A, B are tautologically consistent.
8. If f (A � ¬B), then A, B are tautologically inconsistent.



The last chapter introduced the material conditional. This chapter discusses
more carefully its relation with conditionals in ordinary language. We begin by
drawing a key distinction between types of conditional.

15.1 Types of conditional
Consider the following memorable example (due to David Lewis):

(1) If kangaroos had no tails, they would topple over.

How do we decide whether this is true? By imagining a possible world very like
our actual world, with the same physical laws, and where kangaroos are built
much the same except for the lack of tails. We then work out whether the poor
beasts in such a possible world would be unbalanced and fall on their noses. In
short, we have to consider not the actual situation (where of course kangaroos
do have tails), but other possible ways things might have been. Let’s call a condi-
tional that invites this kind of evaluation (i.e. evaluation by thinking about other
ways things might have been) a possible-world conditional.

To introduce another memorable example, compare the following:

(2) If Oswald didn’t shoot Kennedy in Dallas, someone else did.
(3) If Oswald hadn’t shot Kennedy in Dallas, someone else would have.

To evaluate (2), note that in the actual world, Kennedy was shot. Someone must
have done it. Hence, if not Oswald, someone else. So (2) is true. Now in fact
(let’s suppose), Oswald did shoot Kennedy, acting alone. Then, to decide
whether (3) is true, we have to consider a non-actual possible world, a world
like this one except that Oswald missed. Keeping things as similar as we can to
the actual world, Oswald would still be acting alone. There would still be no
conspiracy, no back-up marksmen. In such a possible situation, Kennedy would
have left Dallas unscathed. Hence (3) is false. 

Given that they take different truth-values, the possible-world conditional (3)
therefore must diverge in content from the simple conditional (2). 

The logic of possible-world conditionals is beyond the scope of this book, but
one thing is clear: possible-world conditionals are not truth-functional. A truth-

15

More on the material conditional



138 More on the material conditional

functional conditional has its actual truth-value fixed by the actual truth-values of
its constituent sentences. By contrast, the truth-value of a possible-world condi-
tional depends on what happens in other possible scenarios; so its truth-value
can’t be fixed just by the this-worldly values of the antecedent and consequent. 

Hence, quite uncontroversially, the truth-functional rendition can at most be
used for conditionals like (2). 

What is very controversial, though, is the range of ‘conditionals like (2)’.
Cases like (3) are conventionally called subjunctive conditionals, for supposedly
they are couched (according to some traditional grammars) in the subjunctive
mood. (2), and all the conditionals in arguments A to G in §14.1 above, are
called indicative conditionals (being framed in the indicative mood). The trouble
is that the intended indicative/subjunctive division seems to carve up condition-
als in an unhelpful way. For compare (3) with

(4) If Oswald doesn’t shoot Kennedy in Dallas, someone else will.

Someone who asserts (4) before the event – believing, perhaps, that a well-
planned conspiracy is afoot – will after the event assent to (3). Likewise, some-
one who denies (4) before the event – knowing that Oswald is a loner – will deny
(3) after the event. Either way, it seems that exactly the same type of possible
world assessment is relevant for (3) and (4): we need to consider what occurs in
a world as like this one as possible given that Oswald doesn’t shoot Kennedy
there. Plausibly, then, we might well want to treat (3) and (4) as belonging to the
same general class of possible-world conditionals. But, in traditional grammati-
cal terms, (4) is not subjunctive. So the supposed distinction between subjunctive
and indicative conditionals divides the past interpretation of (3) from the future
interpretation of (4) in a pretty unnatural manner.

We can make a related point in passing. Someone who asserts (2) leaves it
open whether Oswald shot Kennedy; but someone who asserts (3) thereby
implies that the antecedent is actually false, and that Oswald didn’t miss. For
that reason, conditionals like (3) are often called counterfactual conditionals.
But (4) is not a counterfactual in this sense: someone who asserts (4) again leaves
it open whether Oswald will miss. So the counterfactual/non-counterfactual
distinction again unnaturally divides (3) from (4). 

We can’t pursue these matters further here. The point, to repeat, is that it isn’t
obvious exactly where and how to draw the line between those possible-world
conditionals like (3) which have to be set aside as definitely not apt for a truth-
functional treatment, and those ‘indicative’ conditionals like (2) which are still in
the running.

15.2 In support of the material conditional
We noted that the material conditional (like any truth-function) can be
expressed with the unaugmented resources of PL; the two simplest ways of
capturing the truth function using the original connectives are ¬(A ∧ ¬C) and
(¬A ∨ C). Do these equivalent ways of expressing the truth-function make it
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look more or less like a conditional? Well, consider the following two lines of
thought:

• If A then C rules out having A true while C is false; hence, borrowing the
PL symbols for brevity, if A then C implies the corresponding ¬(A ∧ ¬C).
Suppose conversely that we believe that ¬(A ∧ ¬C), i.e. that we think that
we don’t have A true while C is false. That seems to imply that if A is true,
then C won’t be false, or in other words, if A then C. So, apparently, if A
then C implies and is implied by ¬(A ∧ ¬C). Which is to say that the ordi-
nary language conditional is equivalent to the material conditional. 

• Suppose we hold that if A then C, and put that together with the law of
excluded middle (¬A ∨ A). Then we either have ¬A, or we have A and so
C. In other words, if A then C implies (¬A ∨ C). Conversely, suppose we
hold (¬A ∨ C); if A is in fact true, then – since that rules out the first
disjunct – we can conclude C must be true as well. So, apparently, if A then
C implies and is implied by (¬A ∨ C). Which is again to say that the ordi-
nary language conditional is equivalent to the material conditional. 

These arguments are enough to lead many logicians to hold that at least some
ordinary ‘if …, then …’ propositions are fundamentally truth-functional. 

15.3 Against identifying vernacular and material conditionals
Do the arguments of the previous section really establish that the core meaning
of indicative conditionals is truth-functional (i.e. that these ordinary language
conditionals are material conditionals)?

Note that a material conditional, a proposition with the same truth-table as
(¬A ∨ C), can be true irrespective of any connection between the matters men-
tioned by A and C. All that’s required is A is false and/or C is true. You might
hold that this simple observation is already enough to sabotage the claim that
ordinary ‘if’s can be treated as equivalent to material conditionals. For don’t ‘if’s
signal some kind of real connectedness between the topics of the antecedent and
consequent?

No, not always. Suppose I remember that one of Jack and Jill has a birthday
in April (I know that they threw a party last Easter, but I just can’t recall whose
birthday it was celebrating). You say, a bit hesitantly, that you think that Jack
has an October birthday. So I respond

(1) If Jack was born in October, then Jill was born in April. 

Surely in the context that’s a perfectly acceptable conditional, though I don’t for
a moment think that there is any causal or other connection between the facts
about their birth months. All I’m saying is that either you are wrong about Jack,
or else Jill was born in April: i.e., borrowing the PL symbols again, I’m just com-
mitting myself to

(2) (¬Jack was born in October ∨ Jill was born in April).

So it seems that perfectly acceptable conditionals may be no-more-than-material.
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Of course, when we assert conditionals, we often do think that there is (for
example) a causal connection between the matters mentioned in the antecedent
and the consequent (‘If you press that button, it will turn on the computer’). But
equally, when we assert disjunctions, it is often because we think there is some
mechanism ensuring that one disjunct or the other is true (‘Either the e-mail will
be sent straight away or you’ll get a warning message that the e-mail is queued’).
However, even if our ground for asserting that disjunction is our belief in an
appropriate mechanism relating the disjuncts, what we actually say is true so
long as one or other disjunct holds (exclusively, in our example). Likewise, our
reason for asserting a conditional may be a belief in some mechanism that
ensures that if the antecedent holds the consequent does too. It could still be the
case that what we say is true just so long as the material conditional holds.

So far, the material conditional theory survives. But now compare the follow-
ing (we’ll borrow ‘⊃’ to signal the material conditional in English):

(3) Wordsworth didn’t write Pride and Prejudice. So, (Wordsworth wrote
Pride and Prejudice ⊃ Wordsworth wasn’t a novelist).

(4) Wordsworth didn’t write Pride and Prejudice. So, if Wordsworth
wrote Pride and Prejudice then he wasn’t a novelist.

Grant (3)’s premiss that Wordsworth didn’t write Pride and Prejudice. The con-
clusion is of the form (A ⊃ C) with a false antecedent, so the conclusion must be
true too. Hence the inference in (3) is valid. That is no more puzzling than the
validity of the inference from ¬A to (¬A ∨ C); indeed, (3) in effect just is that
trivial inference. By contrast, the inference in (4) looks decidedly unhappy. Many
will say: its conclusion looks unacceptable (being the author of Pride and Preju-
dice would surely be enough to make you a novelist!): so how can it validly
follow from the true premiss that Wordsworth didn’t write Pride and Prejudice?

Generalizing, the inference pattern

(M) not-A; so (A ⊃ C)

is unproblematically and trivially reliable. On the other hand, inferences of the
type

(V) not-A; so if A then C

strike us as very often unacceptable (for indicative conditionals as well as sub-
junctive ones). Equating the vernacular conditional in (V) with the material con-
ditional in (M) has the highly implausible upshot that the two inference patterns
should after all be exactly on a par.

Now we seem to be in a mess. On the one hand, we presented in the last sec-
tion what seemed a good argument for saying that if A then C implies and is
implied by ¬(A ∧ ¬C), and then another good argument for saying that if A
then C implies and is implied by (¬A ∨ C), where ¬(A ∧ ¬C) and (¬A ∨ C) are
just two ways of expressing the material conditional. Yet here, on the other
hand, we’ve emphasized what looks to be a very unwelcome upshot of treating
ordinary ‘if’s as equivalent to material ‘⊃’s. What to do?
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15.4 Robustness
Go back to a remark made in passing in §14.2. I said: when we claim if A then
C, we are normally issuing a promissory note, committing ourselves to assent to
C should it turn out that A true.

Now imagine that I currently hold not-A, and on that ground alone hold
(¬A ∨ C). Would I in this case be prepared to go on to issue a promissory note
committing myself to assent to C should it turn out that in fact A after all? No!
If it turns out that A, I’d retract my current endorsement of not-A, and so retract
the disjunction (¬A ∨ C). Hence, if I accept (¬A ∨ C) – or equivalently (A ⊃ C)
– on the grounds that not-A, then I won’t be prepared to endorse the promissory
conditional if A then C. 

Let’s say, following Frank Jackson, that my assent to (¬A ∨ C), or equiva-
lently (A ⊃ C), is robust with respect to A if the discovery that A is true won’t
lead me to withdraw my assent. Then the point we’ve just made comes to this: if
my assent to (¬A ∨ C), or equivalently (A ⊃ C), isn’t robust with respect to A, I
won’t accept the force of the §15.2 argument from (¬A ∨ C) to if A then C.

Exactly similarly, suppose I endorse something of the form ¬(A ∧ ¬C) because
I believe ¬A. Again, I’ll take it back if I discover than in fact A holds. So again I
won’t accept the force of the §15.2 argument from ¬(A ∧ ¬C) to if A then C.

This observation suggests a new account of ordinary, indicative conditionals,
an account which both recognizes the appeal of the arguments in §15.2 yet also
recognizes the intuitive distinction between the inferences (M) and (V) that we
stressed in §15.3. The suggestion is that ordinary conditionals are not just mate-
rial conditionals, rather they are material conditionals presented as being robust
(i.e. robust with respect to their antecedents).

Let’s explain that more carefully. Compare:

(1) Jack came to the party.
(2) Even Jack came to the party.

These plainly differ in overall meaning. And yet it seems that the worldly state of
affairs they report is one and the same, namely Jack’s presence at the party. The
difference between (1) and (2) doesn’t seem to reside in what they tell us about
the world. Rather, the word ‘even’ functions rather like a verbal highlighter – or
a verbalized exclamation mark – typically used to signal the speaker’s feeling
that Jack’s presence was surprising or out of the ordinary.

Similarly, compare the following:

(3) Jack came to the party and had a dreadful time.
(4) Jack came to the party but had a dreadful time.

Again, the worldly state of affairs these two report seems to be the same. The
difference between them is that the use of (4) signals, very roughly, that Jack’s
going to the party without enjoying it was against expectation.

Likewise, it is now being suggested that the difference between these – 

(5) (Jack came to the party ⊃ Jack had a good time)
(6) If Jack came to the party, then he had a good time.
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– is again not a difference in what they say about the world. Each is strictly
speaking true so long as its antecedent is false and/or consequent true. Rather
the difference arises because someone who uses ‘if’ signals that their claim is
robust with respect to the antecedent. In other words, the speaker who uses (6)
rather than (5) undertakes not to withdraw the conditional should it turn out
that the antecedent is true and Jack did come to the party.

Go back to that example where I recall the Easter birthday party which shows
that one of Jack and Jill has an April birthday. We argued that it could be natural
to endorse 

(7) If Jack was born in October, then Jill was born in April. 

That’s nicely in keeping with the current theory, since (in the circumstances)
although (7) may be no-more-than-material in propositional content, it is robust.

Now since, on this theory, the core content of if A then C is exactly (A ⊃ C), it
is no surprise that – quietly assuming robustness – we can construct plausible
arguments as in §15.2, from (A ⊃ C) to if A then C, as well as vice versa. But
note too that, while we can accept the unproblematic inference

(M) not-A; so (A ⊃ C)

we won’t robustly endorse (A ⊃ C) if our ground for believing the material
conditional is simply the falsity of the antecedent. Hence, we won’t want to
signal that the conclusion of argument (M) is being held robustly. In other words
– according to our theory which equates ordinary-language conditionals with
material conditionals signalled as being robust – we won’t want to say some-
thing of the form

(V) not-A; so if A then C

Which accords exactly with the point of §15.3. 
In summary, the ‘robust material conditional’ theory is one theory about ordi-

nary ‘if … then …’ which neatly accommodates both the attractions of the §15.2
arguments for thinking that indicative conditionals are material conditionals,
and also the §15.3 considerations that press against a pure equivalence. 

15.5 ‘Dutchman’ conditionals
The previous section’s theory about indicative conditionals is neat: but is it
right? Is asserting a conditional always tantamount to giving a promissory note
to accept the consequent should the antecedent turn out to be true? What about
the following conditionals? – 

(1) If George W. Bush is a great philosopher, then pigs can fly.
(2) If George W. Bush is a great philosopher, then I’ll eat my hat.

Or, to take a paradigm example, consider

(3) If George W. Bush is a great philosopher, then I’m a Dutchman.

Here I assert the conditional inviting you to apply modus tollens, i.e. to infer
from my assertion if A then C, together with the obvious truth of not-C, that
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not-A. And my grounds for asserting the conditional are none other than my
belief in not-A. I commit myself to no more than the corresponding (¬A ∨ C).
Were I to discover that the antecedent A is in fact true – discover that Bush has a
secret other life as the pseudonymous author of some much admired philosophi-
cal works – then I’d have to take back my scornful conditionals.

In short, these ‘Dutchman’ conditionals are mere material conditionals which
are not robustly asserted. What does that show? 

You could take it as counting against the ‘robust material conditionals’ theory.
But equally, you could take the opposing line. After all, ‘Dutchman’ conditionals
do strike us pre-theoretically as exceptional cases, as being a jokey idiom. And
our theory explains why: they are conspicuously non-robust, and so offend
against one aspect of the usual rules governing the assertion of conditionals,
which is why they seem non-standard. So, you might hold that far from being
refuted by the behaviour of ‘Dutchman’ conditionals, our theory explains it.

But we can’t pursue this tangled issue any further here. We’ve already
followed the twists and turns of arguments about the nature and variety of con-
ditionals far enough. Two points, however, have clearly emerged.

First, it should now be clear why, when introducing truth-functional logic, we
didn’t attempt to deal with conditionals right from the start. Rendering ‘if …,
then …’ by a truth-function raises complex problems of a quite different order to
the issues raised by treating ‘and’, ‘or and ‘not’ as truth-functions. To clutter the
initial discussion of PL inferences with these problems would have been very dis-
tracting; while to have introduced the material conditional straight off without
much comment would have seemed at best mystifying, at worst a cheat. 

Secondly, on the ‘robust material conditional’ theory, the rendition of indica-
tive conditionals by ‘⊃’ captures that aspect of the content of ordinary indicative
conditionals which has to do with matters of truth and falsehood, and hence the
aspect which logic (the study of truth-preserving inferences) needs to focus on.
And we can now see that, on any theory, there is some considerable plausibility
in at least treating indicative conditionals as having a truth-functional core, even
if there are other aspects of the use of vernacular conditionals that are missed if
we try to insist on a bald equation between ‘if’ and ‘⊃’.

The moral, then, is this:

If you want to be able to regiment arguments involving the vernacular
indicative conditional into a form that you can test using the truth-table
test, then there is nothing for it but to use the material conditional ‘⊃’. If
you want to be able to apply the truth-table test, then the price is that you
have to re-express the premisses and conclusion using ‘⊃’. The rendition
preserves the validity/invalidity of arguments in at least some central
cases. But arguably the translation is not always an accurate one (even
once we’ve set aside the possible world conditionals for alternative treat-
ment). Something – in some cases, you may think, too much – may be lost
in translation.
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Whatever you think about all the considerations in this chapter, the material
conditional has to come with the warning use with care.

15.6 Summary
• Subjunctive’ or ‘counterfactual’ conditionals are possible-world condition-

als, and are not truth-functional. 

• Even restricting ourselves to indicative conditionals, there are various valid
inferences involving the truth-functional conditional whose ordinary-
language counterparts look dubious or positively invalid. 

• The ‘robust material conditional’ theory gives one possible explanation of
some of these divergences. (Note, however, the theory is a contentious
one!)

• The material conditional must come with a Logical Health Warning.

Exercises 15

A (a) The pattern of inference C; so (A ⊃ C) is trivially valid. What about
the inference C; so if A then C? (Consider: given C is true, then it is
true whether A is or not, so in particular it is true if A is. But also
compare the inference Bush will win the election; so if there is a huge
financial scandal involving the Bush family then Bush will win the
election.)

(b) The pattern of inference (B ⊃ C); so ((A ∧ B) ⊃ C) is trivially valid.
What about the inference if B then C; so if A and B then C? (Con-
sider, ‘If you strike this match, it will light; so if you wet this match
and strike it, it will light.’)

B Consider the variant language PLF whose only one- or two-place connec-
tive is ‘⊃’, but which has – as well as the usual atoms, ‘P’, ‘Q’, etc. – the addi-
tional atomic wff ‘⊥’ which is governed by the semantic rule that it always
takes the value F (so there is no option about how to evaluate this atom).

(a) Show that negation, disjunction, and conjunction can be expressed in
PLF. (Hint: start by considering material conditionals relating two
propositions, one of which is ‘⊥’.)

(b) What does it mean to say that PLF is expressively adequate? Is it true?

(c) You are familiar with the idea of a one-place truth-functional connec-
tive (like negation) and a two-place connective (like conjunction): so
what does it mean to talk of an n-place truth-functional connective?
What, then, would be a 0-place truth-functional connective? Can we
think of ‘⊥’ as a 0-place connective?

(The symbol ‘⊥’ is often called the falsum; hence the label ‘PLF’.)



In previous chapters we defined what it is for PL (and PLC) inferences to be
tautologically valid. We then introduced one way of testing for tautological
validity, namely the brute force truth-table test, where we search through every
assignment of values to the relevant atoms to see if there is one which makes the
premisses true and the conclusion false. In this chapter, we introduce another
way of testing for tautological validity, using ‘truth trees’. We begin with an
informal exploration via examples: and for the moment we will concentrate on
PL inferences (we’ll extend the story to cover conditionals in Chapter 18).

16.1 ‘Working backwards’
Consider the following argument (here and henceforth you can give the atoms
whatever content you like to make things meaningful): 

A (P ∧ ¬Q), (P′ ∧ Q′), (¬P″ ∧ ¬Q″) ∴  R

This is plainly not tautologically valid. But suppose we want to confirm this
using a truth-table. There are seven different atoms involved in the argument, so
using the direct truth-table test would mean writing down a 128-line table, and
checking each valuation until we find a line where we have true premisses and a
false conclusion. Fortunately, slogging through like this is utterly unnecessary.
For consider the following chain of reasoning. 

The inference in A is tautologically invalid if and only if there is a valuation
which makes the premisses true and conclusion false, i.e. a valuation where

(1) (P ∧ ¬Q) ⇒ T
(2) (P′ ∧ Q′) ⇒ T
(3) (¬P″ ∧ ¬Q″) ⇒ T
(4) R ⇒ F

(for the convention of dropping quotes round the wff preceding ‘⇒’, see §10.2:
but do remember that (1) etc. are still metalinguistic). (1) will hold just so long
as we have both

(5) P ⇒ T
(6) ¬Q ⇒ T

16
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since a conjunction is only true if its conjuncts are true. Similarly, to guarantee
(2) and (3) we need

(7) P′ ⇒ T
(8) Q′ ⇒ T
(9) ¬P″ ⇒ T
(10) ¬Q″ ⇒ T

To get these assignments (4) to (10), we just need the following valuation of the
seven atoms:

P ⇒ T, P′ ⇒ T, P″ ⇒ F, Q ⇒ F, Q′ ⇒ T, Q″ ⇒ F, R ⇒ F

So we have very speedily located a valuation of the atoms in A, custom designed
to make the premisses true and conclusion false. Hence the inference is indeed
tautologically invalid.

What we’ve done here is to ‘work backwards’. Instead of starting with the
whole set of possible valuations for the atoms, and then working forward
through each possibility, calculating the truth-values of the premisses and con-
clusion as we go, looking for a ‘bad’ valuation all the while, we try starting from
the other end. We suppose for the sake of argument that there is a ‘bad’ valua-
tion where the premisses are true and the conclusion false. Then we try to work
backwards towards a valuation of the atoms that has that unfortunate conse-
quence. If we can do the trick, then obviously the inference is not valid. 

A few more simple examples should help make the general strategy clear. So
consider the following inference: 

B  (P ∧ Q), ¬(¬R ∨ S) ∴ ¬(R ∧ Q)

This will be invalid if and only if there is a valuation where

(1) (P ∧ Q) ⇒ T
(2) ¬(¬R ∨ S) ⇒ T
(3) ¬(R ∧ Q) ⇒ F

To ensure that (1) holds, we evidently need

(4) P ⇒ T
(5) Q ⇒ T

To get (2), we need

(6) (¬R ∨ S) ⇒ F

and since a disjunction is false only when both disjuncts are false, that means

(7) ¬R ⇒ F
(8) S ⇒ F

And, from (7), that means we need

(9) R ⇒ T

Finally, from (3) we have 

(10) (R ∧ Q) ⇒ T
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which requires, consistently with what we had before, that 

(11) R ⇒ T
(12) Q ⇒ T

In sum, then, we have backtracked to the valuation

P ⇒ T, Q ⇒ T, R ⇒ T, S ⇒ F

which is expressly constructed to yield the truth-value assignments (1), (2) and
(3), and thus make the premisses of B true and the conclusion false. Hence this
second sample argument is again invalid. 

Now consider this even simpler inference:

C  (P ∧ ¬Q) ∴ ¬(Q ∧ R)

As before, this is invalid if and only if there is a valuation which makes the
premiss true and the conclusion false, i.e. a valuation where

(1) (P ∧ ¬Q) ⇒ T
(2) ¬(Q ∧ R) ⇒ F

From the specification (1) we can infer

(3) P ⇒ T
(4) ¬Q ⇒ T

Next, (2) implies

(5) (Q ∧ R) ⇒ T

which in turn implies

(6) Q ⇒ T
(7) R ⇒ T

But plainly, we can’t make ‘¬Q’ true (as (4) requires), and simultaneously make
‘Q’ true (as (6) requires). Hence the supposition that C is invalid puts contradic-
tory demands on the valuation of the relevant atoms. And if that supposition leads
to contradiction, C must be valid after all (that’s a reductio argument: see §5.4).

Even in this last mini-example, the ‘working backwards’ technique saves time
as against writing out an eight-line truth-table. Here’s another example where
the saving is even greater:

D ¬(¬P ∨ Q), ¬(¬R ∨ S) ∴ (R ∨ ¬P)

A brute force truth-table evaluation would require examination of the sixteen
possible valuations of the relevant atoms, and barring short cuts, forty-eight
evaluations of wffs. Compare, however, the following simple chain of reasoning.
Suppose there is a valuation such that

(1) ¬(¬P ∨ Q) ⇒ T
(2) ¬(¬R ∨ S) ⇒ T
(3) (R ∨ ¬P) ⇒ F

Now, to get (1) and (2), we need
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(4) (¬P ∨ Q) ⇒ F
(5) (¬R ∨ S) ⇒ F

Again, for a disjunction to be false, both its disjuncts must be false. So it follows
that for (3) to hold we’d need

(6) R ⇒ F

while for (5) to hold we’d need

(7) ¬R ⇒ F

Contradiction! In sum, a valuation will only make the original premisses of D all
true if it makes ‘R’ true (as (7) requires), and it will only make the conclusion
false if it makes ‘R’ false (as (6) says). That’s impossible. So D must be tautologi-
cally valid.

16.2 Branching cases
To summarize so far. Testing an argument for tautological validity is a matter of
deciding whether there are any ‘bad’ valuations of the relevant atoms, i.e. valua-
tions which make all the premisses true and yet the conclusion false. One
approach (embodied in the truth-table test) is to plod through every possible
valuation, to see if a ‘bad’ one turns up. It is usually quicker, however, to
approach the same decision task from the other end. We assume there is a bad
valuation that makes the premisses and the conclusion false, and then work out
what this ‘bad’ valuation must look like. If we can do the trick, that shows the
entailment doesn’t hold. On the other hand, if working backwards from the
assumption of invalidity leads to contradictory results, then (by a reductio ad
absurdum argument) that shows that there is no bad valuation after all and the
argument is valid.

Unfortunately, however, when following through this new strategy in practice,
things are typically rather more complicated than our examples so far reveal.
Consider next this plainly bogus mini-argument:

E  (P ∨ Q) ∴ P

Working backwards by assuming that the premiss is true and the conclusion is
false, we have

(1) (P ∨ Q) ⇒ T
(2) P ⇒ F

This time we cannot deduce from (1) the values of ‘P’ and ‘Q’. All that (1) tells us
is that (at least) one of these is true, but not which. So here we must consider the
possible alternatives in turn. We can perspicuously represent the two cases we
need to examine by drawing a forking pathway for our inferences, thus:

(1) (P ∨ Q) ⇒ T
(2) P ⇒ F

(3) P ⇒ T Q ⇒ T
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We know that, given (1), at least one of the forking alternatives at line (3) must
hold; so we now examine the options in turn. The assignment P ⇒ T on the left-
hand fork gives one way of guaranteeing (1). But this alternative has in fact
already been ruled out, since we earlier have P ⇒ F at step (2). Taking the left-
hand fork leads to contradiction. Let’s ‘close off’ a path like this where a wff is
assigned inconsistent values by writing a marker like ‘✼’ at its foot, to signal that
we’ve hit an absurdity. So we get

(1) (P ∨ Q) ⇒ T
(2) P ⇒ F

(3)  P ⇒ T Q ⇒ T
✼

However, while taking the left-hand fork leads straight to absurdity, there is no
contradiction on the right-hand fork. Taking that fork gives us the valuation
P ⇒ F, Q ⇒ T which makes the premiss of the argument true and conclusion
false. Hence argument E is shown to be invalid.

We will work through some more examples to show how we typically need to
trace down forking alternatives when searching backwards for a ‘bad’ valuation.
So consider next the valid ‘disjunctive syllogism’ inference

F  (P ∨ Q), ¬P ∴ Q

Starting by assigning truth to the premisses and falsehood to the conclusion, we
have:

(1) (P ∨ Q) ⇒ T
(2) ¬P ⇒ T
(3) Q ⇒ F

(4) P ⇒ T Q ⇒ T

At (4) we have begun considering the alternative ways of verifying (1). We don’t
know what values ‘P’ and ‘Q’ have. But we know that one of them is true. This
time we see that the left-hand option is inconsistent with (2), which of course
implies that ‘P’ is false; and the right-hand option is inconsistent with (3). So
both branches lead to absurdity:

(1) (P ∨ Q) ⇒ T
(2) ¬P ⇒ T
(3) Q ⇒ F

(4) P ⇒ T Q ⇒ T
✼ ✼

Hence there is no consistent way of making the premisses and negation of the
conclusion all true; so the argument is indeed valid.

For another example, consider
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G ¬(P ∧ Q), (P ∧ R) ∴ ¬(R ∨ Q)

We start the same way, supposing that the premisses true and conclusion false: 

(1) ¬(P ∧ Q) ⇒ T
(2) (P ∧ R) ⇒ T
(3) ¬(R ∨ Q) ⇒ F

To make these true, we definitely need

(4)  (P ∧ Q) ⇒ F (from 1)
(5) P ⇒ T (from 2)
(6) R ⇒ T (from 2)
(7) (R ∨ Q) ⇒ T (from 3)

But now we can make no more firm deductions. (4) tells us that the conjunction
of ‘P’ and ‘Q’ is false, so one of the conjuncts must be false. But we aren’t told
which, so we need to consider the alternative possibilities, thus

(8) P ⇒ F Q ⇒ F
✼

Here the left hand fork leads immediately to contradiction, as we already have
P ⇒ T at (4). So we must close off that path with the absurdity marker to indi-
cate that no coherent valuation will emerge on this route, and turn our attention
to the right-hand path. On this path, there is no explicit contradiction yet; how-
ever, we still have to deal with the implications of (7). This says that at least one,
though we don’t yet know which, of ‘R’ and ‘Q’ must be true. We again need to
consider forking alternatives, so we’ll get the tree:

(1) ¬(P ∧ Q) ⇒ T
(2) (P ∧ R) ⇒ T
(3) ¬(R ∨ Q) ⇒ F
(4)  (P ∧ Q) ⇒ F
(5) P ⇒ T
(6) R ⇒ T
(7) (R ∨ Q) ⇒ T

(8) P ⇒ F Q ⇒ F (from 4)

(9) R ⇒ T Q ⇒ T (from 7)

The new right-hand fork leads immediately to contradiction, since taking that
route would require ‘Q’ to be both false and true; hence that branch too can be
closed off with an absurdity marker. But the remaining path down, where 

P ⇒ T,  Q ⇒ F,  R ⇒ T

leaves us with a consistent valuation custom designed to make (1), (2) and (3) all
hold (check that it does!), thus showing G to be invalid.

✼

✼
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16.3 Signed and unsigned trees
Let’s summarize again. We can test an argument for tautological validity by
assuming that the inference is invalid and then ‘working backwards’, trying to
find a consistent valuation which warrants that assumption. At various points,
we may have to consider alternative valuations. For example, if we have arrived
at (A ∨ B) ⇒ T, then we have to consider the alternatives A ⇒ T and B ⇒ T. If,
twist and turn as we might, all such alternatives lead in the end to contradictory
assignments of values to atoms, then we know that the original assumption that
the inference is invalid is incorrect. In other words, if all branches of the ‘tree’ on
which we set out the working can be closed off with absurdity markers, then the
argument is valid. Conversely, if at least one alternative route through the tree
involves no contradiction (even when all the complex wffs are fully unpacked),
then the assumption that the argument is invalid is vindicated.

Now, so far, our ‘working backwards’ arguments we’ve been illustrating have
been set out in the form of signed trees (we’ll speak of ‘trees’ here even if there is
– as in §1 – only a trunk without any branching). The trees are ‘signed’ in the
sense that the wffs that appear on them are all explicitly assigned a truth-value,
either T or F. In the interests of neatness and economy, we are now going to
move to using unsigned trees.

As a major step towards doing this, note that by a couple of simple tricks, we
can easily ensure that every wff which appears on a ‘working backwards’ tree in
fact gets the uniform value T. Here’s how:

• Trick one Instead of starting a tree by assuming that the premisses of the
argument to be tested are true and the conclusion false, assume that the
premisses and the negation of the conclusion are all true. 

• Trick two Thereafter, avoid ever writing something of the form ‘C ⇒ F’
by always jumping instead to something of the form ‘¬C ⇒ T’. 

So, for example, when we meet on a tree a claim of the kind

(a) ¬(A ∨ B) ⇒ T

don’t proceed via the obvious consequence

(b) (A ∨ B) ⇒ F

to

(c) A ⇒ F
(d) B ⇒ F

but instead (trick two) jump straight from (a) to 

(c*) ¬A ⇒ T
(d*) ¬B ⇒ T

And so on. The resulting ‘T’-only trees are only very slightly less natural than the
‘T-and-F’ trees we’ve been constructing so far.

Let’s quickly illustrate by re-doing a couple of examples in this style, with ‘T’-
only trees: the changes required are marginal. So return first to
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D ¬(¬P ∨ Q), ¬(¬R ∨ S) ∴ (R ∨ ¬P)

Starting this time by assigning truth to the premisses and the negation of the
conclusion, and we have:

(1) ¬(¬P ∨ Q) ⇒ T
(2) ¬(¬R ∨ S) ⇒ T
(3) ¬(R ∨ ¬P) ⇒ T

Now, let’s twice apply the rule just given for negated disjunctions (‘jump from
¬(A ∨ B) ⇒ T to add both ¬A ⇒ T and ¬B ⇒ T’), and we immediately get

(4) ¬¬R ⇒ T (from 2)
(5) ¬S ⇒ T (from 2)
(6)  ¬R ⇒ T (from 3)
(7) ¬¬P ⇒ T (from 3)

✼

We can close off the tree with an absurdity marker because of (6) and (4): no wff
and its negation can be true together on a valuation. Since the tree starting from
the supposition that the premisses and negation of the conclusion are true leads
to contradiction, the argument must be valid. (And why are there two negation
signs at line (4)? Because our rule said that if a negated disjunction is true, then
each negated disjunct is true; and if a disjunct already starts with a negation
sign, as in ‘¬R’ in (2), then it acquires another when negated.) 

For a second ‘T’-only tree, return to

G ¬(P ∧ Q), (P ∧ R) ∴ ¬(R ∨ Q)

Starting with the assumption that the premisses and negated conclusion are true
we get:

(1) ¬(P ∧ Q) ⇒ T
(2) (P ∧ R) ⇒ T
(3) ¬¬(R ∨ Q) ⇒ T
(4) P ⇒ T (from 2)
(5) R ⇒ T (from 2)
(6) (R ∨ Q) ⇒ T (from 3)

(7) ¬P ⇒ T ¬Q ⇒ T (from 1)

(8) R ⇒ T Q ⇒ T (from 6)

The rule applied at (7) relies on the fact that, if a negated conjunction is true,
then one or other of the conjuncts must be false (so we have the rule ‘given
¬(A ∧ B) ⇒ T, consider alternatives ¬A ⇒ T and ¬B ⇒ T’). Not all branches of
this resulting tree lead to absurdity. So there is a coherent way of making the
premisses and negated conclusion all true together, and so argument G must be
tautologically invalid.

✼

✼
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It is worth quickly checking that our other sample trees can be rewritten with
minimal changes as ‘T’-only trees. But why care that we can do this? 

Because if we make assignments of truth standard on trees, and avoid ever
assigning falsehood, then it isn’t really necessary to keep on writing down ‘⇒ T’
against each and every wff in our back-tracking reasoning. We might as well just
let it be understood as ever-present. So from now on, let’s save time and ink by
using ‘T’-only trees and then keep the uniform assignments of truth tacit.
Suppressing the explicit assignments leads to unsigned trees. We’ll give some
more examples in the next section. 

16.4 More examples
Consider next the inference

H  (P ∨ Q), ¬(P ∧ ¬R) ∴ (Q ∨ R)

To test for validity, we start from the assumption that the premisses and the
negation of the conclusion are all true: so we start off our unsigned tree

(1) (P ∨ Q)
(2) ¬(P ∧ ¬R)
(3) ¬(Q ∨ R)

with each line ending with a now invisible ‘⇒ T’. Since, as we said before, a
negated disjunction is true just so long as both negated disjuncts are true, the
assumption that (3) is true leads to the requirement that each of ‘¬Q’ and ‘¬R’ is
true. So we add

(4) ¬Q
(5) ¬R

each with their invisible ‘⇒ T’. Now apply the principle that a disjunction is true
so long as one or other disjunct is true, to get

(6) P Q (from 1)
✼

The alternative on the right-hand branch immediately leads to contradiction, for
we have the occurrence of both ‘Q’ [⇒ T] and ‘¬Q’ [⇒ T] on that fork. So we
close off that fork with the absurdity marker: no consistent valuation can be
built on this branch. We’ve now extracted the juice from (1) and (3), so that
leaves (2) to deal with. The relevant principle to invoke here is again that the
negation of a conjunction is true when at least one of the negated conjuncts is
true. So if ‘¬(P ∧ ¬R)’ is true, one of ‘¬P’ or ‘¬¬R’ must be true. Applying that
to our tree, we get branching possibilities, so the full tree will look like this:

(1) (P ∨ Q)
(2) ¬(P ∧ ¬R)
(3) ¬(Q ∨ R)
(4) ¬Q (from 3)
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(5) ¬R (from 3)

(7) P Q (from 1)

(8) ¬P ¬¬R (from 2)
✼ ✼

This time, both new forks lead to contradiction (we can’t have both P ⇒ T and
¬P ⇒ T, as the left-most fork requires; nor can we have ¬R ⇒ T and ¬¬R ⇒ T
as the other fork requires). So all forking paths are closed off by contradictions.
That means that there is no route which discloses a consistent valuation of
atoms which makes (1), (2) and (3) all take the value T. Every alternative way of
trying to make good the supposition that the inference in question is invalid runs
into contradiction. So the inference is tautologically valid after all.

In constructing this last proof of validity, note that we chose first to draw con-
sequences from (3) before making use of (1) and (2). There was no necessity
about this; and we could have chosen to proceed in a different order, e.g. as
follows:

(1) (P ∨ Q)
(2) ¬(P ∧ ¬R)
(3) ¬(Q ∨ R)

(7) P Q (from 1)

(8) ¬P ¬¬R ¬P ¬¬R (from 2)
(9) ✼ ¬Q ¬Q ¬Q (from 3)
(10) ¬R ¬R ¬R (from 3)

✼ ✼ ✼

Here we have proceeded more systematically, unpacking the complex wffs at the
top of the tree in turn. Starting with (1), we asked what is required for that to be
true, which immediately forces us to consider branching alternatives. Then fol-
lowing up each of these alternatives, we considered the implications of (2) for
each of these alternative ways of proceeding; so we had to add the forking alter-
natives ‘¬P’ [⇒ T] and ‘¬¬R’ [⇒ T] to both existing branches. So we now have
four options to consider. We can close off one path because it contains contra-
dictory wffs which can’t both be true. Then we proceeded to extract the implica-
tions of (3) for the three options that remain open. For (3) to be true, both ‘Q’
and ‘R’ must be false: so we add ‘¬Q’ [⇒ T] and ‘¬R’ [⇒ T] to every branch that
still remains open. We now end up with every route leading to absurdity, and so
closed off with the absurdity marker. Hence, as we would hope, we arrive at the
same result as before: H must be valid. (Later, in §19.3, we’ll formally prove that
it can never make any difference in which precise order we unpack wffs when
‘working backwards’.)

Another example: what of the following inference?

✼
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I  (P ∨ (Q ∧ R)),  (¬P ∨ R), ¬(Q ∨ ¬¬S) ∴ (S ∧ R)

We start off in the now familiar way, with the premisses and negated conclusion:

(1) (P ∨ (Q ∧ R))
(2)  (¬P ∨ R)
(3) ¬(Q ∨ ¬¬S)
(4) ¬(S ∧ R)

A negated disjunction is true only if both disjuncts are false, i.e. the negated dis-
juncts are true. So (3) implies a couple of definite truth assignments

(5) ¬Q (from 3)
(6) ¬¬¬S (from 3)

Where now? Well, we know that a pair of negation signs in effect cancel each
other out. So we can infer 

(7) ¬S (from 6)

Let’s now unpack the other complex wffs in turn. First we have

(8) P (Q ∧ R) (from 1)

The right-hand branch doesn’t close off immediately, but if we have (Q ∧ R) ⇒ T
on that way of making (1) true, then we must also have Q ⇒ T and R ⇒ T. So we
can add to the right hand branch thus

(9r) Q (from 8)
(10r) R (from 8)

And we’ve hit a contradiction between (5) and (9r) and can close off that
branch. Proceeding down the left-hand branch, we’ve so far ensured that (1) and
(3) are true. To make (2) true we need either ¬P ⇒ T or R ⇒ T. So we have

(9l) ¬P R (from 2)

and the left-hand of the two branches we’ve added immediately closes off, since
we can’t have ‘P’ and ‘¬P’ both true. That leaves us with only (4) to unpack. So
we apply the rule for negated conjunctions again and the resulting tree from line
(7) again looks like this:

(7) ¬S (from 6)

(8) P (Q ∧ R) (from 1)

(9) ¬P R Q (from 2: from 8)

(11) ¬S ¬R ✼ (from 4)
✼

So, all but one of the branches close. Looking at that remaining branch,

✼ R(10) (from 8)
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however, and putting back the suppressed assignments of truth, we can read off
the following valuation

P ⇒ T, ¬Q ⇒ T (so Q ⇒ F), R ⇒ T, ¬S ⇒ T (so S ⇒ F).

This is designed to make the premisses of I true and the conclusion false (check
that it does!). So the argument is tautologically invalid.

This tree technique is elegant and (usually) efficient. Our next task is to gather
together the various principles we have found for tree-building, check whether
we need any others, and put them together in one systematic list. Though first,
let’s briefly pause for breath.

16.5 Summary
• Testing an argument for tautological validity is a matter of searching for

‘bad’ valuations. We can do this by a brute-force inspection of all possible
valuations. Or we can ‘work backwards’, i.e. assume there is a bad valua-
tion and try to determine what it would look like. If the supposition that
there is such a bad valuation leads to contradiction, then the argument in
question is valid.

• The ‘working backwards’ method, in the general case, will necessitate
inspecting branching alternative possibilities, e.g. looking at alternative
ways of making a disjunction true. The resulting working is naturally laid
out in the form of a downward branching tree.

• By some simple tricks, we can ensure that every wff on such a tree is
assigned the value T. But then, if every wff is assigned the same value, we
needn’t bother to explicitly write down the value – giving us ‘unsigned’
trees.

• The official rules for tree-building follow in the next chapter.

Exercises 16
Although we haven’t yet laid down formal rules, it is worth doing a bit of infor-
mal exploration to get more feeling for the tree method before we dive into the
official story. So, see how you get on testing the following inferences for validity,
using the techniques of this chapter. At this stage it might help to keep writing
down explicit ‘T’-only trees, appending ‘⇒ T’ alongside every wff to remind
yourself what you are doing and why you are doing it.

1. (R ∨ P), (R ∨ Q) ∴ (P ∨ Q)
2. ¬(P ∧ ¬Q), P ∴ Q
3. (¬P ∨ Q), (R ∨ P) ∴ (R ∧ Q)
4. ((P ∧ ¬Q) ∨ R), (Q ∨ S) ∴ (R ∧ S)
5. P, ¬(P ∧ ¬Q), ¬(Q ∧ ¬R), (¬R ∨ S) ∴ S
6. ((P ∧ Q) ∨ (R ∧ P)) ∴ ((Q ∨ R) ∨ P)



This chapter gives a more formal description of the tree test for tautological
validity. The first section, then, is necessarily going to be rather abstract. But it
will really do no more than carefully formulate the principles we’ve already used
in the last chapter. (Those who get a bit fazed by this sort of abstraction can try
skimming through the statement of the rules and the following illustrative sec-
tions a few times in quick succession, using each to throw light on the other.)

17.1 The official rules
As we have seen, our ‘working backwards’ method of testing for tautological
validity typically requires us to explore alternatives. These explorations are most
neatly set out in the form of trees (upside-down ones, with the ‘trunk’ at the top
and the branches forking downwards). In fact, our trees are binary trees, mean-
ing that a branch never forks more than two ways.

We’ll take the idea of a downward branching binary tree to be intuitively clear:
we could get mathematically precise here, but little would be gained. The thing
to emphasize is that trees fan out without branches being rejoined at a lower
level: as in the case of a respectable family tree, incestuous reunions are banned.

Some definitions will prove useful, though:

• Positions on a tree are conventionally called nodes.

• Start from the topmost node of the tree, and and track down some route
through the inverted tree to the bottom tip of a branch. The nodes en route
form a path through the tree.

• In our truth-trees, the nodes are occupied by wffs. If a wff W occurs at a
node on a path, we’ll say more briefly that W is on the path or that the path
contains W.

• If a path contains a pair of wffs of the form W, ¬W, then the path is closed;
otherwise it is open.

• If a tree has an open path it is open; otherwise the tree is closed.

And before we proceed, here’s a reminder of another definition:

17

Rules for PL trees
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• A primitive wff is a wff which is either an atom or the negation of an atom
(§11.8). So a non-primitive wff is any wff that isn’t primitive (i.e. any com-
plex wff that features more than a solitary negation sign).

Suppose, then, that we want to determine whether the premisses A1, A2, …,
An tautologically entail the conclusion C. We begin the truth-tree in the now
familiar way by placing the Ai and ¬C at nodes down the initial trunk of a tree
(all accompanied by an invisible ‘⇒ T’). Then we try systematically to generate a
‘bad’ valuation that will indeed make these initial wffs all true. 

The strategy at each stage is to infer, from the assumed truth of a non-
primitive wff W already on some path, shorter wffs which must also be true if
that W is to be true (maybe we have to consider alternatives, so the path has to
fork as we add them). When a path contains both a wff and its negation (both,
of course, implicitly assigned the value T), then we know that this must be a con-
tradictory dead-end and cannot lead to a consistent valuation of primitives. Such
a path is closed, and we will mark off closed paths with the absurdity marker
‘✼’. We continue extending open paths by unpacking the implications of non-
primitive wffs on the path, with forks in the tree marking points where we have
alternatives to investigate. And we keep on going until either (i) all the paths we
explore contain contradictory pairs of wffs and the tree is closed, or else (ii) we
have no more wffs to unpack and we are still left with an open tree with at least
one open path. (We’ll put that more carefully in a moment.)

What rules govern extending the tree at each stage? There are five, depending
on the character of the non-primitive wff W we aim to unpack. The rules have
already been illustrated informally in the previous chapter, and are summed up
in the box displayed opposite. Three quick comments: 

• The five rules exhaust all the cases of non-primitive wffs, as can be seen by
quickly running through the possibilities. Any wff is either an atom, or a
conjunction (in which case apply rule (b)) or a disjunction (in which case
apply rule (d)), or else the negation of something. In the last case, the wff
must either be the negation of an atom, or of a conjunction (in which case
apply rule (e)) or of a disjunction (in which case apply rule (c)), or finally
it’s the negation of a negation (in which case apply rule (a)). So we have a
rule to apply to every eventuality, until we get down to the level of primi-
tives (atoms and negations of atoms). 

• Why, in applying a rule to some wff W, must we add the appropriate (possi-
bly alternative) wffs to the foot of every open path containing W? Because
these different open paths containing W are supposed to indicate alterna-
tive possible valuations where W is true – and we need to consider the
further implications of W’s truth for each of these alternative valuations. 

• Note, these rules for unpacking wffs tell us what to do with a selected non-
primitive W. But they don’t tell us how to make the selection. Typically, the
rules can be applied in various orders to the same initial trunk of wffs. The
chosen order won’t affect the ultimate verdict of the tree test.
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Rules for unpacking wffs on PL trees

Suppose that W is a non-primitive wff on an open branch, which is sup-
posed true on some valuation. One of the following cases must obtain: 

(a) W is of the form ¬¬A. If W is true on a valuation, that means that A
itself must be true: to unpack W, add A [⇒ T] to each open path
through the tree containing W. Schematically, 

¬¬A
|
A

(b) W is of the form (A ∧ B). If a conjunction W is true on a valuation,
both its conjuncts must be true: to unpack W, add both A [⇒ T] and B
[⇒ T] to each open path containing W. Schematically, 

(A∧B)
|
A
B

(c) W is of the form ¬(A ∨ B). If the negation of a disjunction is true on a
valuation, the disjunction must be false, and hence both its disjuncts
false, and thus the negations of both disjuncts true. So to unpack W, add
¬A [⇒ T] and ¬B [⇒ T] to each open path containing W. Schematically, 

¬(A ∨ B)
|
¬A
¬B

(d) W is of the form (A ∨ B). If W is true on a valuation, at least one of its
disjuncts must be true. We have to explore alternatives. So to unpack
W, add a new fork to each open path containing W, with branches
leading to the alternatives A [⇒ T] and B [⇒ T]. Schematically,

(A ∨ B)

A B

(e) W is of the form ¬(A ∧ B). If W is true on a valuation, (A ∧ B) is false, 
and so at least one of the conjuncts must be false, i.e. at least one of their
negations must be true. We have to explore alternatives. So to unpack
W, add a new fork to each open path containing W, with branches
leading to the alternatives ¬A [⇒ T] and ¬B [⇒ T]. Schematically

¬(A ∧ B)

     ¬A  ¬B
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Now, suppose that we have already applied the appropriate rule to some com-
plex formula W. Then it would be pointlessly redundant to apply the rule to the
same W again. And it would be worse than redundant to get ‘stuck in a loop’,
repeatedly re-applying this same rule to W, time without end. Henceforth, then,
we adopt the following structural rule for tree-construction: 

When the appropriate rule has been fully applied to a non-primitive wff,
we ‘check off’ the wff (with a ‘√’); and a wff, once checked off, can be
thought of as ‘used up’, i.e. as no longer available to have one of the
‘unpacking’ rules applied to it.

This ensures that a properly constructed tree can’t go on for ever. Unpacking a
wff generates shorter wffs: and since we are not allowed to revisit ‘used’ wffs,
after a finite number of stages, we’ll run out of new wffs to check off, and there
will be no more rules to apply.

So, with that ‘check off’ rule in play, here more carefully are step-by-step
instructions for building a complete tree.

(1) Start off the trunk of the tree with the premisses A1, A2, …, An and the
negation of conclusion C of the inference to be tested.

(2) Inspect any path which isn’t yet closed off by an absurdity marker to see
whether it involves a contradiction, i.e. for some wff W it contains both
W and also the corresponding formula ¬W. If it does, then we close that
path with the marker, and ignore it henceforth. 

(3) If there is no unchecked non-primitive formula W left on any open path,
then stop!

(4) Otherwise, we choose some unchecked non-primitive formula W that sits
on an open path. We then apply the appropriate rule from (a) to (e), and
add the results to the foot of every open path containing that W. We can
then check off W.

(5) Loop back to step (2).

As just remarked, this tree-building procedure must eventually terminate. There
are two possible outcomes. Either we end up with a closed tree, i.e. a tree such
that every path through the tree closes (there is an absurdity marker at the foot
of every branch). Or we end up with a completed open tree – i.e. one where some
paths don’t close, and on each open path, we have repeatedly applied the rules (a)
to (e) as much as we possibly can, so that every non-primitive formula on the path
is used up and checked off, but without always producing a contradiction. 

Finally, here is the Basic Result about truth trees:

If, starting a tree with the wffs A1, A2, …, An, ¬C at the top, we can con-
struct, using rules (a) to (e), a closed tree, then the argument from the
premisses A1, A2, …, An to the conclusion C is tautologically valid. Con-
versely, if applying the rules leads to some completed tree with an open
branch, then the argument in question is not tautologically valid. 
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We’ll prove the Basic Result in Chapter 19. But it should seem intuitively cor-
rect, since it only restates the principle underlying all our worked examples in
the previous chapter – namely, that if ‘working backwards’ from the assumption
that the premisses are true and the conclusion false lands us in self-contradic-
tion, then that assumption can’t be made good and the given argument must be
valid after all; while if that assumption does lead to a consistent assignment of
truth to various primitives, then the argument in question is invalid.

17.2 Tactics for trees
A couple of pieces of tactical advice before we start working through more illus-
trative examples. 

First, suppose that at a given point we have the option of applying either a
‘straight’ rule – i.e. one of (a) to (c) – or one of the ‘branching’ rules (d) and (e).
To take a very simple example, suppose we have arrived at the following point
on some branch of a tree:

    …
(P ∨ Q)
(R ∧ S)

How should we continue? Well, if we apply the ‘branching’ rule (d) first, and
then rule (b), we will get

    …
(P ∨ Q) √
(R ∧ S) √

P Q
R R
S S

However, if we apply the rules in the reverse order, we get

    …
(P ∨ Q) √
(R ∧ S) √

R
S

P Q

This makes absolutely no difference in principle: either way we get a (sub)tree
with two paths through it, with exactly the same wffs occurring on the left path
each time and exactly the same wffs occurring on the right path each time. The
only difference is that, in the case where we applied the branching rule (d) first,
we had to double the expenditure of ink when it came to applying rule (b), since
we already had two branches to which to add ‘R’ and ‘S’. It is quicker and neater
to proceed as in the second case. Moral: it generally pays to apply non-branching
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rules first when one has the option.
The second bit of tactical advice is even more obvious: aim to close off

branches as soon as possible. If you have the option of applying a rule which
will immediately lead to a path being closed off, then it is good policy to select
that option. Suppose, for example, that a tree begins

(P ∨ Q)
(P′ ∨ ¬S)
(R ∨ S)
¬R

Then we have three options for applying the branching rule (d). If we blindly
apply the rule to the first wff first, and then deal with the others in turn, we get

(P ∨ Q) √
(P′ ∨ ¬S) √

(R ∨ S) √
¬R

P Q

P′ ¬S P′ ¬S

R S R S R S R S
✼ ✼ ✼  ✼ ✼ ✼

Thus, after sprawling eight branches wide, most of the tree suddenly closes off,
leaving us with just two open branches. One branch says that

¬R ⇒ T (so R ⇒ F), P ⇒ T, P′ ⇒ T and S ⇒ T 

The other one yields 

¬R ⇒ T (so R ⇒ F), Q ⇒ T, P′ ⇒ T and S ⇒ T 

And either of those valuations will make the wffs on the trunk all true. 
But now suppose that we start again, and this time applying rule (d) to the

premisses in the opposite order. Then the completed tree looks like this:

(P ∨ Q) √
(P′ ∨ ¬S) √
(R ∨ S) √
¬R

R S

P′ ¬S

    P Q

✼

✼
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We still end up with two open paths on the tree, carrying just the same wffs as
before. But by a judicious choice of the order of application for the branching
rule, we have achieved a much more neatly pruned structure. Evidently, it is sen-
sible, wherever possible, to choose similarly to apply rules in an order which
closes off branches as early as possible. A bit of practice enables you to spot
good choices!

(‘But hold on a moment! The first valuation just listed doesn’t explicitly assign
any value to “Q”, and the second valuation doesn’t tell us about “P”!’ No mat-
ter: this simply means that, so long as the rest of the valuation holds, it doesn’t
matter which value the unmentioned atom has. The wffs on the trunk, in partic-
ular ‘(P ∨ Q)’, will still come out true.)

17.3 More examples
Let’s turn, then, to a couple more examples, and put the official rules of §17.1
and the tactical advice of §17.2 into effect. (For additional exercises, it is per-
haps worth taking the worked examples in the previous chapter, and doing them
again ‘by the book’.) Consider, then, the inference

A (P ∨ Q), (R ∨ ¬Q), ¬(¬S ∧ P) ∴ (R ∨ S)

Is this tautologically valid? Well, start the ‘trunk’ of the tree in the usual way (for
convenience, we’ll continue numbering steps – though note that the numbering
isn’t part of the ‘official’ tree itself):

(1)  (P ∨ Q)
(2)  (R ∨ ¬Q)
(3) ¬(¬S ∧ P)
(4)  ¬(R ∨ S)

We first apply the only relevant non-branching rule, i.e. (c) to line (4). That gives

(4)  ¬(R ∨ S) √
(5) ¬R
(6) ¬S

We now have to apply branching rules to lines (1), (2) and (3). Since we already
have ‘¬R’ on the tree, it will be good policy to deal next with line (2): obviously
that will create a branch that can immediately be closed off. So check off line (2)
and continue  

(7) R ¬Q
✼

We now apply rule (d) to (1), as again one of the newly created branches will
immediately close. So we can check off line (1) and add on the right the new fork 

(8) P Q
✼
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Which leaves us again with just one open path, and the one complex wff (3) still
to deal with. So finally applying rule (e) to that wff gives us the following com-
pleted tree: 

(1)  (P ∨ Q) √
(2)  (R ∨ ¬Q) √
(3) ¬(¬S ∧ P) √
(4) ¬(R ∨ S) √
(5) ¬R
(6) ¬S

(7) R ¬Q

(8) P Q

(9) ¬¬S ¬P
✼ ✼

Every downwards path closes off, showing that there is no consistent way of
backtracking to a valuation of atoms which makes the premisses of the given
argument true and the conclusion false. Hence A is valid.

Note carefully the application of rule (e) at the final step. The rule is: given a
negated conjunction ¬(A ∧ B) on an open path, add forks, with ¬A and ¬B on
the two branches. Applied to (3), on the left fork we need to add the negation of
‘¬S’, and that is ‘¬¬S’, not ‘S’. The application of (e), and likewise (c), always
results in the prefixing of a new negation sign. We can later use (a) to strip off
pairs of negation signs if we need to: but this is a further step. In more advanced
work, you will encounter logical systems with a non-classical understanding of
negation. In particular, you’ll meet so-called intuitionistic logic (see §9.3), which
lacks a rule like (a) and where ‘¬¬S’ is not equivalent to ‘S’. So it is bad to get
into the habit of just ignoring double negations.

Another example. What are we to make of this inference?

B (P ∧ (Q ∨ ¬R)), ¬((P ∧ Q) ∧ S)), (¬(P ∧ S) ∨ R) ∴ ¬S

The truth-tree for this inference starts

(1) (P ∧ (Q ∨ ¬R))  
(2) ¬((P ∧ Q) ∧ S))  
(3) (¬(P ∧ S) ∨ R)  
(4)  ¬¬S  

NB again the doubling up of the negation signs at line (4). Let’s apply the non-
branching rule (b) to (1), followed by the rule (e) to (2) to add

(5) P  
(6) (Q ∨ ¬R)  

(7) ¬(P ∧ Q) ¬S
 ✼

✼

✼
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What next? Unpacking the wffs at line (7) and then line (6) will lead each time to
branches which quickly close, and the tree will get to the following state:

(1) (P ∧ (Q ∨ ¬R)) √ 
(2) ¬((P ∧ Q) ∧ S)) √ 
(3) (¬(P ∧ S) ∨ R)  
(4) ¬¬S  
(5) P  
(6)  (Q ∨ ¬R) √ 

(7) ¬(P ∧ Q) √  ¬S

(8)  ¬P ¬Q

(9) Q ¬R
✼

Which leaves us just with the complex wff at line (3) to deal with. So we now
check that off and continue the only open branch …

(10)  ¬(P ∧ S) √ R

(11) ¬P ¬S
 ✼  ✼  

So the tree closes, and B is shown to be valid.
For a final example in this section, consider the following inference (involving

five atoms, and thus requiring a thirty-two line table if one uses the brute force
truth-table test for tautological validity):

C (P ∧ (Q ∨ R)), (P ∨ ¬(P′ ∨ R)), ((P′ ∧ S) ∨ ¬Q) ∴ ((Q ∨ R) ∧ S)

To test this, we start off in the standard manner

(1) (P ∧ (Q ∨ R))
(2) (P ∨¬(P′ ∨ R))
(3) ((P′ ∧ S) ∨ ¬Q)
(4)  ¬((Q ∨ R) ∧ S)

We will continue by applying the non-branching rule (b) to (1), and then apply-
ing rule (e) to (4): that gives us

(5) P
(6) (Q∨ R)

(7)   ¬(Q∨ R) ¬S
  ✼

The path forking to the left immediately closes off, as both the wff ‘(Q ∨ R)’ and
its negation appear on that path (NB, any pair of contradictory wffs closes off a

✼

✼

✼
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branch). We next deal with (3), and add to the open path accordingly: 

(8) (P′ ∧ S) ¬Q

Here at line (8), we have on the left a complex wff to which we can apply the
non-branching rule (b) again. So in accordance with our tactical policy of trying
to apply such rules first, let’s deal with this wff, check it off, and extend the tree
as follows:

(9) P′
(10) S

✼

Again the left branch closes off. How should we extend the remaining path?
There are two complex unchecked wffs on that path, at lines (2) and (6). Recall
the other tactic of choosing, where we can, to apply branching rules that imme-
diately give us closing paths. We should evidently deal first with (6) and add to
the one open path on the tree a fork with ‘Q’ on one branch (immediately yield-
ing a contradiction) and ‘R’ on the other. That leaves the complex wff at line (2)
to deal with. Applying rule (d) to (2) then puts the tree into the following state,
now without the unofficial numbers

 (P ∧ (Q ∨ R)) √
 (P ∨¬(P′ ∨ R)) √
 ((P′ ∧ S) ∨ ¬Q) √

¬((Q ∨ R) ∧ S) √
P

  (Q∨ R) √

¬(Q ∨ R) ¬S

 (P′ ∧ S) √ ¬Q
P′
S Q R 

P ¬(P′ ∨ R)

We are not quite done, since we have a new complex wff appearing on the right-
hand branch at the last line; so to finish the tree, we need to apply the relevant
rule (c), and check off that complex wff as follows:

¬(P′ ∨ R) √
¬P′
¬R
✼

Which at last does complete our tree: we now have ‘unpacked’ every complex
wff featuring on open paths, and we are still left at the end with an open

✼

✼ ✼
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pathway. From this branch, reading from the bottom up, we can read off the
valuation P ⇒ T, R ⇒ T, ¬Q ⇒ T (so Q ⇒ F) and ¬S ⇒ T (so S ⇒ F). The value
of ‘P′’ is left undetermined, which means that the other values should suffice to
fix the initial wffs on the trunk as true, no matter what value ‘P′’ has. And our
valuation indeed verifies (1) to (4), as is easily checked. So C is invalid.

17.4 Testing for tautologies
The tree test determines whether C has to be true, given the premisses Ai. As a
special case, we can use the test to determine whether C is a tautology, i.e. has to
be true, period. We just suppose ¬C is true, and then see if we can work back-
wards to extract a ‘bad’ valuation which will have this consequence. If we can,
then C isn’t a tautology; if we can’t, then it is. 

To take a fairly simple example, is

D ((P ∧ (Q ∨ R)) ∨ (¬P ∧ (¬Q ∧ ¬R)))

a tautology? Well, suppose it isn’t. Suppose that there is a valuation which
makes

(1) ¬((P ∧ (Q ∨ R)) ∨ (¬P ∧ (¬Q ∧ ¬R)))

true. Unpacking (1) and making the next few tree-building moves we get

(2)  ¬(P ∧ (Q ∨ R)) √
(3) ¬(¬P ∧ (¬Q ∧ ¬R)) 

(4) ¬P ¬(Q ∨ R) √
(5) ¬Q
(6) ¬R

We now need to apply rule (e) to (3), and place the result (remember!) at the foot
of each of the two open paths it heads. So we get 

(7) ¬¬P ¬(¬Q ∧ ¬R) √ ¬¬P ¬(¬Q ∧ ¬R) √

(8)  ¬¬Q ¬¬R ¬¬Q ¬¬R
✼ ✼

We have three marked paths that are evidently not going to close. But strictly
speaking we are not quite finished yet. There are still non-primitive wffs on each
of those paths, and we need to apply rule (a) in each case to strip off the double
negations. So continuing we get …

(9) Q R P

And now we are finished. We have a completed open tree, and so D is not a tau-
tology. (Exercise: read off the open branches the ‘bad’ valuations which make D
false.)

For a final worked example, consider the wff

✼
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E (¬(¬(P ∧ Q) ∧ ¬(P ∧ R)) ∨ ¬(P ∧ (Q ∨ R)))

Is this a tautology? Well, start the tree:

(1) ¬(¬(¬(P ∧ Q) ∧ ¬(P ∧ R)) ∨ ¬(P ∧ (Q ∨ R))) 

What now? How do we read this slightly monstrous wff? Working from the
inside, we can use different styles of brackets to make the groupings clearer, thus 

(1) ¬�¬{¬(P ∧ Q) ∧ ¬(P ∧ R)} ∨ ¬{P ∧ (Q ∨ R)}�

which reveals (1) to be of the form ¬�A ∨ B�, with A = ¬{¬(P ∧ Q) ∧ ¬(P ∧ R)},
and B = ¬{P ∧ (Q ∨ R)}. So we need to apply rule (c) to get

(2) ¬¬{¬(P ∧ Q) ∧ ¬(P ∧ R)}
(3) ¬¬{P ∧ (Q ∨ R)}

Next we obviously apply rule (a) to get rid of those paired negation signs

(4)  {¬(P ∧ Q) ∧ ¬(P ∧ R)}
(5) {P ∧ (Q ∨ R)}

Both of these wffs are conjunctions so we can apply rule (b) twice to get

(6) ¬(P∧Q)
(7) ¬(P∧ R)
(8) P
(9) (Q ∨ R)

The wffs at lines (1) to (5) have now all been checked off and ‘unpacked’, so we
need now only worry about the wffs (6) to (9). Dealing with (6) and (7) first, we
get

(10) ¬P ¬Q

(11) ¬P ¬R
✼

Which will leave just one unchecked non-primitive wff to deal with, at line (9).
So to finish the tree …

(12) Q R
✼ ✼

Thus all branches close off, and the wff E is a tautology (you are hereby invited
to check this by running a direct truth-table test…!).

17.5 Comparative efficiency
Operating the tree test for tautological validity often involves choices: in which
order do we apply the unpacking rules? But we could make it fully mechanical
by laying down strict rules for choosing which wff to unpack next. That would
give us two mechanical tests for validity, the original truth table test ‘search for-
wards’ through all valuations, looking for a bad one, and the tree test ‘search

✼
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backwards’, starting from the assumption that there is a ‘bad’ valuation. As
we’ve seen, running the tree test on an argument is often much faster than run-
ning the truth table test. Sometimes the gain is staggering. Return to the example
we gave in §13.2: take the inference from the 50 premisses ‘¬P, ¬P′, ¬P′′, ¬P′′′,
…,¬P′′...′’ to the conclusion ‘Q’. Even if we could write down a line a second,
just setting out the 251 line truth-table (before looking for a bad line) would take
half a million years. Writing down a truth tree at the same rate would take less
than a minute (just write down the premisses, the negation of the conclusion and
– hey presto! – we’ve got a complete open tree and the test is done).

Is the tree-test always more efficient? No. In the worst case scenario, trees
can sprawl horribly. Take the inference with 50 premisses ‘(P ∨ P′), (P′ ∨ P′′),
(P′′ ∨ P′′′), …’ and conclusion ‘Q’. Obviously it is invalid. But running a tree-
test, at least as we’ve so far described it, leads to an exponentially sprawling tree.
When we unpack the first premiss, the tree splits into two branches; when we
unpack the second premiss, each branch splits into two again; unpack the third
premiss and we get eight branches. So by the end of the tree, it has exploded into
250 branches; and even if we could construct one complete downward path per
second, that would be another ludicrous task. 

Now, you might think that we just need to add some more bells and whistles
to the tree test. After all, we can instantly spot that the last inference is invalid:
we immediately see that the valuation which makes all the ‘P’s true and ‘Q’ false
will make the disjunctive premisses all true and conclusion false. And if we can
instantly spot that, can’t we build our way of doing the trick (whatever that is)
into an improved tree test to speed things up? To which the answer is, yes, we
can add a few more particular tricks that can deal with some special cases: but
there is no general-purpose trick that is guaranteed to avoid exponential sprawl.
Put it this way: given an inference with fifty-something atoms, then with truth-
tables and truth trees alike, even augmented with short-cut tricks, in the worst
case applying either test for tautological validity is a million-year task.

Is there some other mechanical test for tautological validity which does better?
No. (Or at least, so everyone believes: but the issue relates to a still unsolved
problem in the foundations of the theory of computation.)

17.6 Summary
• We have set out the formal rules for building PL truth-trees to test infer-

ences for tautological validity. The rules consist of step-by-step instructions
for building a tree, ‘unpacking’ more complex wffs into simpler ones as the
tree grows, checking off wffs as we use them up, and closing off any paths
which contain contradictory pairs of wffs. 

• The instructions for tree-building don’t determine a unique tree, since we
are allowed to choose which non-primitive wff to ‘unpack’ when there is
more than one candidate.

• But it doesn’t matter which choices you make: the test will always give the
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same verdict. If the tree closes, then the argument under test is tautologi-
cally valid; if it doesn’t, it isn’t. (A proof of that comes later, in Chapter 19.)

• We can make life easier for ourselves by a couple of obvious tactics for tree
building: apply non-branching rules before branching ones, and when pos-
sible choose to apply rules that lead to a branch quickly closing.

• The tree test can be used in an obvious extension to determine whether a
given wff is a tautology.

• Running a tree test is very often quicker than a truth-table test. But not
always.

Exercises 17

A Revisit Exercises 13A, and now use the tree test to determine which of the
arguments listed there are tautologically valid.

B Revisit Exercises 12 and now use the tree test to determine which of (2) to
(6) are tautologies.

C And since practice makes perfect, use the tree test to determine which of
the following are true.

1. ((P ∨ Q) ∧ (P ∨ R)) f ((Q ∧ R) ∨ P)
2. ((P ∧ ¬(P′ ∧ R)) ∨ S), (P′ ∨ S) f (R ∧ S)
3. P, ¬(Q ∧ (P′ ∨ R)), ¬(¬Q ∧ P), ((P′ ∧ S) ∨ (R ∧ S)) f S
4. f (¬(¬(P ∧ Q) ∨ ¬(P ∧ R)) ∨ ¬(P ∨ (Q ∧ R)))
5. ((P ∧ Q) ∨ (R ∧ P)), ¬(¬S ∧ P), ¬(Q ∧ R) f (Q ∧ S)

D How would the rules and principles of tree-building need to be re-written if
we had stuck to using signed trees, where wffs are explicitly assigned T or
F?



We now extend the use of the tree test to cover inferences involving the material
conditional.

18.1 Rules for PLC trees
Suppose we want to extend the tree test for tautological validity to cover argu-
ments expressed in PLC. We need rules that tell us how to disassemble wffs
whose main connectives are ‘⊃’ and ‘�’.

A wff of the form (A ⊃ B), which has ‘⊃’ as its main connective, is equivalent
to the corresponding wff (¬A ∨ B). So if (A ⊃ B) appears on a tree (silently
assumed to be true, of course), then we should unpack it as we would unpack
(¬A ∨ B). So we’ll need to add new forks, leading to the alternatives ¬A and B.

Query: looking at the truth-table, aren’t there three ways of making (A ⊃ B)
true – namely the way which makes A, B true, the way which makes ¬A, B true
and the way which makes ¬A, ¬B true. So why don’t we split the tree three ways,
adding those pairs of wffs to the respective branches? Reply: no reason other
than aesthetics! We could construct trees like that; it would in the end come to
exactly the same (see Exercise 18B). It is just prettier to stick to two-way splits. 

To continue: a wff of the form (A ⊃ B) is only false when A is true and B false.
So if ¬(A ⊃ B) appears on a path – i.e. (A ⊃ B) is assumed to be false – then that
requires A, ¬B to be true on the same valuation.

A wff of the form (A � B) is true in two cases, when A and B are both true,
and when A and B are both false. So we should unpack (A � B) disjunctively,
adding new forks with A, B on one branch and ¬A, ¬B on the other.

Finally, a wff of the form ¬(A � B) is also true in two cases, when A is true
and B false, and when A is false and B true. So we should also unpack ¬(A � B)
disjunctively, this time adding new forks with A, ¬B on one branch and ¬A, B
on the other.

These rules are summed up in the following box in the style of §17.1. The gen-
eral principles for building trees and then reading off the results of the test
remain (of course) exactly the same as before. And there is an extended Basic
Result: a PLC argument is tautologically valid if and only if its tree closes.

18

PLC trees
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Further rules for unpacking wffs on PLC trees

Suppose that W is a non-primitive wff on an open branch, which is sup-
posed true on some valuation. Then, as well as the five cases (a) to (e) as
listed before, there are now four further possibilities to cover:

(f) W is of the form (A ⊃ B). To unpack W, add a new fork to each open
path containing W, with branches leading to the alternatives ¬A [⇒ T]
and B [⇒ T]. Schematically,

(A ⊃ B)

¬A B

(g) W is of the form ¬(A ⊃ B). To unpack W, add both A [⇒ T] and ¬B
[⇒ T] to each open path containing W. Schematically, 

¬(A ⊃ B)
|

A
¬B

(h)W is of the form (A � B). To unpack W, add a new fork to each open
path containing W, with A [⇒ T] and B [⇒ T], on one branch, and
¬A [⇒ T] and ¬B [⇒ T] on the other. Schematically,

(A � B)

A ¬A
B ¬B

(i) W is of the form ¬(A � B). To unpack W, add a new fork to each open
path containing W, with A [⇒ T] and ¬B [⇒ T], on one branch, and
¬A [⇒ T] and B [⇒ T] on the other. Schematically,

¬(A � B)

A ¬A
¬B B

18.2 Examples
We’ll immediately turn to a few examples. First, let’s test the following argument
which we’ve met before (interpret the atoms as you will):

A (P ⊃ Q), (Q ⊃ R) ∴ (P ⊃ R)

Here’s the corresponding completed tree, where we apply the non-branching
rule (g) first, and omit the unnecessary line numbers.
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(P ⊃ Q) √
(Q ⊃ R) √
¬(P ⊃ R) √

P
¬R

¬P Q

¬Q R
✼ ✼

The tree closes so the argument is valid. (By this stage, you certainly shouldn’t
need persuading that, even in simple cases like this, trees can be a lot neater than
truth tables; but compare §14.3D.) 

Next, consider

B ((P ∧ Q) ⊃ R) ∴ ((P ⊃ R) ∨ (Q ⊃ R))

Starting the tree and applying the non-branching rules for negated disjunctions
and then negated conditionals first, we get

((P ∧ Q) ⊃ R)
¬((P ⊃ R) ∨ (Q ⊃ R)) √

¬(P ⊃ R) √
¬(Q ⊃ R) √

P
¬R
Q
¬R

That just leaves the initial premiss to be unpacked. So, we check that off and
continue

¬(P ∧ Q) √ R

¬P ¬Q
✼ ✼

and we are done; another valid argument (perhaps rather surprisingly, see §18.4). 
For another example, consider

C (P � Q), (Q � R) ∴ (P � R)

This time the tree starts 

(P � Q)
(Q � R)
¬(P� R)

and there are no non-branching rules to apply. So let’s just proceed by unpacking

✼

✼
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wffs from the top down, remembering to add the necessary new forks at each
stage to every open branch:

P ¬P
Q ¬Q

Q ¬Q Q ¬Q
R ¬R R ¬R

P ¬P P ¬P
¬R R ¬R R
✼ ✼ ✼ ✼

Again the tree closes and the argument is confirmed to be valid (make sure you
follow exactly how this tree has been constructed).

Next, we’ll test whether the following is a tautology:

D ((P ⊃ Q) ∨ (Q ⊃ P))

As before (§17.4), to use a tree test we start with the negation of this wff and
aim to find contradictions. The negated disjunction unpacks into the negated
disjuncts, and then we apply rule (g) a couple of times to get

¬((P ⊃ Q) ∨ (Q ⊃ P)) √
¬(P ⊃ Q) √
¬(Q ⊃ P) √

P
¬Q
Q
¬P
✼

so D comes out as a tautology. Perhaps that’s another surprising result, and we’ll
again comment on it in §18.4.

What about the following?

E ({P ⊃ Q} ⊃ {(Q � R) ⊃ (P ⊃ R)})

A moment’s reflection suggests that this ought to be a tautology (why?); and
indeed it is. Starting with the negation of E and applying non-branching rules
first we get

¬({P ⊃ Q} ⊃ {(Q � R) ⊃ (P ⊃ R)}) √
{P ⊃ Q}

¬{(Q � R) ⊃ (P ⊃ R)} √
(Q � R)
¬(P ⊃ R) √

P
¬R

✼ ✼
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and now we apply the branching rules to the unchecked wffs to finish the tree 

¬P Q

Q ¬Q
R ¬R
✼ ✼

18.3 An invitation to be lazy
Now for a slightly more complex example, which incidentally also illustrates a
general point about trees (whether PL or PLC trees). Consider

F (P ⊃ (Q ⊃ R)), (S ⊃ (Q ∨ P)) ∴ (S ⊃ R)

The tree starts

(P ⊃ (Q ⊃ R)) √
(S ⊃ (Q ∨ P)) √
¬(S ⊃ R) √

S
¬R

¬S (Q ∨ P) √

Q P

¬P (Q ⊃ R) ¬P (Q ⊃ R)
↑ ✼

So far, we’ve applied the non-branching rule to the negated conclusion first, and
then the two branching rules to the premisses (choosing first the application that
immediately leads to a closed branch). And now let’s pause here, though the tree
isn’t completed yet, for neither of those occurrences of ‘(Q ⊃ R)’ has been
checked off. 

Note, however, that the path up from the bottom left node is completed: i.e.
there are no unchecked wffs left on that path through the tree. Further work on
the tree therefore can’t close off that path. Hence argument F is already shown
to be tautologically invalid. For an argument to be valid according to the tree
test, all paths through the tree must close; that means that just one completed
open path is enough to show invalidity. In other words, an unfinished tree with a
completed open path demonstrates invalidity. (Compare: for an argument to be
valid according to the truth-table test, all lines of the truth table must be ‘good’.
But one bad line is enough to show invalidity.)

Reading up that open branch, we find the primitives ¬P, Q, ¬R, S all silently
assigned the value true. So one valuation which makes the premisses true and

✼

✼
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conclusion false is P ⇒ F, Q ⇒ T, R ⇒ F, S ⇒ T. Completing the other two cur-
rently open branches will in fact reveal another valuation which has the same
effect. But if you are feeling lazy, you can leave the tree unfinished.

For a final worked example, consider the argument

G ((¬Q ⊃ R) ⊃ (Q � S)), (P ∧ R), ¬(Q ∧ S) ∴ ¬((P ∧ Q) ⊃ (R ∧ S))

We can begin a tree thus:

((¬Q ⊃ R) ⊃ (Q � S))
(P ∧ R) √
¬(Q ∧ S)

¬¬((P ∧ Q) ⊃ (R ∧ S))√
((P ∧ Q) ⊃ (R ∧ S)) √

P
R

¬(P ∧ Q) √ (R ∧ S) √

¬P ¬Q S
✼

So far, so obvious (let’s hope!). Now unpack the shorter of the two remaining
unchecked wffs, and we have to add the two forks

¬Q ¬S ¬Q ¬S
✼

There are still three open branches. So now let’s take the remaining unchecked
wff, apply rule (e), and continue the left-most branch.

¬(¬Q⊃R) √ (Q � S) √
¬Q
¬R
✼

Q ¬Q
S ¬S
✼

The other two branches will get similar continuations, but again we’ll be lazy, as
we’ve already found a completed open branch. As before, there is little point in
filling out the rest of the tree, as further growth on the other branches won’t
affect this open branch. The tree is not going to close, and that settles that G too
is tautologically invalid.

18.4 More translational issues
Given the meaning of ‘⊃’, the results of the last two sections are entirely unprob-
lematic. But a couple look a bit puzzling when we translate them back into

R
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English, using the vernacular ‘if …, then …’. We aren’t going to reopen all the
debates of Chapter 15, but we shouldn’t just pass by without comment.

(1)  An example due to Richard Jeffrey. Consider again the inference

B ((P ∧ Q) ⊃ R) ∴ ((P ⊃ R) ∨ (Q ⊃ R))

We’ve shown this to be tautologically valid. Now consider the following, got by
reading ‘P’ as the captain turns his key, ‘Q’ as the gunnery officer turns his key,
and ‘R’ as the missile fires, and rendering the horseshoe connective by ‘if’.

If the captain turns his key and the gunnery officer turns his key, then the
missile fires. Hence either the missile fires if the captain turns his key, or
else it fires if the gunnery officer turns his key.

That surely can’t be a valid inference, or there would be no dual-key fail-safe
systems! What’s gone wrong? (Question for consideration: are the conditionals
here, despite being ‘indicative’ in surface grammatical form, naturally read as
possible-world conditionals? That is to say, we treat the conditionals as telling us
what would happen if a key were turned, even if no key is turned in the actual
world – which is why they are not truth-functional.)

(2) The conditional ‘If it is boiling hot, then it is freezing cold’ looks simply
absurd; so does the conditional ‘If it is freezing cold, then it is boiling hot’. So
consider the disjunction

Either it is freezing cold if it is boiling hot or it is boiling hot if it is freez-
ing cold.

This looks to be disjunction of silly falsehoods; so it should be false. Put ‘P’ as it
is freezing cold, ‘Q’ as it is boiling hot, render ‘if’ by ‘⊃’, and we get 

D ((P ⊃ Q) ∨ (Q ⊃ P))

which, far from being false, we’ve just shown is a tautology. Isn’t that quite
unacceptable? (Question for consideration: when we take e.g. ‘If it is boiling hot,
then it is freezing cold’ as plainly false are we again reading it as a possible-
world conditional?)

(3) I can’t resist adding another example, also due to Richard Jeffrey. Note that
the inference

H ((P ⊃ Q) ⊃ R), ¬P ∴ R

is also tautologically valid (check that with a quick tree test!). But interpret ‘P’ as
we advance, ‘Q’ as the enemy retreats and ‘R’ as the enemy lose. Then this corre-
sponds to the argument

If the enemy retreats if we advance, then they lose. But we won’t advance.
So the enemy lose! 

which is surely not valid. (You can’t zap the enemy with inaction plus mere
logic. Question for consideration: are the conditionals here really possible world
conditionals yet again?)
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And so it goes! There are numerous cases where, on the face of it, PLC
arguments involving ‘⊃’ which are tautologically valid (and hence plain valid)
become, at first blush, problematic and dubious when translated back into
English using ‘if …, then …’. Maybe, with greater or lesser difficulty, the prob-
lematic appearances can often be explained away. But the moral needs repeating:
Treat the material conditional with great care.

18.5 Summary
• The tree-building rules we met in Chapter 16 can be simply extended to tell

us how to unpack wffs whose main connectives are ‘⊃’ and ‘�’.

• We have also noted that we can stop work on a tree once a complete open
branch is found (i.e. an open branch with no unchecked non-primitives
remaining). One completed open branch is enough to show than the argu-
ment being tested is invalid.

Exercises 18

A Redo Exercises 14B using the tree method to determine which of the argu-
ments are tautologically valid. 

B (a) Suppose we added to our rules for tree-building the following: you can
at any point extend an open branch with a fork of the form

C ¬C

Show informally that this change would make no difference (in the sense
that a tree which closes using the original rules will still close, and a tree
which stays open using the original rules will remain open).

(b) Show that we could therefore replace our rule for unpacking condition-
als with this more complex one:

(A ⊃ B)

¬A B

B ¬B A ¬A

(c) Conclude that we could therefore replace our rule for unpacking condi-
tionals with the following three-ply rule (§18.1):

(A ⊃ B)

A ¬A ¬A
B B ¬B



The tree method appears to be a very elegant way of determining tautological
validity. But now we ought to confirm what we’ve been taking for granted,
namely that the tree test gets things right (we called that the ‘Basic Result’ about
trees). So the business of this short chapter is to vindicate the tree test. It can be
skipped by those who have no taste for such ‘metalogical’ niceties!

19.1  The tree method is sound
The Basic Result (§17.1) has two parts. The first half says: 

(S) If, starting a tree with the wffs A1, A2, A3, …, An, ¬C at the top, we
can construct a closed tree by following the official rules for tree
building, then the inference from the premisses Ai to conclusion C is
indeed tautologically valid.

Equivalently: if an inference is invalid, then a corresponding tree can’t close.
Let’s (re)establish a bit of terminology, before turning to the proof of (S). A set

of wffs is satisfiable if there is a valuation of the relevant atoms which makes all
the wffs in the set true. Derivatively, we will call a path through a tree satisfiable
if there is a valuation (of the relevant atoms that appear in wffs on the path)
which makes all the wffs on the path true. 

It is immediate that a satisfiable path through a tree cannot close. For a closed
path by definition contains a contradictory pair of wffs, W and ¬W; and no val-
uation can make such a pair true together. And that observation underlies the
following …

Proof of (S) Suppose that there is some valuation which ensures that 

 A1 ⇒ T, A2 ⇒ T, A3 ⇒ T, … , An ⇒ T, ¬C ⇒ T

and hence that the initial ‘trunk’ of the corresponding truth-tree is
satisfiable (so the inference in question is invalid). Now consider what hap-
pens as we extend our tree, step by step, applying the official rules. At each
stage, a satisfiable path will get extended to a longer satisfiable path.

That’s obvious with the non-branching rules: for example, if there is a
valuation which makes everything on a path true, including a wff (A ∧ B),

19

PL trees vindicated
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then when we apply rule (b) to extend that path by adding A and B, the
same valuation will obviously make both these added new wffs true as well
– since if the conjunction is true on a valuation, so are the conjuncts. So the
extended path will remain satisfiable. You can easily check that the same is
true for extensions by means of rules (a) and (c) – and for (g) as well, on
those occasions when ‘⊃’ is also in play (§18.1).

And in a case where we extend a satisfiable path by using a branching
rule, one branch (at least) of the extended tree must still remain satisfiable.
For instance, if there is a valuation which makes everything on a path true,
including a wff (A ∨ B), then when we apply rule (d) to extend this path
with A on one fork and B on the other, the same valuation must make at
least one of these new wffs true. For if a disjunction is true on a valuation,
so is one its disjuncts. Hence, at a fork we can always choose at least one
extension of a satisfiable path which remains satisfiable. And you can easily
check that the same is true for extensions by means of rule (e), and likewise
for the branching rules (f), (h) and (i) governing (bi)conditionals. 

Thus, if we start with a satisfiable trunk, then however far down we
extend the tree according to our rules, there will always remain at least one
satisfiable path through it. But as we noted, a satisfiable path must stay
open. Hence a tree with a satisfiable trunk can never fully close. 

So, if a tree does close, then its trunk isn’t satisfiable. There is no valua-
tion which makes true all the premisses and the negation of the conclusion
of the inference under test, and hence that inference is valid. QED.

In summary: the tree method is indeed a reliable or sound one (a PL or PLC
argument which the appropriate tree test says is tautologically valid really is
tautologically valid).

19.2 The tree method is complete
The other half of the Basic Result says: 

(C) If, starting a tree with the wffs A1, A2, A3, ..., An, ¬C at the top, we
can construct a complete open tree by following the official rules for
tree building, then the inference from the premisses Ai to conclusion
C is tautologically invalid. 

To prove this result, it is enough to prove two subsidiary results, as follows.

(C1) For any completed open path, there is a valuation which makes the
primitives true (for the idea of a ‘primitive’ see §17.1).

(C2) If there’s a valuation for the atoms that appear in the wffs on a com-
pleted open path which makes the primitives true, then it will make
all the wffs on the path true.

For suppose (C1) and (C2) are correct. By definition, if a tree headed by the Ai
and ¬C is open, then it has at least one completed open path through it. By (C1),
there’s a valuation which satisfies the primitives on that path; hence by (C2)
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there’s a valuation which satisfies all the wffs on that path, including the wffs on
the initial trunk. That valuation therefore makes all of Ai and ¬C true. So, as
(C) claims, the inference from the premisses Ai to conclusion C must be tauto-
logically invalid. 

Hence we now just need to prove (C1) and (C2):

Proof of (C1) Take a completed open path. Climb up it from the bottom,
and construct the following valuation for the atoms which occur in the wffs
on the branch:

When you encounter a totally bare atom on the path, assign it the value
T; any other atoms, that appear only inside some non-atomic wff on the
path, get the value F.

Call this the chosen valuation. 
An example: suppose that as you climb up the chosen path you encoun-

ter in sequence the wffs 

Q, ¬P, (¬P ∧ Q), R, (R ∨ S), ((R ∨ S) ∨ P), ((¬P ∧ Q) ∨ S)

then the chosen valuation constructed as we march up the branch is 

Q ⇒ T, P ⇒ F, R ⇒ T, S ⇒F

By construction, the chosen valuation makes all the primitives on the
given path true. For a primitive is either (i) a bare atom, or (ii) the negation
of an atom. Case (i): the valuation trivially makes the bare atoms true,
because that’s how it was chosen! Case (ii): suppose the negation of an
atom, say ‘¬P’, appears on the path. Since by hypothesis the path is open
and contains no contradictions, the corresponding bare atom ‘P’ can’t
appear on the path. So the chosen valuation will make ‘P’ false: and hence
the primitive wff ‘¬P’ that does appear on the branch will, as required, be
true. QED

We’ll now gives two proofs of (C2): first a brisk official proof, and then a more
relaxed, intuitive one.

Official proof of (C2) Take a completed open path, and suppose the primi-
tives on this path are all true on some valuation, but also that this valuation
makes one or more other wffs on the path false. Choose one of the shortest
of these false wffs. Since the primitives are all true by hypothesis, this short-
est false wff is non-primitive. And since the path is a completed one, this wff
must have been checked off, and had the corresponding rule applied to it.
Now consider cases. Suppose the shortest false wff is of the form (A ∧ B);
then both A and B must appear on the path, and being shorter must by
assumption be true. But that’s impossible: we can’t have (A ∧ B) false yet A
and B each true. Again, suppose the shortest false wff is of the form (A ∨ B);
then either A or B must appear on the chosen path, and being shorter must
by hypothesis be true. But that’s impossible: we can’t have (A ∨ B) false yet
one of its disjuncts true. The other cases are similar. Hence the idea that
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there are false wffs on the path, and hence shortest false wffs, leads to con-
tradiction. Thus the chosen valuation which makes the primitives true
makes every wff on the chosen path true. QED.

That argument is brisk, but perhaps it doesn’t really bring out why (C2) holds.
So here is …

A more intuitive proof of (C2)? We’ll say that the wffs S1, S2, … are
together truth-makers for W if the joint truth of S1, S2 … would ensure that
W is true. For example, the wffs A, B are truth-makers for (A ∧ B); the wff
¬A by itself is a truth-maker for ¬(A ∧ B). And so on.

Take another look at the tree-building rules. They say, for example, that
if W is of the form (A ∧ B) we add its truth-makers A and B to its path;
while if W is of the form ¬(A ∧ B) we split the path, adding the truth-
maker ¬A to one fork, and the alternative truth-maker ¬B to the other.
Likewise for the other rules. Each rule enjoins us to extend a path (maybe
forking) by adding appropriate truth-makers for non-primitive wffs. 

Now, by the definition of a completed path, every non-primitive wff has
been checked off and ‘unpacked’ by the appropriate rule. So that means a
completed open path set must contain truth-makers for every non-primitive
wff (and if those truth-makers are non-primitive, there will be further truth-
makers for them, until we get down the shortest possible wffs).

Suppose, then, that we can find a valuation which does indeed make true
the shortest wffs on the path, i.e. it makes the primitives true. Then, truth
will spread upwards. As we work back up the path, the truth of the shortest
wffs (the truth-makers for the next shortest wffs) will make those next
shortest wffs true, and then the next shortest, and so on up. So everything
will be made true so long as we make the primitives true. QED.

So that establishes (C1) and (C2) and hence (C). 
(C) says, in effect, that we have enough rules for tree-building. Suppose we were

allowed to use only three of the rules instead of all five/nine. If a tree built using
just these three rules closed, that would still indicate a valid argument. But the fact
that a tree didn’t close would not mean that the argument is invalid: it might stay
open because we didn’t have enough rules for dealing with (say) disjunctions. But
(C) shows we have a complete set of tree-building rules; there are enough rules
to establish that any tautologically valid PL/PLC inference is indeed valid.

19.3 A corollary and a further result
First, we’ll quickly note a corollary of the Basic Result: as announced in §16.4,
the order in which the tree-building rules are applied (when we have a choice)
can’t matter. Why?

Well, note that the Basic Result entails that if an argument is tautologically
valid, then any properly built tree will close, irrespective of the order in which
we apply the relevant tree-building rules. Likewise, if an argument is invalid, any
appropriate tree will stay open, again irrespective of the order in which tree-
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building rules are applied.
Secondly, let’s note a result which slightly extends our argument for (C). Let’s

say that a set Σ of PL wffs is saturated if the following conditions obtain:

(a) if a wff of the form ¬¬A is in Σ, then so is A;
(b) if a wff of the form (A ∧ B) is in Σ, then so are both A and B;
(c) if a wff of the form ¬(A ∨ B) is in Σ, then so are both ¬A and ¬B;
(d) if a wff of the form (A ∨ B) is in Σ, then so is at least one of A and B;
(e) if a wff of the form ¬(A ∧ B) is in Σ, then so is at least one of ¬A and ¬B.

Likewise a set of PLC wffs Σ is saturated if it satisfies (a) to (e) plus the conditions 

(f) if a wff of the form (A ⊃ B) is in Σ, then so is at least one of ¬A and B;
(g) if a wff of the form ¬(A ⊃ B) is in Σ, then so are both A and ¬B;
(h) if a wff of the form (A � B) is in Σ, then so are either both A and B

or both ¬A and ¬B;
(i) if a wff of the form ¬(A � B) is in Σ, then so are either both A and

¬B or both ¬A and B.

(Why ‘saturated’? Because such a set is saturated with truth-makers, containing
a truth-maker for every non-primitive wff in it.) 

We’ll also say that Σ is syntactically consistent if it contains no pairs of wffs of
the form A, ¬A. (Compare the semantic definition of logical consistency in
§2.1.)

The conditions (a) to (i) will have an entirely familiar look. They correspond
exactly to the rules for building up a path on a PL (PLC) tree; so it is immediate
that the wffs on a completed open path form a syntactically consistent saturated
set. The set will be consistent, since an open path contains no contradictions,
and saturated because checking off every non-primitive wff on the path in order
to complete the tree ensures that (a) to (i) are fulfilled on the path. So our earlier
result that a completed open path is satisfiable is just a version of the rather
more general result that every syntactically consistent saturated set Σ of PL
(PLC) wffs is satisfiable – i.e. there is a valuation which makes all the wffs in Σ
true.

The proof of this result goes exactly as before. First, we define the chosen val-
uation for Σ: if the atom A appears naked in Σ, assign it the value T; otherwise
assign that atom the value F. It is simple to show – as in (C1) – that this chosen
valuation makes all the primitives in Σ true, and then – as in (C2) – that a valua-
tion which makes all the primitives in Σ true will make every wff in Σ true. 

The advantage of talking about ‘consistent saturated sets of wffs’ as opposed
to ‘sets of wffs on a completed open branch of a tree’ is that it emphasizes that
the arrangement of wffs onto a tree isn’t of the essence here. It’s the structure
described by (a) to (i) above that ensures that the set, if consistent, is satisfiable. 

And, if we abstract from the case where the wffs are to be written out on a
common-or-garden finite tree, then we can even allow the case where the con-
sistent saturated set Σ contains infinitely many wffs. The proof that consistent
saturated sets are satisfiable doesn’t depend on any assumption of finitude. Of
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course, in the case of propositional logic, the consideration of infinite sets of wffs
is mostly of ‘technical’ interest. But matters are different, as we will see in Chap-
ter 30, when we turn to thinking about more complex logical systems.

19.4 Summary
• We have shown that the tree test is sound: i.e. if an argument is judged

valid by the test – i.e. the appropriate tree closes – then it is indeed tauto-
logically valid.

• We have shown that the tree test is complete: i.e. if an argument is tauto-
logically valid, then the tree test will reveal it as such by the appropriate
tree closing. Equivalently, if an appropriate tree stays open, the argument
under test is invalid.

• The proof of these results shows that it doesn’t matter in which order we
apply the tree-building rules (when we have a choice).

Exercises 19

A Show how to extend the following sets of wffs into consistent saturated
sets (hint: think of the given sets as ‘trunks’ of trees; you want to extend the
trunks to some compete open path).

1. ¬Q, (P ⊃ Q), (¬¬R ⊃ (P ∧ R))

2. ¬(Q ∧ (P′ ∨ R)), ¬(¬Q ∧ P), ((P′ ∧ S) ∨ (R ∧ S))

3. (Q ⊃ (P ∨ R)), ¬(P ⊃ S), ((P ∨ S) ∧ (¬Q ⊃ S)), ((S ∨ R) ⊃ ¬P)

In each case, what is the ‘chosen valuation’ for the set? Check that it does
indeed make true all the wffs in the set.

B Rewrite the arguments (C1) and (C2) to turn them into explicit arguments
for the thesis that every syntactically consistent saturated set Σ of PL (PLC)
wffs is satisfiable. Confirm that these arguments don’t depend on whether Σ
is finite.



The unsigned trees that we have been exploring were introduced as shorthand
for signed trees, a way of setting out arguments in English about PL inferences.
But, as we will now explain, we can also think of them as proofs in PL.

20.1 Choices, choices …
Outside the logic classroom, when we want to convince ourselves that an infer-
ence is valid, we don’t use techniques like the truth-table test. As we pointed out
way back in Chapter 5, we usually seek proofs: i.e. we try to show that the
desired conclusion follows from the premisses by chaining together a sequence
of obviously acceptable steps into a multi-step argument. 

Suppose, then, that we want to develop ways of warranting PL inferences by
means of proof-reasoning inside PL. How should we proceed? (By the way, take
talk of ‘PL’ in this chapter to cover PLC as well.)

It is very important to stress that there is no single ‘right’ way of setting out
proofs. Indeed, in this book we have already touched on no less than three dif-
ferent ways of setting out multi-step arguments.

(1) In Chapter 5, we introduced proofs set out linearly, one step below
another (though we also added an indentation device to signal when sup-
positions were being made temporarily, for the sake of argument).

(2) Then in Chapter 8 (see §8.2), we noted that some linear arguments can
very naturally be rearranged into tree structures, with the initial assump-
tions appearing at the tips of branches, and the branches joining as we
bring together propositions to derive a consequence. We work down the
tree until we are left with the final conclusion of the proof at the bottom
of the trunk. (Our examples happened to feature arguments in augmented
English about which strings of PL symbols are wffs.)

(3) In Chapters 16–18, we found that some other arguments are naturally set
out as inverted trees. We start with some assumptions at the top of the
tree, and work down trying to find contradictions, splitting branches at
various choice points as we descend the downwards-branching tree. (Our

20

Trees and proofs
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examples were again arguments in augmented English, but this time
arguments about the tautological validity of PL inferences.

Which way of regimenting arguments in (augmented) English should we follow
if we want to build a proof system for warranting inferences inside PL?

The headline answer is this: if our primary aim is to develop ways of arguing
in PL that echo the natural contours of ordinary-language arguments, then the
first model is the one to emulate. For more advanced technical work, the second
model has a lot going for it. But for ease of manipulation by beginners, down-
wards-branching trees are the thing.

20.2 Trees as arguments in PL
To develop that last point, note next that we in fact don’t have to do any new
work to get a system for building tree arguments in PL. For our unsigned down-
wards-branching trees can already be thought of as arguments in PL.

Of course, that is not how we introduced them. Given a PL inference

A (P ∧ R), ¬(P ∧ Q) ∴ ¬Q

we set about warranting it by supposing there is a valuation which makes the
premisses and negation of the conclusion false, and then trying to show that that
supposition leads to contradiction(s). That’s all metalinguistic reasoning. Here’s
a corresponding tree in full-dress form, quotation marks and all:

A′ ‘(P ∧ R)’ ⇒ T
‘¬(P ∧ Q)’ ⇒ T

‘¬¬Q’ ⇒ T
‘P’ ⇒ T
‘R’ ⇒ T
‘Q’ ⇒ T

‘¬P’ ⇒ T ‘¬Q’ ⇒ T
✼ ✼

Now, we later got into the habit of writing trees in unsigned form for brevity’s
sake, dropping the quotation marks and then the explicit assignment of truth:

A″ (P ∧ R)
¬(P ∧ Q)
¬¬Q

P
R
Q

¬P ¬Q
✼ ✼

But, at least as originally introduced, a pruned tree like this still abbreviates a
way of arguing metalinguistically, i.e. a way of arguing in English about whether
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there is a possible valuation which makes the premisses of the PL inference true
and conclusion false.

However – and here’s the new suggestion – we can equally well look at the
pruned tree another way. It can also be regarded as a multi-step argument
framed purely in PL terms (recall that we quietly announced at the very outset,
§8.1, that ‘✼’ belongs to the alphabet of PL, so all the symbols on the tree really
do belong to that language). Imagine again wanting to defend the inference A,
but this time without straying into meta-linguistic reasoning. We take the prem-
isses ‘(P ∧ R)’, ‘¬(P ∧ Q)’ and the negated conclusion ‘¬¬Q’ as suppositions.
Then we argue step-by-step, first to ‘P’ and ‘R’, then to ‘Q’, and then on, via the
alternatives ‘¬P’ and ‘¬Q’, to absurdities. Our tree argument reveals that our
initial supposition leads to unavoidable contradiction. So that warrants the
inference A is valid (compare §13.8(i)).

The point generalizes. We can systematically re-read our originally meta-
linguistic truth-trees as being arguments in PL, arguments that aim to reveal
inconsistencies. If the tree headed A1, A2, …, An, ¬C closes, i.e. ends up in con-
tradictions, take that as an object-language argument warranting the inference
A1, A2, …, An ∴ C.

20.3 More natural deductions?
Still, it might very reasonably be said, this is certainly not the most natural way
of building arguments in PL.

Consider this very simple vernacular argument: 

B Popper and Russell both wrote on political philosophy. It isn’t the
case that both Popper and Quine wrote on political philosophy. So
Quine didn’t write on political philosophy.

That is obviously valid. But if you need to convince yourself that it is valid,
here’s a natural line of argument, rather laboriously set out in the style of §5.4:

B′ (1) Popper and Russell both wrote on political (premiss)
philosophy.

(2) It isn’t the case that both Popper and Quine (premiss)
wrote on political philosophy.

Suppose temporarily, for the sake of argument,
(3) Quine wrote on political philosophy. (supposition)
(4) Popper wrote on political philosophy (from 1)
(5) Both Popper and Quine wrote on (from 3, 4)

political philosophy.
(6) Contradiction! (from 2, 5)

So the supposition that leads to this absurdity must be wrong.
(7) Quine didn’t write on political philosophy. (RAA)

Now let’s render this natural reasoning into PL, using ‘P’ for ‘Popper wrote on
political philosophy’, etc. The inference B gets translated as ‘(P ∧ R),¬(P ∧ Q) ∴
¬Q’, i.e. as A again. And we might replicate the natural line of reasoning B′ in
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PL along the following lines (the numbering and English side-commentary isn’t
part of the argument proper).

B″ (1) (P ∧ R) (premiss)
(2) ¬(P ∧ Q) (premiss)
(3) Q (supposition)
(4) P (from 1)
(5) (P ∧ Q) (from 3, 4)
(6) ✼ (from 2, 5)
(7) ¬Q (RAA)

Let’s compare this ‘natural deduction’ in PL with the tree proof A″ warranting
the same inference. 

One obvious difference is that B″, like most real-life arguments, ends with
the desired conclusion. To be sure, there is a passage of indirect argumentation
en route, as we make a temporary supposition for the sake of argument: but
the overall argument takes us ultimately to the desired conclusion. An A″-type
tree however always starts by assuming the negation of the conclusion along
with the premisses, and unpicks the implications of that. 

But that’s perhaps not the fundamental difference. Thinking about B″ more,
note that at line (4) we move from the premiss ‘(P ∧ R)’ to the interim conclu-
sion ‘P’. This takes us from a more complex to a simpler wff by (so to speak)
eliminating the connective ‘∧’ according to the rule ‘∧-Elimination’:

(∧E) From a wff of the form (A ∧ B) we can infer A, and equally we
can infer B.

But then at line (5) we move from the two previous steps, ‘P’ and ‘Q’ to their
conjunction ‘(P ∧ Q)’. Another perfectly valid inference of course! This time,
however, we move from a pair of simpler wffs to a more complex one by intro-
ducing the connective ‘∧’ into a wff according to the rule

(∧I) From the wffs A, B we can infer their conjunction (A ∧ B).

This is typical of most proof systems. They have (in a phrase) both elimination
and introduction rules for using connectives in inferences. 

And now contrast the tree-building rules invoked in tree proofs (§17.1). These
rules always take us from more complex to simpler wffs. For example, if a con-
junction like ‘(P ∧ Q)’ is already on a path, we add its conjuncts; but we never
move in the opposite direction (never take a pair of conjuncts and add the con-
junction to the tree). Our tree-building rules are all ‘elimination’ rules.

The two noted differences between ‘natural deductions’ and tree proofs are of
course intimately related. If we want to be able to argue directly to conclusions,
and conclusions can themselves be complex, we’ll typically need to be able to
build up complex wffs by introducing connectives: so we’ll need introduction
rules.

However, once we have introduction rules available, proof-building can be
trickier than in an elimination-rules-only system. Imagine, for example, that
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we’d started the proof B″ in the same way but then got struck in a groove, apply-
ing and reapplying the rule (∧I):

B″ (1) (P ∧ R) (premiss)
(2) ¬(P ∧ Q) (premiss)
(3) Q (supposition)
(4) P (from 1)
(5) ((P ∧ R) ∧ P) (from 1, 4)
(6) (¬(P ∧ Q) ∧ ((P ∧ R) ∧ P)) (from 2, 5)
(7) (Q ∧ (¬(P ∧ Q) ∧ ((P ∧ R) ∧ P))) (from 3, 6)
… …

These inferences are all perfectly valid, but take us further and further away
from our desired conclusion. They are, no doubt, daft inference moves to make,
given we are trying to prove ‘¬Q’. But that’s the point: having introduction rules
may well allow us to generate more ‘natural’ proofs, but it also allows us to drift
off into cascades of irrelevancies. By contrast, systems of tree proofs (which only
have elimination rules) put very much tighter constraints on what we can do at
any point in building a proof. 

There’s no right choice here. It’s a trade-off between ‘naturalness’ and ease of
proof-building. For experience suggests that trees are easier for beginners (after
all, we’ve already pretty painlessly slipped into using them). Less thought is
required to get a tree proof to work. This is already so for simple propositional
logic: but is emphatically the case when we turn to the logic of quantifiers. 

Which all goes to explain our choice of a less ‘natural’ proof-style in this
book. (This way, we can still convey the general idea of a formal proof-system,
without having to spend too much time talking about strategies for proof-
discovery in natural deduction systems.)

20.4 What rules for trees?
So we’ll say no more about ‘natural deduction’ proofs (whether linear proofs
like B″ or rearranged into downward-joining trees as in §8.2). But even if we fix
on downward-branching trees as our proof-structure of choice, that doesn’t fully
determine which rules of proof-building we should adopt for truth-functional
logic. In §17.1 we fixed on one set of rules to adopt, but it isn’t unique.

The basic rule for tree-building is: extend an open branch by adding to it fur-
ther wffs which must also be true assuming that wffs already on the branch are
true (splitting the tree into two branches when we have to consider alternatives). 

Given that basic principle, we could adopt – for example – the following rules
for dealing with negated disjunctions and negated conjunctions. Schematically,

¬(A ∨ B) ¬(A ∧ B)
| |

(¬A ∧ ¬B) (¬A ∨ ¬B)

These new rules are legitimate because each tells us to add to the tree a wff
which must be true if the given wff is true. In fact, we could replace our original
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rules (c) and (e) with these two new rules. For note, when combined with the
existing rules (b) and (d) for unpacking conjunctions and disjunctions, our new
rules yield

¬(A ∨ B) ¬(A ∧ B)
| |

(¬A ∧ ¬B) (¬A ∨ ¬B)

¬A ¬A ¬B
¬B

which, in two steps, give us back the effects of our original one-step rules.
That kind of possible variation in choice of rules is obviously pretty trivial.

Here is a more significant variation. For any C, (C ∨ ¬C) is always true on any
valuation of its atoms. Hence adding a wff of that form to a branch would con-
form to the general principle that we can extend branches by adding further wffs
which are true on the valuation which makes the initial wffs true. So we could
introduce the rule that we can at any point extend a branch by adding an
instance of the law of excluded middle (§12.1; see also Exercise 18B). As you’d
expect this makes no difference at all to what we can prove using trees. A major
cost of adding such a rule is that it introduces into our tree system the possibility
of getting lost adding irrelevancies. But intriguingly, having this additional rule
available can also speed up proofs radically (at least, that’s true when we extend
trees to cover quantifier logic, in the style of Chapters 25 onwards). George
Boolos has given a pretty example of an inference which can be proved valid in a
few pages when this new rule is available, and for which ‘the smallest closed tree
contains more symbols that there are nanoseconds between Big Bangs’ when it
isn’t! So if we particularly care about maximizing the number of proofs which
are feasible (can be done in a sensible amount of time) we’ll add the suggested
new rule – and if we don’t, then we won’t.

These last remarks, like the discussion of the previous section, again drive
home the point that there is no single ‘right’ proof system for truth-functional
propositional logic. Which type of system we prefer to use, and which rules we
adopt within that type of system, is a matter of how we weight their various vir-
tues and shortcomings. Don’t be fazed when you discover that different logic
texts make different choices.

20.5 ‘gggg’ and ‘ffff’, soundness and completeness
This is as good a place as any to introduce another bit of standard symbolism
which you could well encounter elsewhere. Suppose we pick on some preferred
style of proof layout, and some set of rules of inference for propositional logic.
Call that proof system S. If there is some array of wffs which counts as a proof in
S with premisses A1, A2, …, An and conclusion C, we write A1, A2, …, An gS C.

Compare: ‘f’ is a metalinguistic symbol, added to English (in §13.7) for abbre-
viatory purposes, to express the semantic relation that holds between some

|
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premisses and a conclusion when there is no valuation which makes the former
all true and the latter false. ‘gS’ is also a metalinguistic symbol, added to English
for abbreviatory purposes, this time to express the syntactic relation that holds
when we can construct a suitable proof in system S. This is a syntactic relation
because whether an array of wffs counts as a proof doesn’t depend on their
meaning, but only on whether the wffs are related in the ways allowed by the
formal proof-building rules of S. (The use of the single turnstile for the syntactic
proof relation and the double turnstile for the semantic entailment relation is an
absolutely standard notational convention: learn it. If context makes it clear
what proof-system S is in question, the subscript can be dropped.)

Obviously, for any proof system worth its keep, we want the following to hold
for any Ai and C:

(S) If A1, A2, …, An gS C then A1, A2, …, An f C.

Suppose that didn’t hold. Then we could have a ‘proof’ in S that C followed
from the Ai when in fact C isn’t entailed by the premisses. The proof system
wouldn’t be reliable, or sound (to use the usual term).

We’d also like the following:

(C) If A1, A2, …, An f C then A1, A2, …, An gS C.

In other words, what we’d like is that, whenever the Ai taken together do in fact
entail C, then there is a proof in S which reflects that. We’d like our proof system
to be adequate to the task of warranting all the tautologically valid inferences, or
to be complete (again to use the standard term). There are a large number of var-
iant proof systems for propositional logic on the market which are, as we want,
sound and complete.

Returning from generalities to the particular case of tree proofs: let’s now
write A1, A2, …, An gT C when there is a closed PL/PLC tree headed by A1, A2,
…, An, ¬C. Then we indeed have soundness and completeness, i.e.

(SC) A1, A2, …, An gT C if and only if A1, A2, …, An f C.

For that just neatly sums up what we proved in Chapter 19.

20.6 Summary
• PL trees were introduced as (shorthand for) metalinguistic arguments about

truth-valuations of PL wffs. But closed trees can easily be reinterpreted as
object-language proofs (proofs of the inconsistency of the set of wffs A1, A2,
…, An, ¬C, thus warranting the inference A1, A2, …, An ∴ C).

• Tree proofs are not the most natural proofs, but are perhaps most easily
managed by beginners.

• Different proof systems have different pros and cons: there is no ‘right’ sys-
tem for truth-functional logic.



In the last seven chapters:

• We have argued that the material conditional is the only candidate for
translating ordinary language conditionals by a truth-function, and we
have discussed how good (or bad) a translation this is.

• We found it convenient, though not strictly necessary, to add a special
symbol to PL to express the material conditional, giving us the extended
language PLC.

• We introduced truth-trees as a ‘fast track’ way of determining whether a PL
or PLC inference is tautologically valid.

• We showed that the tree method does indeed work as advertised (i.e. a cor-
rectly constructed tree closes if and only if the argument being tested is
valid).

• Finally, we saw how to reconstrue trees (originally introduced as regiment-
ing metalinguistic reasoning about PL/PLC wffs) as proofs in PL/PLC.

But put together with what has gone before – now making some twenty chapters
and nearly two hundred pages in total – this still hasn’t taken us beyond elemen-
tary propositional logic.

Which, you might very well think, is really rather too much of a good thing.
And, true enough, our careful extended treatment of propositional logic is none
too exciting in itself. However, our main reason for dwelling on it is that it does
now give us a very secure basis from which to move on to tackle something
much more substantial, namely predicate logic (or first-order quantification
theory, to use a more technical label). 

This theory deals with the logic of inferences involving quantifiers such as ‘all’
and ‘some’ and ‘no’ as well as the connectives. It’s arguable that this, together
with the logic of identity, in effect covers all the deductive reasoning that we
need in mathematics and science. But whether or not that bold thesis is right, it
is undeniable that quantificational logic is very rich and powerful.

We’ll adopt the same two-stage strategy we used in tackling propositional

Interlude
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logic. So we design a suitable formal language QL for expressing quantified
propositions; then we look at how to assess arguments when framed in QL.

• We’ll find that, while the syntax and semantics of PL/PLC was very
straightforward, the design of the language QL, with its quantifier/variable
notation, requires more sophistication. 

• We can define a notion of q-validity for QL inferences, which is a sort of
generalization of the idea of tautological validity for PL/PLC inferences. 

• But there is no prospect of being able to mechanically test for q-validity in
the way that we can mechanically test for tautologically validity (in fact,
we can prove that there is no mechanical test for q-validity).

• That means that when warranting QL inferences, proof methods really
come into their own. We’ll build a proof system on the basis of the now
familiar tree proofs for propositional logic. It is a relatively easy extension.

Our first task, then, is to motivate the quantifier/variable notation on which QL
is built.



In this chapter, we reflect on some of the vagaries of quantifiers in ordinary Eng-
lish. We find some pointers for the design of an artificial language suitable for
exploring the logic of quantifiers.

21.1 Quantifiers in arguments
In Chapters 7 to 20, we were concerned with a very limited class of inferences,
those whose validity or invalidity turns solely upon the way that the premisses
and conclusion are built up using the propositional connectives. So we didn’t
need to discern any internal structure below the level of whole sentential clauses.
We are now going to consider inferences whose validity (or lack of it) does
depend on a finer level of structure. Take for example:

Fido is a cat.
All cats are scary.
So, Fido is scary.

The Baron hates anyone who loves Alma.
Fritz loves Alma.
So, the Baron hates Fritz.

Some philosophers admire every logician.
No philosopher admires any charlatan.
So, no logician is a charlatan.

These three arguments are all clearly valid, and equally clearly their validity is
not a matter of the distribution of propositional connectives (because they don’t
contain any such connectives!). If we exposed no more than the way that whole
sentential clauses are related by any propositional connectives, then these argu-
ments could only be assigned the unrevealing and utterly unreliable inferential
form A, B, so C. We therefore need to dig deeper. 

What is crucial for these arguments is the occurrence of quantifying expres-
sions such as ‘all’, ‘anyone’, ‘some’, ‘every’, ‘no’, which are used to form com-
plex terms like ‘all men’, ‘some philosophers’ etc. Our target is to understand the
logic of such arguments.

21

Quantifiers
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21.2 Quantifiers in ordinary language
English expressions of generality behave in tediously complex ways. For exam-
ple, consider the following as stand-alone claims:

(1) Every play by Shakespeare is worth seeing.
(2) Any play by Shakespeare is worth seeing.

They express the same universal generalization about all the plays. But compare 
the way the same sentences embed in wider contexts:

(4) I don’t believe that every play by Shakespeare is worth seeing.
(5) I don’t believe that any play by Shakespeare is worth seeing.

(6) If every play by Shakespeare is worth seeing, I’ll eat my hat.
(7) If any play by Shakespeare is worth seeing, I’ll eat my hat.

The messages expressed in each pair are quite different: so ‘every’ and ‘any’ sen-
tences are not generally equivalent. 

Next, consider:

(8) All plays by Shakespeare are worth seeing.
(9) Each play by Shakespeare is worth seeing.

These also say, it seems, just the same as (1) and (2). And compare, e.g. 

(10) I don’t believe that all plays by Shakespeare are worth seeing.
(11) If all plays by Shakespeare are worth seeing, I’ll eat my hat.

(10) is equivalent to (4), and (11) to (6). So sentences containing ‘all’ typically
behave on embedding like sentences with ‘every’ rather than ‘any’. Likewise for
‘each’ sentences (though they don’t seem to embed quite so naturally). So can at
least we say that ‘all’, ‘each’ and ‘every’ constructions are just stylistic variants? 

Well, here too there are complications. Not every occurrence of ‘all’ can be
simply replaced by ‘every’ or ‘each’: consider ‘All fresh snow is white’. And some
‘all’ propositions seem naturally to take the reading ‘all, considered as totality’,
while a corresponding ‘each’ proposition takes the reading ‘each, considered
separately’. For example, compare:

(12) Jack can read all of the plays in a day.
(13) Jack can read each of the plays in a day.

(12) reports a feat of speed-reading; (13) makes Jack sound a bit slow.
So, given that we are interested in the basic logic of arguments involving gener-

alizations, but are not especially interested in theorizing about the complexities of
English usage, it seems very attractive to pursue the strategy of constructing an
artificial language with just one, simply-behaved, way of forming universal
generalizations. Similarly for some other quantifiers. Then, as with propositional
logic, we can tackle the assessment of quantificational inferences in two stages.
First, we translate the argument into our artificial language, treating the quanti-
fiers in a uniform and tidy way; and then we assess the translated argument for
validity.
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21.3 Quantifiers and scope
There’s another reason for pursuing this strategy of building an artificial
language, in addition to wanting to side-step the multiple varieties of English
usage. For English expressions of generality are beset by scope ambiguities (for
introductory remarks on scope ambiguity, see §7.2 and §9.6, where we first
encountered the notion in connection with structurally ambiguous sentences of
the kind A or B and C).

To work up to an example, consider the following pair of sentences:

(1) Some Republican senators smoked dope in the nineteen sixties.
(2) Some women died from illegal abortions in the nineteen sixties.

As a shock headline in the newspaper, (1) is naturally read as saying, of some
present Republican senators, that they have a dark secret in their past (namely that
they dabbled in illegal drugs in the sixties). But (2) is not to be read, ludicrously, as
saying of some present women that they have a secret in their past (namely that
they died of an illegal abortion back in the sixties). The claim is of course that
some women then existing died from illegal abortions. A natural way of describ-
ing the situation is to say that we treat the tense operator ‘in the sixties’ as
having a different scope in the two sentences. In the first case we take the tense
operator to modify only the verb phrase ‘smoked dope’, while in the second case
it is the whole proposition ‘some women died of illegal abortions’ which is (so to
speak) to be evaluated with respect to the sixties. With a bit of grammatical
butchery of tenses, and adding brackets for maximal clarity, we might thus rep-
resent the natural readings of the two sentences as follows:

(1′) (Some Republican senators are such that)(in the sixties it was true
that) they smoke dope.

(2′) (In the sixties it was true that)(some women are such that) they
die from illegal abortions.

Here the final verbs are now deemed to be tenseless, and the order of operators
shows the relative scopes of the tense operator and the quantifier, i.e. shows how
much of the sentence concerns the past.

Consider, however, the following sentence:

(3) Some senior Republican senators plotted against the party leader-
ship in 1988. 

This seems simply ambiguous: are we saying that some of the then Republican
senators plotted, or rather that some of the current lot plotted when they were
young turks? We could be saying either

(3′) (In 1988 it was true that)(some senior Republican senators are
such that) they plot;

or else

(3″) (Some senior Republican senators are such that)(in 1988 it was
true that) they plot.



21.3 Quantifiers and scope 197

Both readings are fairly naturally available, so the original sentence is ambigu-
ous. And the ambiguity is plausibly diagnosed as a scope ambiguity. The issue is:
which has wider scope, which governs more of the sentence, the tense operator
or the quantifier?

Mixing expressions of generality and tense operators is prone to produce
scope ambiguities. So too is mixing quantifiers with modal operators (i.e. with
expressions of necessity and possibility). Consider, for example, the philosophi-
cal claim

(4) All sensory experiences are possibly delusory.

Does this mean that each and every sensory experience is one which, taken
separately, is open to doubt, i.e.

(4′) (Every sensory experience is such that)(it is possible that) it is
delusory?

Or is the thought that the whole lot could be delusory all at once, i.e.

(4″) (It is possible that)(every sensory experience is such that) it is
delusory?

These claims are certainly different, and it is evidently philosophically important
which reading is meant e.g. in arguments for scepticism about the senses. For
even if (4′) is true, (4″) doesn’t follow. Compare

(5) Every competitor might possibly win,

and its two readings:

(5′) (Every competitor is such that)(it is possible that) he wins.
(5″) (It is possible that)(every competitor is such that) he wins

= (It is possible that) every competitor wins.

It could be that (5′) is true because the tournament is fairly run and the competi-
tors well matched, while (5″) is false because it is a knock-out tournament with
rules ensuring that only one ultimate winner will emerge. 

However, modal logic and the logic of tense operators are both beyond the
scope of this book. So, to come to the kinds of case that do immediately concern
us, let’s consider next what happens when we mix expressions of generality with
negation.

We’ll take just one kind of example. Usually, a statement of the kind ‘Some Fs
are not Gs’ is heard as entirely compatible with ‘Some Fs are Gs’. For example,
‘Some students are not logic enthusiasts’ is no doubt sadly true; but it is compat-
ible with the happier truth ‘Some students are logic enthusiasts’. But now
consider the following case. Jack says ‘Some footballers deserve to earn five
million a year’. Jill, in response, takes a high moral tone, expostulates about the
evils of huge wages in a world of such poverty and deprivation, and concludes:
‘So some footballers damned well do not deserve to earn five million a year’. Jill
certainly doesn’t intend to be heard as saying something compatible with Jack’s
original remark! Thus, though vernacular English sentences of the form ‘Some
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Fs are not Gs’ are usually construed as meaning

(6′) (Some Fs are such that)(it is not the case that) they are Gs,

in some contexts the negation can be understood to have wide scope, i.e. to gov-
ern the whole sentence, with the resulting message being:

(6″) (It is not the case that)(some Fs are such that) they are Gs.

As in the tensed and modal cases, then, there is a potential for scope ambiguity
when we mix quantifiers with negation – though context, emphasis, and plausi-
bility considerations very often serve to privilege one reading and prevent mis-
understanding.

Finally, let’s consider what can happen when a sentence contains more than
one quantifier. 

Suppose you discover each of these is true:

(7) Jack is besotted with some film star;
(7′) James is besotted with some film star;
(7″) Jeremy is besotted with some film star.

Here you have found a property shared by each of Jack, James and Jeremy,
namely the property of being bewitched by some star or other (not necessarily
the same one in each case). You might be tempted to generalize from that sample
to the rest of the logic class, and arrive at the rather depressing speculation that 

(8) Every man in the class is besotted with some film star,

meaning that every man is like Jack, James and Jeremy in being enthralled by
some star or other.

Now a rather different scenario. This time you wonder whether any of these
are true:

(9) Every man in the class is besotted with Cameron Diaz,
(9′) Every man in the class is besotted with Gwyneth Paltrow,
(9″) Every man in the class is besotted with Jennifer Lopez.

Here you have predicated the same property of each of Cameron Diaz, Gwyneth
Paltrow and Jennifer Lopez, i.e. the property of being warmly admired by all
men in the logic class. Now perhaps each of these predications turns out to be
false (there is an exceptional man in each case). You might then retreat to the
less specific speculation that perhaps

(10) Every man in the class is besotted with some film star

meaning that there is some star who is admired by every man in the group. Here
we have the same doubly quantified sentence again as (8), but in the new context
it conveys a different message. For there is all the difference between saying that
everyone admires someone or other and saying that someone is admired by
everyone (just as there is all the difference between saying that every road leads
somewhere or other, and saying that there is somewhere where every road leads:
compare §4.4). So the ordinary English sentence ‘Every man in the class is
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besotted with some film star’ is potentially ambiguous between two readings:

(10′) (Every man in the class is such that)(there is some film star such 
that) he is besotted with her.

(10″) (There is some film star such that)(every man in the class is such 
that) he is besotted with her.

Again, therefore, we have a potential scope ambiguity, this time when we get
certain doubly quantified sentences. Though again we should not exaggerate the
problem; context and perhaps a default preference for the first reading normally
serve to remove this ambiguity in practice. 

Note that these four kinds of scope ambiguity, where quantifiers are mixed
with tense, modality and negation and other quantifiers, do not occur when
proper names are used instead of the quantifier expressions. Consider:

(3°) John Doe plotted in 1988.
(5°) Kasparov might possibly win.
(6°) Michael does not deserve five million a year.
(10°) Jack is besotted with Gwyneth Paltrow.

Those are all quite unambiguous. As it is sometimes put, genuine names are
scopeless; whereas with quantifiers issues of relative scope can arise. 

So all this points to a key design requirement on an artificial language apt for
use when we are exploring the logic of generality. We must devise our notation
so that the scope of a quantifier is always clear and there is no possibility of
scope ambiguities. And this means building in at ground level some way of
marking the contrast between quantifiers and scopeless names. 

21.4 Expressing quantification unambiguously
How then shall we express generality in a formal language? Well, consider again
the linguistic device which we slipped into using above, i.e. the device of using
quantifier operators like ‘Every man in the class is such that’, ‘Some Republican
senator is such that’, …. These quantifier operators are prefixed to sentential
forms constructed with pronouns, such as ‘he wins’, ‘he plotted’, ‘he is besotted
with her’, and so forth. The order of the quantifier operators with respect to
other quantifiers and negation (or other operators like tenses and modalities)
then gives their relative scope according to the obvious rule operators apply only
to what follows them. This very natural device enables us to express ourselves
very clearly and without ambiguity, even if at the expense of a little prolixity. So
why not use the very same device in a formal language?

There is just one wrinkle: suppose we want to express the thought that every-
one loves someone or other using prefixed quantifiers. Then it won’t quite do to
write

(1) (Everyone is such that)(there is someone such that) he/she loves
him/her.

For that just introduces a new ambiguity. Which quantifiers are the pronouns
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respectively tied to? Is it, so to speak, everyone or someone who is doing the lov-
ing? But it is easy to rephrase: to disambiguate we just need something like

(2) (Everyone is such that)(there is someone such that) the former
loves the latter,

which is plainly to be distinguished from

(3) (Everyone is such that)(there is someone is such that) the latter
loves the former.

The expressions ‘the former’, ‘the latter’ function as pronouns linked to particu-
lar quantifiers. If we were dealing with more than two quantifiers, we could
instead use ‘the first’, ‘the second’, ‘the third’, as in (say)

(4) (Every integer is such that)(every integer is such that)(there is
some integer such that) the third is the product of the first and
second,

which says that multiplying any two integers yields an integer. 
Using pronouns like ‘former/latter’ or ‘the first/second/third’ in a formal

context, however, would have considerable drawbacks. For when manipulating
complex sentences with many quantifiers, what counts as ‘the first’ or ‘the sec-
ond’ etc. will keep changing. So here’s a neat alternative trick, borrowed from
the mathematicians. We introduce some new pronouns ‘x’, ‘y’, ‘z’ …; and then
we tag our quantifier prefixes with these new pronouns in order to signal which
quantifier goes with which pronoun. Then we can say ‘For any integers x and y
there’s an integer z such that z is the product of x and y’. Or more stiltedly, we
can put it like this:

(4′) (Every integer x is such that)(every integer y is such that)(there is
some integer z such that) z is the product of x and y.

This use of ‘x’, ‘y’ and ‘z’ of course comes very naturally in this mathematical
example: but the same notation could be readily adopted for use much more
widely, so that we write, e.g.

(2′) (Everyone x is such that)(someone y is such that) x loves y.
(3′) (Someone x is such that)(everyone y is such that) y loves x.

There is nothing mysterious about the use of the so-called individual variables
‘x’ and ‘y’ here: they are simply a snappier replacement for everyday pronouns.

Now for a bit of mere abbreviation. Instead of ‘every x is such that’, we could
use simply the notation ‘�x’, with the rotated ‘A’ reminding us that this is also
the all operator. And instead of ‘there is some y such that’ let’s simply use ‘�y’,
with the rotated ‘E’ reminding us of another way of expressing that quantifier,
namely ‘there exists some y such that’. Then, at least given a context where it is
clear that what is in question are people, our last two examples can be abbrevi-
ated very briskly, as

(2″) (�x)(�y)x loves y,
(3″) (�x)(�y)x loves y.
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Given a different context where it is clear that what is in question are integers,
we can equally crisply write our arithmetical proposition

(4″) (�x)(�y)(�z)(z is the product of x and y).

Now, so far, all this could still be treated as just so much augmented, abbrevi-
ated English. But, in essence, it exemplifies the notation for generality we will be
adopting in QL, a version of the standard logicians’ language for encoding quan-
tificational arguments. We will use variables corresponding to ‘x’, ‘y’, ‘z’ to do
the work of pronouns, and use prefixed quantifiers on the model of ‘�x’, ‘�y’ to
do the work of ‘Every x is such that’ and ‘Some y is such that’. And that, apart
from a few bells and whistles, will give us all we need.

In sum, the design of QL is guided by one very simple and compelling insight,
namely that propositions involving quantifiers can be unambiguously expressed
by using prefixed quantifier operators applied to core clauses involving pro-
nouns. Once that basic idea has been understood, the rest really is plain sailing! 

21.5 Summary
• Ordinary English expressions of generality behave in complex ways (con-

sider the availability of ‘all’, ‘every’, ‘any’, and ‘each’ to express universal
generalizations, and compare the behaviour of these quantifiers in complex
contexts). And sentences involving such quantifiers are prone to scope
ambiguities.

• So (following the ‘divide and rule’ strategy introduced in §7.3) we want to
devise a formal artificial language QL that avoids the complexities and
scope ambiguities of English. Our guide will be a rather heavy handed and
prolix apparatus already available in English, i.e. the use of prefixed quan-
tifiers operators of the kind ‘everyone is such that’, ‘someone is such that’,
which can be used to express messages unambiguously.

• So, QL will be supplied with quantifiers like ‘�x’, ‘�y’, etc. which operate
in a similar way, along with variables like ‘x’, ‘y’, etc. to act as correspond-
ing pronouns. 



In the last chapter we introduced the idea of the quantifier/variable notation for
expressing general propositions. This chapter gives a relaxed, informal sketch of
the formal language QL which incorporates that idea. 

22.1 Names and predicates
We want, for a start, to be able to formalize arguments like ‘Fido is a cat; all cats
are scary; so, Fido is scary’. We are going to use a quantifier/variable notation
for expressing the second, general, premiss. But as a preliminary step, we first
need to adopt a standard mode of expressing and revealing the structure of non-
general propositions such as the first premiss, ‘Fido is a cat’. We therefore need,
as basic ingredients of QL, a stock of names and predicates.

Since we won’t be digging any deeper than the name/predicate/quantifier
structure of sentences, the names and predicates in QL might as well be as sim-
ple as possible, i.e. single letters. Hence, for the names (or as we officially call
them, individual constants) let’s for a start use

m, n, o, …

(i.e. lower case letters, not from the end of the alphabet).
A predicate comes with a number of slots waiting to be filled up with names

(or pronouns, etc.) to form sentences. Thus compare the one-place English pred-
icates ‘… smokes’, ‘… is a philosopher’; the two-place predicates ‘… is besotted
with …’, ‘… was a pupil of …’; the three-place predicate ‘… prefers … to …’, ‘…
is between … and …’; and so forth. We will similarly supply QL with

one place predicates: F, G, H, …
two place predicates: L, M, …
three place predicates: R, S, …

and so on (all upper case letters).
Then the rule for constructing the most basic sort of sentence of QL is simply

that an n-place predicate combines with n names (not necessarily different ones)
to form an atomic wff. And just as a matter of convention (of no deep signifi-
cance at all) we form that combination by writing the predicate followed by the

22
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right number of names. Thus

Fn, Lnm, Loo, Rnmo, Romo

are sample atomic wffs. 
Of course, when we come to present the official syntax of QL, we’ll need to be

more precise, and not just give open-ended lists of the expressions which are to
count as names/constants and predicates. We’ll then also add to the class of
atomic wffs. But in this chapter we will continue to give an incomplete and
informal presentation (diving into the full-dress official story straight away
would introduce distracting complications). 

So much, then, for some unofficial syntax for atomic wffs. As for the informal
interpretation of our atomic wffs, that is equally straightforward. We fix on
some code-book or interpretation for QL, for instance the one where

‘m’ means Socrates
‘n’ means Plato
‘o’ means Aristotle

‘F’ means … is wise
‘L’ means … loves …
‘R’ means … prefers … to …

Then the atoms above will, of course, get the following interpretation:

‘Fn’ means Plato is wise.
‘Lnm’ means Plato loves Socrates.
‘Loo’ means Aristotle loves himself.
‘Rnmo’ means Plato prefers Socrates to Aristotle.
‘Romo’ means Aristotle prefers Socrates to himself.

Note, the order in which names occur when combined with a predicate matters
in QL just as it does in English. 

22.2 Connectives in QL
QL has two ways of building up more complex expressions from simpler ones.
The application of quantifiers is one. But first, we will just take over from PLC
our five propositional connectives (including ‘⊃’ and ‘�’, and keeping the famil-
iar bracketing conventions). The result of applying these connectives to a wff or
pair of wffs of QL again yields another wff. So the following are wffs: 

(Fm ∨ Fn)
¬(Lnm ∧ Lmn)
(Rnmo ⊃ (Lnm ∧ ¬Lno))
((Fm ∨ Fn) � (Lom ∨ Lon))

The meaning of the connectives remains as before. (Simple exercise: translate
these, interpreting the names and predicates as in the previous section.) 

The only point to emphasize here is that the connectives added to QL remain
essentially propositional connectives, i.e. they continue to combine proposition-
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like clauses. So we must translate

Plato and Aristotle are wise

as

(Fn ∧ Fo)

and not as

F(n ∧ o)

A propositional connective cannot connect constants; hence ‘(n ∧ o)’ is simply
ill-formed. Similarly, to translate

Plato is wise and handsome

we need something like

(Fn ∧ Gn)

and not
(F ∧ G)n

which is also ill-formed; a propositional connective can’t connect QL predicates.

22.3 Adding the quantifiers
We are following the design plan of §21.4, so we need to add to our language a
stock of pronouns, more often called individual variables:

x, y, z, … 

(i.e. lower case letters from the end of the alphabet). We also need a couple of
symbols to use in forming quantifiers

�, �.

Either of those symbols followed by an individual variable yields a quantifier.
Thus

�x, �y, �z, …

are universal quantifiers meaning, roughly, ‘everyone/everything x is such that’,
etc. We can also read them, more snappily, as ‘for all x’, ‘for all y’, etc. Likewise, 

�x, �y, �z, …

are existential quantifiers meaning, roughly, ‘someone/something x is such that’,
etc. We can read them, more snappily, as ‘for some x’, ‘for some y’, etc.

By the way, in our informal remarks before (§21.4), we used bracketing round
quantifiers: we wrote, e.g., ‘(�x)(�y)x loves y’. Such brackets aren’t needed,
though many logic books do retain them. We will henceforth opt for the more
modern, bracket-free, notation. You will have no trouble at all reading the
bracketed version if you are familiar with our austere version. (Though note that
some older books use simply ‘(x)’ instead of ‘(�x)’.)

In the end, we want to construct complete quantified sentences, without
pronouns dangling free (i.e. without pronouns that aren’t tied to associated
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quantifiers). So a natural first rule for building up QL wffs introduces quantifiers
and variables together. The rule is: Take a wff with one or more occurrences of
some constant (i.e. some name); we then ‘quantify in’ to the place(s) in the wff
occupied by the constant; i.e. we replace all the occurrences of the constant with
some variable, and then prefix a quantifier formed from the same variable. Put
schematically, the rule is:

Take a QL wff C(…c…c…) containing at least one occurrence of the
constant c. Replace all the occurrences of c with some variable v new to
C, and prefix the result with �v or �v, so we get �vC(…v…v…) or
�vC(…v…v…). That yields another wff. 

The following expressions are then wffs by our rules:

Rmno
�zRzno
�x�zRznx
�y�x�zRzyx

At each step here, we quantify in to one of the remaining places held by a con-
stant using a new variable. Why do we insist on new variables at each step?
Well, otherwise we could form e.g.

Rmno
�xRxno
�x�xRxnx
�x�x�xRxxx

In the last two expressions, the duplicate quantifiers are (at best) redundant. 
Here’s another longer chain of wffs, built up in stages from atoms by applying

connectives or quantifying in:

Fn
Rmno
(Fn ∧ Rmno)
�x(Fn ∧ Rmnx)
�y�x(Fn ∧ Rynx)
¬�y�x(Fn ∧ Rynx)
(Fn ⊃ ¬�y�x(Fn ∧ Rynx))
�z(Fz ⊃ ¬�y�x(Fz ∧ Ryzx))

Note that, at the last stage, we are quantifying in to all three positions held by ‘n’.
Now for the basic rules for interpreting quantified sentences. When we assert

‘�xFx’, we are saying ‘Everything x is such that x is F’ (fill in the appropriate
interpretation of ‘F’). But what counts as ‘everything’? What are we generalizing
over? It could be people, or living beings, or stars, or numbers, or …. Until that’s
fixed, we won’t know how to interpret the universal quantification. So, in order
to interpret quantified formulae, we need a specification of the domain of
discourse, where the domain is the collection of objects that we are ‘quantifying
over’, the set of ‘everything’ we are talking about. (And we’ll take it that the
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domain of discourse isn’t empty, i.e. it contains at least one object: for more on
this, see §§27.2, 29.3.)

‘�xFx’ is then interpreted as saying that everything in the domain of discourse
is F. Similarly, ‘�xFx’ says that something in the domain of discourse is F.

Extending this to more complex quantified wffs is fairly straightforward. Just
bear in mind the equivalence between a universal quantifier �v and the English
‘everything (in the domain) is such that’, and an existential quantifier �v and the
English ‘at least one thing (in the domain) is such that’. 

Putting that a bit more carefully, suppose again that C(…c…c…) is a wff con-
taining one or more occurrences of the constant c. This says something more or
less complicated about the object picked out by c. In other words, C(…c…c…)
attributes to that object some more or less complex property. Then:

�vC(…v…v…) says that everything in the domain of discourse has the
property which plain C(…c…c…) attributes to the object picked out by c.

�vC(…v…v…) says that at least one thing in the domain has the property
which plain C(…c…c…) attributes to the object picked out by c.

Some illustrations will help. Go back to the interpretation of the names and
predicates introduced at the end of §22.1. Then ‘Fn’ is a wff meaning that Plato
is wise. Quantifying in, this is a wff too:

�xFx

To interpret it we need to know the domain of discourse. Suppose it is people.
Then the wff will mean someone is wise. Hence

¬�xFx

is also a wff and says that it isn’t true that someone is wise, i.e. it says no one is
wise. (By the way, this quick availability of a way expressing ‘no one’ proposi-
tions shows why there would be no point in adding a special quantifier to QL to
capture the ‘no’ quantifier.) 

Secondly, ‘¬Fn’ is also a wff (saying that Plato is unwise). By the syntactical
building rule, we can quantify in to produce another wff,

�x¬Fx.

And this (by the interpretation rule) says that someone has the property attrib-
uted to Plato by ‘¬Fn’; i.e. it says someone is unwise.

Note then that our last two wffs, which mix quantifiers and negation, are each
quite unambiguous. As desired, we lose the potential scope ambiguity of the
English ‘Someone is not wise’.

Another example: ‘(Fn ⊃ Lmn)’ says that if Plato is wise, then Socrates loves
him. In other words, it attributes Plato the complex property of being, if wise,
then loved by Socrates. Replace the ‘n’ by a variable ‘x’, and quantify in:

�x(Fx ⊃ Lmx)

This says of everyone what (Fn ⊃ Lmn) says of Plato; i.e. it says that everyone is
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such that if they are wise, then Socrates loves them (note: the connective still
connects propositional clauses, though ones involving pronouns). In simpler
words, it says: Socrates loves anyone who is wise.

A third example: since ‘Lmn’ is a wff, so is 

�yLmy.

By the associated semantic rule, this says that Socrates loves someone or other.
Applying the syntactic rule for a quantifier building again, we can quantify in to
construct another wff

�x�yLxy.

By the semantic rule for reading �−propositions, this sentence says that everyone
has the property attributed to the bearer of ‘m’ by ‘�yLmy’: i.e. it says that
everyone has the property of loving someone or other (i.e. everyone is such that
there is someone they love). Starting again from ‘Lmn’, we can also form the wff

�xLxn

which says that Plato is loved by everyone; and then we can go on to construct

�y�xLxy.

By the interpretation rule, this says that someone has the property that ‘�xLxn’
attributes to Plato; in other words, the last wff says that there is someone such
that everyone loves them. So note that ‘�x�yLxy’ and ‘�y�xLxy’ are each unam-
biguous, and have quite different interpretations. 

Which is exactly as things should be, since the quantifier/variable notation is
expressly designed to give us unambiguous ways of representing the different
thoughts that can ambiguously be expressed by a single English sentence, ‘every-
one loves someone’.

22.4 Domains, and named vs. nameless things
Finally, a couple of important points worth emphasizing. First, suppose a wff

(1) Fn

is true. Then there is something (whatever it is which is named by ‘n’!) which has
the property expressed by ‘F’. Intuitively, then, (1) entails the corresponding
existential quantification

(2) �xFx

But, to be a bit more careful, note that this entailment will only hold if the
domain of discourse does contain the thing named by ‘n’. So when we are inter-
preting QL, we need to ensure that everything named by some constant is in the
domain of discourse. Else the intuitive inference from (1) to (2) would fail.

With that assumption in play, any wff of the form

(3) C(…c…c…)

entails a corresponding existential quantification

(4) �vC(…v…v…)
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But note – our second point – that (4) might be true, even if no corresponding
wff of the form (3) is true. For there may be items in the domain of discourse
that have no name on a particular reading of QL. Hence, it could be that no
named item has the property expressed by C (so nothing like (3) is true), but one
of the nameless things does have that property, making (4) true.

Exactly similarly, if a wff like (3) is false, then the corresponding universal
quantification

(5) ∀vC(…v…v…)

will be false. But the converse does not hold. A wff like (5) might be false on
some interpretation of QL, even if no corresponding wff of the form (3) is false.
The named items might all have the property expressed by C, though one of the
nameless things lacks it.

A wff like (1) is said to be a substitution instance of the wff (2). More gener-
ally a wff of the form (3) is a substitution instance of the corresponding (4) and
(5); we arrive at it by stripping off the quantifier and substituting a name for the
variable tied to that quantifier. Then the point we’ve just been making is this. We
can’t in general say that a existential quantification is true if and only if one of its
substitution instances is true. There may not be enough named things! Likewise,
we can’t say that a universal quantification is true if and only if all of its substitu-
tion instances is true. 

And here we’ll stop for the moment. We’ll devote Chapters 27 and 28 to set-
ting the full-dress official syntax and semantics of QL: as always, the devil is in
the details. When we have done that, we’ll be able to develop a sharp notion of
q-validity for arguments couched in QL, analogous to our sharp notion of tauto-
logical validity for arguments couched in PL. But meanwhile, we have enough of
the basics in view to be able to work through a stock of translation examples
over the next two chapters, in order to develop a better feel for the language;
and then we will informally introduce QL trees. First, however, another quick …

22.5 Summary
• QL is supplied with quantifiers such as ‘�x’, ‘�y’ (analogues of the semi-

English ‘everything x is such that’, ‘something y is such that), together with
variables ‘x’, ‘y’, etc. to act as corresponding pronouns. The rest of the lan-
guage is a simple as can be: to represent the basic subject–predicate struc-
ture of simple claims we use individual constants

m, n, o, ….

 and predicates with various numbers of places.

F, G, … L, M, … R, S, …

The basic syntax of QL then is as follows: An atomic wff of QL is formed
from an n-place predicate followed by n constants. Complex wffs can be
constructed using the familiar connectives and also by ‘quantifying in’ – i.e.
if C(…c…c…) is a wff, so are �vC(…v…v…) and �vC(…v…v…).
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• Interpreting QL sentences involves fixing on a domain of discourse, and
explaining the meanings to the basic vocabulary of names and predicates.
And then the basic idea is that �vC(…v…v…) says that everything in the
domain has the property expressed by C, i.e. the property that C(…c…c…)
attributes to the object picked out by c. And �vC(…v…v…) says that there
is at least one thing in the domain which has that property. 

Exercises 22
Take the following interpretation of the language QL:

The domain of discourse is people
‘m’ stands for Socrates
‘n’ stands for Plato
‘F’ means … is wise
‘G’ means … is a philosopher
‘L’ means … loves …

Check that the following are wffs, and then translate them into natural English: 

1. (Fn ⊃ �xFx)
2. �y(Gy ∧ Fy)
3. �x(Gx ∧ Lmx)
4. �x(Gx ∧ Lmx)
5. �x(Gx ⊃ Lmx)
6. �x¬(Fx ∧ Lxn)
7. ¬�x(Fx ∧ Lxn)
8. (Fn ∧ �xLxn)
9. �y(Fy ∧ �xLxy)
10. �z(Lzm � Lnz)
11. (Gn ⊃ �zLnz)
12. (Gn ⊃ �z(Lnz ∧ Fz))
13. �y(Gy ⊃ �z(Lyz ∧ Fz))
14. �z(Fz ∧ �y(Gy ⊃ Lyz))



We will delay fussing about the fine details of QL until Chapters 26 and 27. This
chapter and the next one explore a variety of issues about translating between
English and QL, the language of predicate logic.

23.1 The quantifiers interrelated
Suppose, as before, that ‘F’ expresses the property of being wise, and the domain
of discourse is all people. Then

�x¬Fx

says everyone is unwise. So 

¬�x¬Fx

says it isn’t the case that everyone is unwise. In other words, it says that someone
is wise. So it is equivalent to

�xFx

More generally, a wff of the form 

¬�v¬C(…v…v…)

is true just so long as it isn’t the case that C is false of everything, i.e. just so long
as

�vC(…v…v…)

is true. Thus we have a general equivalence between �v and ¬�v¬.
Similarly

�x¬Fx

says there is at least one person who is unwise. So 

¬�x¬Fx

says it isn’t the case that someone is unwise. In other words, it says that everyone
is wise. So it is equivalent to

�xFx

23
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More generally, a wff of the form 

¬�v¬C(…v…v…)

is true just when

�vC(…v…v…)

is true. Thus we have a general equivalence between �v and ¬�v¬.
In short, the quantifiers are interdefinable using negation, just as conjunction

and disjunction are interdefinable using negation. 
The parallel is not surprising. We can think of ‘�xFx’ as like a big disjunction,

‘(Fm ∨ Fn ∨ Fo ∨ …)’ and ‘�xFx’ as like ‘(Fm ∧ Fn ∧ Fo ∧ …)’ – at least if we
assume that everything has a name (cf. §22.4). Then, slightly abusing ‘�’ to
abbreviate ‘if and only if’, and being careless with brackets, we have

�xFx � (Fm ∨ Fn ∨ Fo ∨ …) � ¬(¬Fm ∧ ¬Fn ∧ ¬Fo ∧ …) � ¬�x¬Fx

We’ve already met the central type of equivalence, relating disjunctions to
negated conjunctions, in §11.8. Analogously

�xFx � (Fm ∧ Fn ∧ Fo ∧ …) � ¬(¬Fm ∨ ¬Fn ∨ ¬Fo ∨ …) � ¬�x¬Fx

We could therefore do quantificational logic using a language with just one of
the quantifiers (universal or existential, take your pick) just as we could do truth–
functional logic using just one of conjunction or disjunction (plus negation, see
§11.9). But just as it is customary and convenient to use both conjunction and dis-
junction in PL, so it is customary and convenient to use both quantifiers in QL.

Note we also have 

¬�xFx �  ¬¬�x¬Fx �  �x¬Fx

That gives us two simple translations of ‘No-one is wise’. We could have added a
third basic style of quantifier to QL, e.g. using the symbol ‘N’, so that NvCv
holds when nothing is C. But that would make the language more complicated,
and increase the number of rules needed later for dealing with quantifier
arguments. Yet the gain would be trivial, since we can so easily express the ‘no’
quantifier using ‘�’ or ‘�’ with negation. The gain isn’t worth the cost.

23.2 Expressing restricted quantifications
We saw that when we put QL to use, we need to fix the interpretation of the rel-
evant constants and predicates, and we also have to fix the intended domain of
discourse. Further, these interpretations must all be kept fixed throughout a par-
ticular application. After all, even the inference

�xFx ∴  �xFx

can have a true premiss and a false conclusion if we are allowed to change the
domain in mid-argument.

Suppose we want to translate the claim

Some philosopher are logicians.

We could take the domain of discourse to be philosophers; and then we’d be
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able to translate this by something like ‘�xGx’ (where ‘G’ is interpreted as mean-
ing logician). Likewise, suppose we want to translate

All logicians are rational.

Taking this just by itself, we could select a different interpretation of QL, with
the domain this time being logicians; and then the translation could be simply
e.g. ‘�xHx’. But suppose we want to encode the whole argument

Some philosopher are logicians, all logicians are rational; so some
philosophers are rational.

We can’t simultaneously take the domain of discourse to be the philosophers and
also to be the logicians (for these are distinct, if overlapping, groups). The trans-
lation of the whole argument into a single version of QL must use a common
domain while rendering all the quantifiers. So how can we do this?

We start by selecting a domain of discourse wide enough to include everything
we are interested in. In this case, the whole domain of people will do. We then
need some way of expressing the restrictions on the generalizations that occur in
the premisses and conclusion. But plausibly we have

Some philosophers are logicians � (Someone x is such that)(x is a
philosopher and x is a logician).

So, using ‘F’ for philosopher, we might translate the first premiss as

�x(Fx ∧ Gx).

And arguably we have also have

All logicians are rational � (Everyone x is such that)(if x is a logician,
then x is rational).

Here, the conditional very plausibly is just a material conditional. The claim that
all logicians are rational makes no stronger claim about the connection between
being a logician and being rational than that, for anyone you choose, either they
aren’t a logician at all or they are rational. So the second premiss translates as

�x(Gx ⊃ Hx).

Then the whole argument can be rendered as

�x(Fx ∧ Gx), �x(Gx ⊃ Hx) ∴ �x(Fx ∧ Hx)

where now the interpretation of the predicate letters and the assignment of the
domain of discourse is, as we want, stable throughout.

Note though that one thing is plainly lost in this translation. The English
plurals in ‘some philosophers are logicians’ surely indicate there’s more than
one. The standard translation in QL says only that there is at least one. Later,
when we come to look at QL=, we’ll see how to express ‘more than one’ with the
resources of that richer language. But for the moment, we’ll swallow the slight
loss of content in the translation; it’s worth the gain in simplicity. 

Generalizing, the standard way of translating restricted quantifications into
QL is as follows:
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All A are B translates as a wff of the form �v(Av ⊃ Bv)
Some A is/are B translates as a wff of the form �v(Av ∧ Bv)

Here we are using italicized schematic variables in the obvious double way (with
‘A’ re-used on the right for the QL translation of English predicate indicated by
‘A’ on the left, and so on). 

But why does the translation of the restricted ‘all’ proposition need a condi-
tional, while the ‘some’ proposition needs a conjunction? Three observations
should help clarify this point:

• Translating (1) ‘all logicians are rational’ (for example) as (1′) ‘�x(Gx ∧ Hx)’
would plainly be wrong; (1′) says that everyone is a rational logician! 

• Translating (2) ‘some philosophers are logicians’ as (2′) ‘�x(Fx ⊃ Gx)’ must
also be wrong. Suppose that no philosophers are logicians, but also that
there is some non-philosopher called ‘n’ in QL. Then (2) is false by hypoth-
esis. But ‘(Fn ⊃ Gn)’ would be true, in virtue of having a false antecedent. So
its existential generalization (2′) would also be true (see §22.4). Hence (2)
and (2′) aren’t true in the same circumstances.

• Thirdly, note we have e.g.

Not all logicians are irrational � some logicians are rational.

Compare the QL wffs

¬�x(Gx ⊃ ¬Hx) � �x¬(Gx ⊃ ¬Hx) � �x(Gx ∧ Hx)

Here the first wff is equivalent to the second by the �–� relation we met in
§23.1, and the second is equivalent to the third given the way negated ‘⊃’s
turn into ‘∧’s. Assume the left-hand wff translates the ‘not all’ claim. Then
we have to translate the ‘some’ claim by the right-hand wff, the existential
quantification of a conjunction, if the equivalences are to come out right.

Finally what about restricted ‘no’ propositions, such as ‘no logician is
rational’? There are two ways to go, for compare

No logician is rational � It isn’t the case that some logician is rational
� ¬�x(Gx ∧ Hx)

No logician is rational � Every logician is non-rational
� �x(Gx ⊃ ¬Hx).

Generalizing again, we have

No A is B translates as a wff of the form ¬�v(Av ∧ Bv) or �v(Av ⊃ ¬Bv)

23.3 Existential import
Leaving aside that issue about plurals noted in the last section, how far do these
standard translations really capture the content of ordinary-language restricted
quantifications? Consider these two propositions:
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(1) All logicians are rational.
(2) Some logicians are rational.

Does (1) logically entail (2)? And compare their translations into QL:

(1′) �x(Gx ⊃ Hx)
(2′) �x(Gx ∧ Hx)

Does (1′) logically entail (2′)?
The second question is easily answered. Suppose it happens that there are no

logicians in the domain. Then ‘G’ is true of nothing in the domain. Then there is
nothing of which ‘G’ and ‘H’ are jointly true. So (2′) is false. But everyone is such
that (he is a logician ⊃ he is rational), because the antecedent of the material
conditional is always false and hence the conditional always true. So (1′) is then
true. Hence, there is a way of making (1′) true and (2′) false. So (1′) doesn’t logi-
cally entail (2′).

To be sure, (1′) plus the existential assumption ‘�xGx’ will entail (2′). But the
point is that this additional existential assumption is needed.

What, however, of the ordinary language claims? Traditionally it is supposed
that (1) does entail (2) – i.e. that if it can correctly be said that all logicians are
rational, then there must be some logicians to be rational. On this view, then, the
universal quantification in the vernacular (1) is supposed already to have ‘exis-
tential import’, i.e. to embody the assumption that there are some logicians. And
if that is correct, the standard translation which renders (1) by something like
(1′) which lacks existential import is inadequate. 

Still, we might wonder whether tradition gets its right. Consider for example
Newton’s second law in the form

(3) All particles subject to no net force have constant velocity.

Surely to accept this law isn’t to commit ourselves to the actual existence of any
such particles: doesn’t the law remain true even if, as it happens, every particle is
subject to some net force? Another example: couldn’t the notice

(4) All trespassers will be prosecuted!

be true even if there are no trespassers; indeed it might be because (4) is true that
there are no trespassers.

We needn’t now argue the issue whether ordinary language All A are B propo-
sitions are actually ambiguous between uses that have existential import (and so
entail the existence of As) and uses that don’t. Let’s just make it clear that the
default translation of such propositions into QL goes against tradition and
supposes that they don’t necessarily have existential import. We can always
explicitly add back an explicit existential clause of the form �vAv into the trans-
lation of All A are B if, on a particular occasion, we think it really matters.

23.4 More on variables
What’s the relation between ‘�xFx’, ‘�yFy’, and ‘�zFz’? Well, fix the domain, fix
the interpretation of the predicate ‘F’, and these all say exactly the same thing.



23.5 ‘Revealing logical form’   215

Alphabetic choice of variables is neither here nor there. Why so?
Well, recall that what matters about variables is the way they bind quantifiers

to particular slots in predicate expressions. They serve to mark links between
quantifiers and places in predicates; it doesn’t matter exactly how we mark the
links, so long as the patterns of linkage remain the same. Thus take the follow-
ing wffs:

(i) �x�yLxy
(ii) �y�zLyz
(iii) �y�xLyx
(iv) �y�xLxy

(i), (ii) and (iii) differ only in using different variables to mark exactly the same
pattern of linkages between the quantifiers and the slots in the predicate ‘L’. In
each case, the initial universal quantifier gets tied to the first slot in the predicate,
and the existential quantifier to the second slot. The wffs say exactly the same,
e.g. that everyone has a beloved. (iv) expresses a quite different proposition, e.g.
the thought that everyone is herself a beloved. To represent the common propo-
sition expressed by (i) to (iii), we could in fact use a variable-free notation along
the lines of

and then we can expresses the thought (iv) thus:

Indeed, as Quine has shown, we can not only do without the variables, but
even do without these braces joining quantifiers to slots in predicates. So the
standard quantifier/variable notation for expressing generality is not the only
possible notation that would serve our logical purposes of expressing general
propositions without ambiguity. Still, any satisfactory logical symbolism for gen-
erality must embody the fundamental insights so perspicuously captured by the
standard notation, namely that quantifiers are crucially different from names,
and can be thought of as operators applying to simpler expressions, where it is
crucial which order these operators get applied in.

23.5 ‘Revealing logical form’
In the next chapter, the translational ideas explored in this chapter will be
applied to a series of increasingly complex examples. But first it is worth pausing
to make some general methodological comments on what we are up to.

Typical ordinary-language quantifier phrases like ‘all men’, ‘some philoso-
phers’, ‘none of the women in the logic class’ express restricted generalizations,
running over some explicitly characterized class of things. And the class of things
we are generalizing about often shifts between premisses and conclusion as we
develop an argument. In QL, by contrast, our two basic quantifiers are inter-

�� L_ _ 

�� L_ _ 
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preted as running over some domain held fixed throughout an argument (and
the domain is not explicitly characterized). To replicate in QL the content of
everyday restricted quantifications, we must thus use conditionals and conjunc-
tions to carve out the relevant subclasses from the wider domain.

Here’s another divergence between QL and English. Compare ‘Socrates is a
man’, ‘Socrates is pale’, ‘Socrates is walking’. The first proposition involves a
term which picks out a kind of being, man, and says that Socrates belongs to this
kind. It is a response to the question ‘What kind of thing is Socrates?’. By con-
trast, the second proposition isn’t a response to that question; to be told that
Socrates is pale doesn’t tell you what kind of being Socrates is (a man, a dog, an
elephant, a mountain …). Rather it is an answer to the question ‘What is Socra-
tes like?’. The third proposition is an answer to a different question again, i.e.
‘What is Socrates doing?’. And there’s a long tradition going back to Aristotle
which takes such distinctions marked in ordinary language to track metaphysi-
cally important differences between kinds, properties and activities. But QL
cheerfully flattens any such distinctions, translating the English propositions by
(as it might be) ‘Fn’, ‘Gn’, ‘Hn’.

Now, when it comes to evaluating QL arguments, we will find that the fact
that QL uses unrestricted quantifiers, and flattens distinctions between attribu-
tions of membership of a kind and attributions of other properties, all makes for
a very neat simplicity. The price we pay is a certain distance from the semantic
structures of ordinary English. But given our overall approach, that’s not a seri-
ous objection. 

Some writers suppose that, when representing propositions in a formal
language like QL, we are aiming to describe structure that it is already there in
ordinary language, but just not visible to the naked eye. Early in the last century,
we find Bertrand Russell and Ludwig Wittgenstein gripped by the idea that the
surface look of ordinary language disguises the true ‘logical form’ of proposi-
tions. They proposed that a central concern of philosopher-logicians should be
to ‘analyse’ propositions to reveal this putative underlying structure. And
following their lead, some logicians liked to think (perhaps some still like to
think) that the now standard notations of logic perspicuously represent the true
semantic structures hidden under the surface complexities of language.

If you take some such line, then it is a real embarrassment that standard QL
apparently discerns ‘and’s and ‘if’s buried in common-or-garden generalizations
(and flattens those distinctions we mentioned). Is it really plausible to suppose,
for example, that when we say ‘All logicians are rational’, we are already mean-
ing to generalize – in some beneath-the-surface sort of way – over conditionals
holding true in a wider domain?

However, that kind of question just doesn’t arise on our approach. We aren’t
pretending that PL, QL and the like follow the contours of a logical skeleton
underlying ordinary discourse. We are taking a much more modest line. The
claim is simply that, for certain purposes, it is good strategy to avoid the messy
complexities of English usage (e.g. in respect of expressing generality) by (1)
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translating arguments into a nicely behaved, unambiguous language, and then
(2) evaluating the arguments in their tidily regimented form. For this strategy to
work, it is not necessary to suppose that the artificial languages reveal structures
already somehow present in English. It is enough that wffs in the new language
behave in truth-relevant ways which sufficiently respect the contents of the
claims made in the original English. By those standards, QL is a pretty resound-
ing success.

Whenever we deploy our overall strategy (whether in propositional logic,
quantificational logic, the modal logic of necessity, or elsewhere), we’d ideally
like both very direct translations into our relevant artificial language L, and a
simple L which is easy to manipulate. But the more ‘natural’ we try to make the
translations between English and L, the greater the number of fine semantic dis-
tinctions we may need to mark in L, and so the more complex everything will
get. And that will mean, in particular, increased complexity when we come to
evaluate arguments in L. In practice, then, we are often faced with a trade-off
between closeness of translation and ease of logical manipulation. We’ve seen
this before when we adopted the material conditional, giving us the simplicity of
truth-functional logic for PLC, but at the price of some rather dubious-seeming
translations of everyday ‘if’s. And again, in the present case, there’s a trade-off.
We buy the relative simplicity of QL at the price of having to shoehorn our
everyday restricted quantifications into a language where such quantifications
have to be mocked up using conjunctions and conditionals, and at the price too
of obliterating some metaphysically significant distinctions between kinds of
predication. But the price is right: the translations, although sometimes a little
cumbersome, enable us to capture the truth-relevant content of ordinary claims
well enough to assess the validity of a great number of arguments relying on the
presence of quantifiers. 

23.6 Summary
• The quantifiers of QL can be interdefined using negation, but we will con-

tinue to deploy both.

• The quantifiers of QL run over some given domain of discourse. To repli-
cate the content of everyday restricted quantifications, we use conditionals
and conjunctions to carve out the relevant restricted subclasses from the
wider domain. Thus

All A are B translates as �v(Av ⊃ Bv)
Some A is/are B translates as �v(Av ∧ Bv)
No A is B translates as ¬�v(Av ∧ Bv) or �v(Av ⊃ ¬Bv)

• Since QL is not being presented as somehow representing or encoding the
‘real’ underlying logical structure of ordinary language, the fact that we
need to use conditionals and conjunctions in expressing restricted quantifi-
cations is no objection.
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Exercises 23
A Suppose ‘m’ stands for Socrates, ‘n’ stands for Plato, ‘o’ stands for Aristo-

tle, ‘Fx’ means x is a philosopher, ‘Gx’ means x is wise, ‘Mxy’ means x
taught y. Take the domain of discourse to consist of people. And then
translate the following into QL:

1. Socrates taught Plato and Plato taught Aristotle.
2. Aristotle taught neither Socrates nor Plato.
3. Plato taught someone.
4. Some philosophers are wise.
5. Some wise people aren’t philosophers.
6. No one taught Socrates.
7. If Socrates taught Plato, then someone taught Plato.
8. Whoever Socrates taught is wise.
9. Any philosopher who was taught by Plato taught Aristotle.
10. No wise philosopher was taught by Aristotle.

B Which of the following pairs of wffs are equivalent (i.e. imply each other),
and why? When they aren’t equivalent, give interpretations to illustrate the
non-equivalence.

1. �x�y�zRyxz; �z�y�xRyzx
2. �x�y�zRyxz; �z�x�yRxyz
3. (�xFx ⊃ Fn); (�zFz ⊃ Fn)
4. (�xFx ⊃ �xFx); (�zFz ⊃ �yFy)
5. �x�yLxy; �y�xLxy
6. �x�yLxy; �y�xLxy
7. �x(Fx ∧ Gx); (�xFx ∧ �xGx)
8. �x(Fx ∨ Gx); (�xFx ∨ �xGx)
9. �x(Fx ∧ Gx); (�xFx ∧ �xGx)
10. �x(Fx ∨ Gx); (�xFx ∨ �xGx)

C We can render ‘Plato and Aristotle are philosophers’ by e.g. ‘(Fm ∧ Fn)’.
Why can’t we render ‘Plato and Aristotle are classmates’ by something like
‘(Gm ∧ Gn)’? Consider other cases of predicates F where we can’t render
something of the form ‘Plato and Aristotle are F’ by something of the type
‘(Fm ∧ Fn)’. What can be learnt from such cases about the expressive limi-
rations of QL?



The best way to get really familiar with the language QL is to tackle some more
translation exercises. That’s the business of this chapter. Some of the examples
get fairly tricky. We rarely need to tangle with such complex cases in practice:
the point is just to show how the translations can be done with a bit of care.

24.1 Translating English into QL
Let’s adopt the following interpretations:

‘m’ means Maldwyn
‘n’ means Nerys
‘o’ means Owen
‘F’ means is a man
‘G’ means is a woman
‘L’ means … loves …
‘M’ means … is married to …
‘R’ means … prefers … to …
The domain of discourse is to be all people.

And we’ll translate the following reports of Welsh affairs:

1. Whoever is loved by Owen is loved by Maldwyn too.
2. Every woman who loves Maldwyn is loved by Owen.
3. Maldwyn loves some woman who loves Owen.
4. No man who loves Nerys loves Owen or Maldwyn.
5. Every man loves someone.
6. Everyone Owen loves is loved by someone Nerys loves.
7. No woman loves every man.
8. No woman loves any man.
9. If everyone loves Nerys then Owen does.
10. If anyone loves Nerys then Owen does.
11. Someone who is married loves Nerys.
12. Anyone who is married loves someone they aren’t married to.
13. A married man only loves women.

24
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14. Not every married man loves any woman who loves him.
15. Nerys loves any married men who prefer her to whomever they

are married to.

Do pause here to see how many of these you can translate given our explana-
tions so far. But don’t worry if that’s not a lot at this stage.

We’ll take the examples in turn, and proceed fairly systematically. 

• Stage one We re-express the claim in English using prefixed-quantifiers-
plus-variables (along the lines of §21.4). Typically we’ll need to use
restricted quantifiers – either simple ones such as ‘some man x is such that’,
‘every woman y is such that’, or else ones involving relative clauses like
‘everyone x who is a man is such that’ or ‘some woman y who loves Owen
is such that’.

• Stage two We then translate these restricted quantifiers into QL following
§23.2. So for the simpler cases we use e.g. the following patterns:

(Every man x is such that)Cx � �x(Fx ⊃ Cx)
(Some woman y is such that)Cx � �y(Gy ∧ Cx)
(No man z is such that)Cx � �z(Fz ⊃ ¬Cx) or ¬�z(Fz ∧ Cx).

Here and below, our new type of arrow ‘�’ can be read as ‘translates as’;
and we are again using the same schematic letter for double duty in the
obvious way.

And what about the cases with relative clauses? ‘Everyone x who is F is
such that …’ is equivalent to ‘Everyone x is such that, if x is F, then …’, and
gets translated the same way. ‘Some woman y who loves Owen’ is equiva-
lent to ‘Someone y who-is-a-woman-and-loves-Owen’: so we can express
this more complex quantification by using a conjunctive restrictive clause. 

Note, as we work through the second stage en route to the final result, we will
allow ourselves to write down some unholy mixtures of English and QL (rather
than always doing the translation in one fell swoop). Purists will hate this. Let
them fuss away! These bilingual intervening stages are a useful heuristic, a very
helpful ladder which can (to borrow a phrase) be thrown away once climbed.
Such intervening stages can be skipped as soon as you can do without them. 

1. Whoever is loved by Owen is loved by Maldwyn too 
� (Every x who is loved by Owen is such that)Maldwyn loves x
� (Every x who is loved by Owen is such that) Lmx
� �x(Lox ⊃ Lmx)

2. Every woman who loves Maldwyn is loved by Owen
� (Every woman x who loves Maldwyn is such that) x is loved by

Owen
� (Every woman x who loves Maldwyn is such that) Lox
� �x((Gx ∧ Lxm) ⊃ Lox)

for x is a-woman-who-loves-Maldwyn just if x is a woman and x loves
Maldwyn.
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3. Maldwyn loves some woman who loves Owen
� (Some woman x who loves Owen is such that) Maldwyn loves x
� (Some woman x who loves Owen is such that) Lmx
� �x((Gx ∧ Lxo) ∧ Lmx)

4. No man who loves Nerys loves Owen or Maldwyn
� (No man x who loves Nerys is such that) x loves Owen or 

Maldwyn
� (No man x who loves Nerys is such that)(Lxo ∨ Lxm)
� ¬�x((Fx ∧ Lxn) ∧ (Lxo ∨ Lxm))

or �x((Fx ∧ Lxn) ⊃ ¬(Lxo ∨ Lxm))

5. Every man loves someone
� (Every man x is such that)(someone y is such that) x loves y
� (Every man x is such that)(someone y is such that) Lxy
� (Every man x is such that) �yLxy
� �x(Fx ⊃ �yLxy)

The translation ‘�x�y(Fx ⊃ Lxy)’ would in fact do as well (see §3 below on
the thorny topic of moving quantifiers around). The other, very much less
natural, reading of the English can be rendered

   � (Someone y is such that)(every man x is such that) x loves y
� (Someone y is such that)(every man x is such that) Lxy
� (Someone y is such that) �x(Fx ⊃ Lxy)
� �y�x(Fx ⊃ Lxy)

6. Everyone Owen loves is loved by someone Nerys loves
� (Everyone x whom Owen loves is such that)(someone y who
is loved by Nerys is such that) x is loved by y
� (Everyone x whom Owen loves is such that)(someone y who
is loved by Nerys is such that) Lyx
� (Everyone x whom Owen loves is such that)�y(Lny ∧ Lyx)
� �x(Lox ⊃ �y(Lny ∧ Lyx))

That at any rate captures the more natural reading. The other possible read-
ing will come out as

�y(Lny ∧ �x(Lox ⊃ Lyx))

7. No woman loves every man
� (No woman x is such that)(every man y is such that) x loves y
� (No woman x is such that)�y(Fy ⊃ Lxy)
� ¬�x(Gx ∧ �y(Fy ⊃ Lxy))

or �x(Gx ⊃ ¬�y(Fy ⊃ Lxy))

8. No woman loves any man
� (No woman x is such that)(some man y is such that) x loves y
� (No woman x is such that)�y(Fy ∧ Lxy)
� ¬�x(Gx ∧ �y(Fy ∧ Lxy))

or �x(Gx ⊃ ¬�y(Fy ∧ Lxy))
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Or at least, that’s the more obvious reading. But consider the conversation
‘Nerys seems to love any man at all!’, ‘No! No woman (not even Nerys)
loves any man’. So (8) can sometimes be read as saying the same as (7).

9. If everyone loves Nerys then Owen does
� If (everyone x is such that) x loves Nerys, then Owen loves Nerys
� If �xLxn, then Lon
� (�xLxn ⊃ Lon)

Note the way this is bracketed: the proposition we are translating is overall a
conditional, which has a universally quantified antecedent. Compare and
contrast:

�x(Lxn ⊃ Lon)

This wff is true in different circumstances. For suppose that Maldwyn loves
Nerys and Owen doesn’t. Then ‘�xLxn’ and ‘Lon’ are both false, so the
conditional ‘(�xLxn ⊃ Lon)’ is true. However, (Lmn ⊃ Lon) is false: so its
universal quantification ‘�x(Lxn ⊃ Lon)’ is false too. 

10. In most contexts, ‘If anyone loves Nerys then Owen does’ says the same as
‘If there’s someone or other who loves Nerys, then Owen loves her’. So:

If anyone loves Nerys then Owen does
� If (someone x is such that) x loves Nerys, then Owen loves Nerys
� If �xLxn, then Lon
� (�xLxn ⊃ Lon)

But consider the context ‘Anyone loves Nerys, and if anyone loves Nerys,
then Owen does.’ Here it seems that (10) can be read as expressing the
same message as (9). 

11. Someone who is married loves Nerys
� (Someone x who is married is such that) x loves Nerys
� (Someone x who is married is such that) Lxn
� �x(x is-married ∧ Lxn)

Now, we have in our QL vocabulary the two-place predicate ‘M’ meaning
… is married to …. But how do we translate the one-place predicate ‘… is
married’? Well, to be married is to be married to someone. So ‘x is married’
can be translated ‘�yMxy’. So we can finish the translation thus:

� �x(�yMxy ∧ Lxn)

12. Anyone who is married loves someone they aren’t married to
� (Everyone x who is married is such that)(there is someone y, who

x isn’t married to, such that) x loves y
� (Everyone x who is married is such that) �y(¬Mxy ∧ Lxy)
� �x(x is-married ⊃ �y(¬Mxy ∧ Lxy))
� �x(�zMxz ⊃ �y(¬Mxy ∧ Lxy))

It is very good policy, when introducing new variables into a wff, always to
use letters that don’t already appear in the wff. That way, tangles can’t
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arise. But in fact, as the official syntax in Chapter 26 will make clearer, at
the last step it would have been permissible to use ‘y’ again and write

� �x(�yMxy ⊃ �y(¬Mxy ∧ Lxy))

Why? Roughly speaking, because these two existential quantifications are
isolated from each other, their scopes do not overlap, and the local cross-
linking of variables and quantifiers is quite unambiguous. More about that
anon.

13. A married man only loves women 
� (Every man x who is married is such that)(x loves only women)
� (Every man x who is married is such that)(everyone y is such that)

if x loves y, y is a woman.

On the natural reading, ‘a married man’ is universally generalizing; and we
are reading ‘x only loves women’ as saying anyone x loves is a woman,
leaving it open as to whether there is anyone x loves. So, continuing,

� (Every man x who is married is such that)�y(Lxy ⊃ Gy)
� �x((Fx ∧ x is-married) ⊃ �y(Lxy ⊃ Gy))
� �x((Fx ∧ �zMxz) ⊃ �y(Lxy ⊃ Gy)).

14. Not every married man loves any woman who loves him
� It is not the case that (every man x who is married is such that)

(every woman y who loves x is such that) x loves y
� It is not the case that (every man x who is married is such that)

(every woman y who loves x is such that)Lxy
� ¬(Every man x who is married is such that)�y((Gy ∧ Lyx) ⊃ Lxy)
� ¬�x((Fx ∧ �zMxz) ⊃ �y((Gy ∧ Lyx) ⊃ Lxy)).

15. A final example for the moment (and don’t fret too much about this kind
of contorted case: it is here to illustrate the reach of our step-by-step trans-
lation techniques, and not because we’ll frequently need to be assessing
arguments with premisses this complex!)

Nerys loves any married men who prefer her to whomever they are mar-
ried to

� (Every x who is-a-married-man and who prefers-Nerys-to-
whomever-x-is-married-to is such that) Nerys loves x.

The quantifier is restricted here by two conjoined conditions. The first one
is now familiar, so we get to

� �x({(Fx∧ �zMxz)∧ [x prefers-Nerys-to-whomever-x-is-married-to]}
⊃ Lnx)

� �x({[Fx ∧ �zMxz] ∧ �y[if x is married to y then x prefers Nerys to y]}
⊃ Lnx)

� �x({[Fx ∧ �zMxz] ∧ �y[Mxy ⊃ Rxny]} ⊃ Lnx).

And that, surely, is enough examples of English-to-QL translation to be going on
with (there are plenty more in the exercises!).
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24.2 Translating from QL
Translating from an unfamiliar language tends to be a lot easier than translating
into that language. Once we have learnt to spot the devices QL uses for express-
ing restricted quantifications, it is usually pretty easy to decode the message. And
if the worst comes to the worst, and we are faced with a dauntingly complex
wff, we can always simply reverse the step-by-step procedure that we have just
been using. To illustrate, now go back and read through each of the examples in
the last section again, but this time starting with the QL wff, and working back
up to its rendition into English. 

Here’s just one more example. Consider 

�x(�y(Mxy ∧ Lyx) ⊃ ¬�y(Lxy ∧ �z(Mxz ⊃ Rxyz)))

and let’s suppose the QL-to-English dictionary is as in §24.1. Overall, this wff
has the form �x(A(…x…) ⊃ ¬B(…x…)), so says No x which is A is such that x
is B. As a first stage, then, we have

No x who is such that �y(Mxy ∧ Lyx) is such that �y(Lxy ∧ �z(Mxz⊃ Rxyz))

which is readily interpreted as

No x who is married to someone who loves them is such that �y(Lxy ∧
�z(Mxz ⊃ Rxyz)))

which in turn decodes as

No one x, who is married to someone who loves them, is such that there’s
someone y they love who is such that �z(Mxz ⊃ Rxyz).

That says

No one x, who is married to someone who loves them, is such that there’s
someone y they love who is such that x prefers y to anyone x is married to.

Or in unaugmented (though not quite unambiguous) English

No one who is married to someone who loves them loves someone they
prefer to whomever they are married to.

24.3 Moving quantifiers
Leave aside the case of translating ‘no’ sentences, where we always have (at
least) two equally good options. Leave aside too the point that the alphabetical
choice of variables – as in ‘�xFx’ versus ‘�yFy’ – is arbitrary. There are other
cases too where there can be distinct but equally good translations. To take a
very simple example, suppose we want to translate ‘Someone loves someone’.
Then there is nothing to choose between ‘�x�yLxy’ and ‘�y�xLxy’. Similarly,
there is nothing to choose between ‘�x�yLxy’ and ‘�y�xLxy’. True, we can’t
unrestrictedly swap quantifiers around; indeed, the whole rationale of our nota-
tion is that it allows us to unambiguously mark the difference between the mes-
sages expressed by e.g. ‘�x�yLxy’ and ‘�y�xLxy’. However, immediately
adjacent quantifiers of the same kind can be interchanged.
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To labour the point, consider the case where we have neighbouring existential
quantifiers. Reading QL as in §24.1, ‘�yLny’ attributes to Nerys the property of
loving someone. When we quantify in, we get ‘�x�yLxy’, which says that some-
one has the property that ‘�yLny’ attributes to Nerys (cf. §22.3), i.e. the prop-
erty of loving someone. So, ‘�x�yLxy’ holds just if there is a pair of people in the
domain (not necessarily distinct) such that the first loves the second. Likewise
‘�xLxn’ attributes to Nerys the property of being loved by someone. Quantifying
in, we get ‘�y�xLxy’, which says that someone has the property that ‘�xLxn’
attributes to Nerys, i.e. the property of being loved by someone. So ‘�y�xLxy’
holds just if there is a pair of people in the domain (not necessarily distinct) such
that the first loves the second. That’s the same truth-condition as for ‘�x�yLxy’.
And the point generalizes to any pair of wffs of the form �v�wC(…v…w…),
�w�vC(…v…w…). Similarly for pairs of universal quantifiers.

Consider next another sort of case. Suppose we want to translate ‘Nerys is a
woman everyone loves’. The following will in fact do equally well:

(Gn ∧ �xLxn) or �x(Gn ∧ Lxn)

The latter holds just in case everyone x is such as to make it true that (Nerys is a
woman and x loves her), which holds just in case Nerys is a woman loved by
everyone, which is what the first says. More generally (borrowing ‘�’ to express
equivalence), we have

(A ∧ �vB(…v…)) � �v(A ∧ B(…v…))

if the variable v doesn’t occur in A. The order of the conjuncts of course doesn’t
matter. Similarly, we have

(A ∧ �vB(…v…)) � �v(A ∧ B(…v…))

if the variable v doesn’t occur in A. Return to example (11) in §1, ‘Someone
who is married loves Nerys’. We gave this translation:

�x(�yMxy ∧ Lxn)

Now we see it would have been equally legitimate to write

�x�y(Mxy ∧ Lxn)

given the variable ‘y’ does not occur in the second conjunct. 
And we can do similar manipulations with disjunctions. Suppose we want to

translate ‘Either Owen loves Nerys or nobody does’. We could equally well write

(Lon ∨ �x¬Lxn) or �x(Lon ∨ ¬Lxn)

More generally, we have 

(A ∨ �vB(…v…)) � �v(A ∨ B(…v…))

where v doesn’t occur in A, and the order of the disjuncts doesn’t matter. Like-
wise, we have

(A ∨ �vB(…v…)) � �v(A ∨ B(…v…))

The case where we really have to be careful involves conditionals. We have, as
you might expect,
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(A ⊃ �vB(…v…)) � �v(A ⊃ B(…v…))
(A ⊃ �vB(…v…)) � �v(A ⊃ B(…v…))

However, note very carefully the following:

(�vB(…v…) ⊃ A) � �v(B(…v…) ⊃ A)
(�vB(…v…) ⊃ A) � �v(B(…v…) ⊃ A)

Extracting a universal quantification from the antecedent of a conditional (when
the variable doesn’t occur in the consequent) turns it into an existential quantifi-
cation. This shouldn’t be surprising when you recall that antecedents of condi-
tionals are like negated disjuncts – remember (A ⊃ B) is equivalent to (¬A ∨ B)
– and recall too that when quantifiers tangle with negation they ‘flip’ into the
other quantifier. Consider, for example, the following chain of equivalences:

(�xFx ⊃ Fn)�  (¬�x Fx ∨ Fn) � (�x¬Fx ∨ Fn) � �x(¬Fx ∨ Fn)
� �x(Fx ⊃ Fn).

But having noted the various equivalences in this section for the record, do be
very, very cautious in using them (careless application can lead to trouble)! 

24.4 Summary
• Translation into QL can proceed semi-automatically, if (as a half-way

house) we transcribe vernacular sentences into an augmented English
deploying quantifier operators of the kind ‘Every/some/no A, v, which is B
is such that’, and then use the schemas:

(Every A, v, which is B is such that)Cv � �v((Av ∧ Bv) ⊃ Cv)
(Some A, v, which is B is such that)Cv � �v((Av ∧ Bv) ∧ Cv)
(No A, v, which is B is such that)Cv � �v((Av ∧ Bv) ⊃ ¬Cv)

or ¬�v((Av ∧ Bv) ∧ Cv)

• The order of neighbouring quantifiers can be swapped if the quantifiers are
of the same kind. And quantifiers inside conjunctions and disjunctions can,
in certain circumstances, be ‘exported’ outside the conjunction/disjunction.

Exercises 24
A Suppose ‘m’ denotes Myfanwy, ‘n’ denotes Ninian, ‘o’ denotes Olwen, ‘Fx’

means x is a philosopher, ‘Gx’ means x speaks Welsh, ‘Lxy’ means x loves y,
and ‘Rxyz’ means that x is a child of y and z. Take the domain of discourse
to consist of human beings. Translate the following into QL:

1. Ninian is loved by Myfanwy and Olwen.
2. Neither Myfanwy nor Ninian love Olwen.
3. Someone is a child of Myfanwy and Ninian.
4. No philosopher loves Olwen.
5. Myfanwy and Ninian love everyone.
6. Some philosophers speak Welsh.
7. No Welsh-speaker who loves Myfanwy is a philosopher.
8. Some philosophers love both Myfanwy and Olwen.
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9. Some philosophers love every Welsh speaker.
10. Everyone who loves Ninian is a philosopher who loves Myfanwy.
11. Some philosopher is a child of Olwen and someone or other.
12. Whoever is a child of Myfanwy and Ninian loves them both.
13. Everyone speaks Welsh only if Olwen speaks Welsh.
14. Myfanwy is a child of Olwen and of someone who loves Olwen.
15. Some philosophers love no Welsh speakers.
16. Every philosopher who speaks Welsh loves Olwen.
17. Every Welsh-speaking philosopher loves someone who loves Olwen.
18. If Ninian loves every Welsh speaker, then Ninian loves Myfanwy
19. No Welsh speaker is loved by every philosopher.
20. Every Welsh speaker who loves Ninian loves no one who loves Olwen.
21. Whoever loves Myfanwy, loves a philosopher only if the latter

loves Myfanwy too. 
22. Anyone whose parents are a philosopher and someone who loves

a philosopher is a philosopher too.
23. Only if Ninian loves every Welsh-speaking philosopher does

Myfanwy love him.
24. No philosophers love any Welsh-speaker who has no children.

B Take the domain of quantification to be the (the positive whole) numbers,
and let ‘n’ denote the number one, ‘Fx’ mean x is odd, ‘Gx’ means x is even,
‘Hx’ means x is prime, ‘Lxy’ means x is greater than y, ‘Rxyz’ means that x is
the sum of y and z. Then translate the following into natural English:

1. ¬�x(Fx ∧ Gx)
2. �x�y�zRzxy
3. �x�yLyx
4. �x�y((Fx ∧ Ryxn) ⊃ Gy)
5. �x�y((Gx ∧ Rxyn) ⊃ Fy)
6. �x�y((Gx ∧ Fy) ∧ Rxyy)
7. �x�y(�z(Rzxn ∧ Ryzn) ⊃ (Gx ⊃ Gy))
8. �x�y�z(((Fx ∧ Fy) ∧ Rzxy) ⊃ Gz)
9. �x(Gx ⊃ �y�z((Hy ∧ Hz)∧ Rxyz))
10. �w�x�y(((Hx ∧ Hy) ∧ (Lxw ∧ Lyw)) ∧ �z(Rzxn ∧ Ryzn))

C Which of the following pairs are equivalent, and why?

1. �x(Fx ⊃ Gx); (�xFx ⊃ �xGx)
2. �x(Fx ⊃ Gx); (�xFx ⊃ �xGx)
3. �x(Fx ⊃ Gx); (�xFx ⊃ �xGx)
4. �x(Fx ⊃ Gx); (�xFx ⊃ �xGx)

The claim that, e.g., that a wff of the form (A ∨ �xFx) is equivalent to one
of the form �x(A ∨ Fx) depends on our stipulation that the domain of
quantification isn’t empty. Why? Which other equivalences we stated in
§24.3 above also depend on that stipulation?



Our discussion of the language QL has so far been fairly informal and introduc-
tory. We’ll need to nail down the syntax and semantics much more carefully,
beginning in the next chapter. But in this chapter, as an encouragement to keep
going, we’ll continue our informal discussions, and show how to develop the
tree methods we used in PL to prove that some QL inferences are valid. 

25.1 The �-instantiation rule
We introduced PL trees as a fast-track, working-backwards, way of looking for
a ‘bad line’ on a truth-table. However, we soon dropped the explicit talk of valu-
ations, and used unsigned trees. And as we noted in Chapter 20, these unsigned
trees (initially introduced as regimenting metalinguistic arguments) can also be
thought of as reductio proofs couched in PL.

Here’s the main idea again. We are given an inference

A1, A2, …, An ∴ C

and want to know whether it is valid or not. Equivalently, we want to know
whether the set of wffs

A1, A2, …, An, ¬C

is or isn’t inconsistent. We can show that this set is inconsistent (and so the orig-
inal inference is valid) by constructing a closed tree with the wffs in question as
its trunk. The basic principle which guides extending the tree is this: we extend
an open branch by adding to it further wffs which must also be true assuming
that wffs already on the branch are true, splitting the tree into two branches
when we have to consider alternative cases (see §17.1).

We are now going to apply the very same idea to quantificational inferences.
Except this time, we are going to start by thinking of trees the second way – i.e.
not as metalinguistic arguments about valuations but as object-language argu-
ments revealing that a bunch of wffs is inconsistent. (We have to do it this way
round if we are going to introduce trees now, for we haven’t yet met the appro-
priate official story about valuations for QL wffs. In what follows we rely on our
grip on what QL wffs mean, and hence when they are true, given an interpretation

25

Introducing QL trees
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of their basic vocabulary.)
Take our old friend, the argument ‘All philosophers are egocentric; Jack is a

philosopher; hence Jack is egocentric’ (§1.2). Translated into QL, using the obvi-
ous code book, and taking the domain of quantification to be people, we have:

A Fn, �x(Fx ⊃ Gx) ∴ Gn

(We’ll take it that the comma and the inference marker officially belong to QL as
they do to PL.) We show this inference is valid by showing that the premisses
and the negation of the conclusion form an inconsistent set. We start by setting
down those wffs as the trunk of a tree:

(1) Fn
(2) �x(Fx ⊃ Gx)
(3) ¬Gn

Now, how should we extend the tree? Assuming that those wffs are true together,
what else has to be true? Well, if everything in some domain satisfies some con-
dition, then any particular named thing in that domain satisfies that condition.
So if something of the form �vC(…v…v…) is true, then C(…c…c…) will be
true, given c names something in the domain. In this case, we are assuming ‘Fn’
is true, so ‘n’ certainly should name something in the domain (see §22.4). So the
following ought also be true:

(4)  (Fn ⊃ Gn)

And now we can just press on, applying the usual tree-building rule for wffs of
the form (A ⊃ B); and the tree closes.

(5) ¬Fn Gn
✼ ✼

The supposition that the premisses and negated conclusion of A are all true has
been revealed to lead to contradiction. Which shows that the argument A is
indeed valid.

Another simple example. Consider the inference

B �x(Fx ⊃ Gx), (Fn ∧ ¬Hn) ∴ ¬�x(Gx ⊃ Hx)

which renders e.g. ‘All logicians are philosophers; Russell is a logician who isn’t
wise; so not all philosophers are wise.’ Again, we assume that the premisses and
negation of the conclusion are true, and set down those assumptions as the
beginning of a tree.

(1)  �x(Fx ⊃ Gx)
(2)  (Fn ∧ ¬Hn)
(3) ¬¬�x(Gx ⊃ Hx)

Now we can apply the familiar rules for unpacking the connectives:

(4) Fn
(5) ¬Hn
(6) �x(Gx ⊃ Hx)
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So far, so straightforward. To proceed further, we evidently need to extract some
more ‘n’-relevant information. (1) says that any thing x satisfies the condition
‘(Fx ⊃ Gx)’. So this will be true in particular of what ‘n’ denotes. Whence

(7)  (Fn ⊃ Gn)

Similarly from (6) we have

(8)  (Gn ⊃ Hn)

Now it is easy to extract an inconsistency. Using the standard rule for the mate-
rial conditional twice, we have:

(9) ¬Fn Gn

(10) ¬Gn Hn
✼ ✼

And we are done. The assumption that the premisses and the negated conclusion
of B are all true together leads to contradictions however we try to work through
the consequences of that assumption; so the argument is valid.

The new rule for tree-building which we are using here is the �-instantiation
rule (we’ll call it ‘(�)’ for short). The basic idea is that, given a universal quantifi-
cation, then any substitution instance of it must also be true: i.e. any wff which is
got by stripping off the quantifier and replacing the remaining occurrences of the
associated variable with some name of an object in the domain must also be true.
But any constant we are already using is supposed to name something in the
domain; so that motivates the following schematic statement of the rule:

(�) If �vC(…v…v…) appears on an open path, we can add C(…c…c…)
to the foot of the path, where c is any constant which already appears
on the path.

Note very carefully that – basically to keep our trees neatly pruned – this rule
doesn’t insist that we add all such instances of the quantified statement to every
relevant path whenever we deploy it: the rule simply permits us to draw out impli-
cations as and where needed. And because we don’t (and indeed can’t) ‘use up’
all the content of the quantified wff in a single application of (�), we don’t check
off the quantified wff after applying the instantiation rule.

Here’s a slightly more complex example of our new rule in operation, which
illustrates the last point. Consider the argument ‘Every great logician is also a
great philosopher; either Moore or Russell is a great logician; so either Moore or
Russell is a great philosopher.’ Translating this into QL, and keeping the domain
of quantification to be people, the inference is

C �x(Fx ⊃ Gx), (Fm ∨ Fn) ∴ (Gm ∨ Gn)

This is plainly valid. Still, let’s prove that by supposing, in the usual way, that the
premisses are true and the conclusion false, and aiming for contradictions. 

✼
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(1)  �x(Fx⊃ Gx)
(2)  (Fm∨ Fn) √
(3) ¬(Gm∨ Gn) √
(4) ¬Gm
(5) ¬Gn

(6) Fm Fn

We can now use (�) to extract more ‘m’-related information, instantiate (1) with
the name ‘m’ and continue the left-hand branch:

(7) (Fm⊃ Gm) √

(8) ¬Fm Gm
✼ ✼

Next, consider the right-hand branch. We could have added the wff ‘(Fm ⊃ Gm)’
on this branch too, but that won’t do any useful work. What we need to do, in
order to develop the right-hand branch, is extract ‘n’-related information from (1)
using (�) again. Now we see the importance of not having checked off (1), and
marked it as ‘used up’. We hadn’t squeezed all the useful juice out of that quanti-
fied wff; we need to revisit it and extract more implications. This second application
(�) enables us to finish the tree.

�x(Fx ⊃ Gx)
  (Fm ∨ Fn) √

¬(Gm ∨ Gn) √
¬Gm
¬Gn

Fm Fn
(Fm ⊃ Gm) √ (Fn⊃ Gn) √

¬Fm Gm ¬Fn Gn
✼ ✼ ✼ ✼

The tree closes, and the inference C is shown to be valid. 

25.2 Rules for negated quantifiers
We’ve stated the tree-building rule for deducing implications from a wff of the
form �vC(…v…v…). What about a tree-building rule for dealing with a negated
universal quantification, i.e. a wff of the form ¬�vC(…v…v…)?

Well, ¬�vC(…v…v…) is true just so long as �v¬C(…v…v…) is true (see
§23.1). Hence a possible rule for treating negated universal quantifications is to
transform them into equivalent existential quantifications, and pass them over to
be dealt with by the rule (�) for dealing with existential wffs – whatever that rule
later turns out to be!
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Similarly, note that ¬�vC(…v…v…) is true just so long as �v¬C(…v…v…)
is. Hence a possible rule for treating negated existential quantifications is to
transform them into equivalent universal quantifications, and pass them back to
be dealt with by the rule for (�).

We’ll adopt these rules for QL tree-building. Given a wff that starts with a
negated quantifier, we can move the initial negation sign past the quantifier,
swapping ‘�’ with ‘�’ as it passes. Since that transformation extracts all the con-
tent from the original wff – it takes us from one wff to an exactly equivalent wff
– this time we can check it off after the rule is applied. So schematically:

(¬�) If ¬�vC(…v…v…) appears on an open path, then we add the cor-
responding wff �v¬C(…v…v…) to each open path that contains
it, and check it off.

(¬�) If ¬�vC(…v…v…) appears on an open path, then we add the cor-
responding wff �v¬C(…v…v…) to each open path that contains
it, and check it off.

Let’s review two quick examples of these new rules at work. Consider

D ¬�x(Fx ∧ Gx), Fm ∴ ¬Gm

(Perhaps that translates ‘No logicians are wise; Russell is a logician; so Russell
isn’t wise.’) The completed tree looks like this:

(1)  ¬�x(Fx ∧ Gx) √
(2) Fm
(3) ¬¬Gm
(4) �x¬(Fx ∧ Gx)
(5) ¬(Fm∧ Gm) √

(6) ¬Fm ¬Gm
✼ ✼

At (4) we have applied the new (¬�) rule to (1); and then we applied (�) at the
next step, and the tree almost immediately closes. 

Here’s another intuitively valid argument: 

E (Fm ∨ Fn), �x(Fx ⊃ Gx)∴ �xGx

(Compare: ‘Either Jack or Jill is a student; all students are poor; hence there is
someone who is poor.’). The tree starts in the obvious way

(1)  (Fm ∨ Fn) √
(2) �x(Fx ⊃ Gx)
(3) ¬�xGx √
(4) �x¬Gx

(5) Fm Fn
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We now proceed as on the tree for C. First we want to instantiate the two uni-
versal quantifications (2) and (4) with ‘m’ to get ‘m’-related information useful
for extending the left-hand branch. But there would be no point in adding the
resulting wffs to the right-hand branch too (though it wouldn’t be wrong to do
so, just redundant). Rather, we need to extract ‘n’-related information useful for
the right-hand branch. So we continue:

(6) (Fm ⊃ Gm) (Fn ⊃ Gn) (from 2)
(7) ¬Gm ¬Gn (from 4)

Then applying the rule for the conditional twice will yield:

 (8) ¬Fm Gm ¬Fn Gn

25.3 The �-instantiation rule
Consider next the following argument

F �xFx, �x(Fx ⊃ Gx) ∴ �xGx

(Perhaps: ‘Someone is a great logician; all great logicians are cool; hence some-
one is cool’). Assume that the premisses and the negation of the conclusion are
all true, and then apply the rule (¬�), and we get

(1)  �xFx
(2) �x(Fx ⊃ Gx)
(3) ¬�xGx √
(4) �x¬Gx

where we have applied the (¬�) rule to get to line (4). 
(1) tells us that at least one thing in the domain satisfies ‘F’. Now, there can’t

be any harm in picking out one of these things and arbitrarily dubbing it. If the
original wffs including (1) are consistent, no contradiction can ensue just from
this act of selecting and naming. Let’s use a constant that isn’t currently being
used for other purposes – e.g. ‘a’ (for ‘arbitrary’!). So by hypothesis we have

(5)  Fa

What else do we know about the thing now dubbed ‘a’? Given the universal
claims (2) and (4), we can deduce particular claims about it as follows:

(6) (Fa ⊃ Ga) √
(7) ¬Ga

(8) ¬Fa Ga
✼ ✼

The tree closes. To repeat, the mere act of dubbing one of the things which are
‘F’ can’t have created the contradiction. So the contradiction must have been in

✼ ✼✼ ✼
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the original assignments of truth to each of (1) to (3). Hence there can be no way
of making (1) to (3) all true, and so the inference F is valid.

Another quick example. Take the evidently valid syllogism ‘All logicians are
philosophers; all philosophers are wise; so all logicians are wise.’ Using the obvi-
ous translation we get, 

G �x(Fx ⊃ Gx), �x(Gx ⊃ Hx) ∴ �x(Fx ⊃ Hx)

We start the tree in the standard way 

(1)  �x(Fx⊃ Gx)
(2) �x(Gx⊃ Hx)
(3) ¬�x(Fx ⊃ Hx)

and apply the (¬�) rule to get

(4) �x¬(Fx⊃ Hx)

(4) tells us that there is at least one thing in the domain such that the condition
expressed by ‘¬(Fx ⊃ Hx)’ holds of it. Pick one, and let’s dub it with a name not
otherwise being used in this argument, say ‘a’ again. Then we have

(5) ¬(Fa⊃ Ha)

Applying the (�) rule to (1) and (2), we get the following further information
about this thing dubbed ‘a’:

(6) (Fa ⊃ Ga)
(7)  (Ga ⊃ Ha)

Then applying the standard propositional rules to (5) to (7) in turn yields 

(8) Fa
(9) ¬Ha

(10) ¬Fa Ga

(11) ¬Ga Ha
✼ ✼

So the tree closes. Again, the contradictions here cannot have been created by
the mere act of selecting and then dubbing something with a name not otherwise
in use. Therefore the trouble must be in the original supposition that (1) to (3)
are all true; so argument G is valid.

Note that absolutely crucial qualification: contradictions cannot be created by
the mere act of dubbing something with a name not otherwise in use. Of course,
if a name has already been recruited for some other purpose, then using it again
to dub something may very well cause trouble, as we shall now see. 

Consider the following very simple case. The inference ‘Someone is a great
philosopher: hence Derrida is a great philosopher’ is obviously bogus. Similarly
the inference

H �xFx ∴ Fn

✼
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is equally invalid. Now suppose we start a tree, and then – at line (3) – instanti-
ate the existential premiss with the name already in use, to get

(1)  �xFx
(2) ¬Fn
(3) Fn

✼

We have then absurdly ‘proved’ that the fallacious argument H is valid!
Here’s another example of the same mistake getting us into trouble. Consider

the inference:

I �xFx, �xGx ∴ �x(Fx ∧ Gx)

Suppose we set out to build a quantifier tree, starting:

(1)  �xFx
(2) �xGx
(3) ¬�x(Fx ∧ Gx)

We apply the (¬�) rule to get

(4) �x¬(Fx ∧ Gx)

Now, if there is at least one thing which satisfies ‘F’, it can do no harm to pick one
and dub it ‘a’, so we could write

(5) Fa

Likewise, if there is at least one thing which satisfies ‘G’, it can do no harm to pick
one at dub it with some name. But suppose we offend by wrongly using the same
name again, and add

(6) Ga

to the tree. Given (4), we could continue

(7) ¬(Fa ∧ Ga) √

(8) ¬Fa ¬Ga
✼ ✼

The tree then closes, giving the verdict that argument I is valid, which it isn’t!
Compare ‘Someone is very tall; someone is very short; hence someone is very tall
and very short.’ 

It’s evidently step (6) that caused the trouble. To repeat, although (2) tells us
that something satisfies ‘G’, and it can do no harm to pick out such a thing and
dub it, we mustn’t suppose that it is the same thing that we have already dubbed
‘a’. At that step (6), we are only entitled to add something like

(6) Gb

We could continue

(7) ¬(Fa ∧ Ga)

as before, and also add
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(8) ¬(Fb ∧ Gb)

But this plainly isn’t going to get the tree to close. 
In summary, then, all this motivates the following �-instantiation rule:

(�) Given an existential quantification of the form �vC(…v…v…) on an
open path, then we can add C(…c…c…) to each open path that it is
on, where c is a ‘new’ constant, i.e. one which hasn’t yet appeared on
any of those paths; we then check off the original wff.

�vC(…v…) tells us that something – and it may be only one thing – is C. So
picking such a thing (and dubbing it) exhausts the claim’s commitments: that’s
why we need to check it off once the rule (�) is applied.

Our two proposed rules for un-negated quantifiers might look confusingly
similar, so let’s point up the essential difference loud and clear. 

• The rule (�) says that you can instantiate a universal quantifier with any
name already in use (on the path).

• The (�) rule says that you can instantiate an existential quantifier with any
name that isn’t already in use (on the relevant paths).

In Chapter 28, we’ll return to motivate these quantifier tree-building rules much
more carefully (but we’ll need a proper account of the semantics for QL first).
However, our quick-and-dirty explanations will suffice for the moment.

25.4 More examples
To help fix ideas, let’s show that the following simple arguments are all valid by
translating into QL and using trees (try these examples before reading on):

J Some chaotic attractors are not fractals; all Cantor sets are fractals;
hence some chaotic attractors are not Cantor sets.

K If there is a logician who isn’t a philosopher, then Jones isn’t a philos-
opher. Jones is a philosopher. So every logician is a philosopher. 

L Only if Owen is happy does he love someone. If anyone loves Nerys
then Owen does. Maldwyn loves Nerys. So Owen is happy.

The first should raise no translational difficulties:

J′ �x(Fx ∧ ¬Gx), �x(Hx ⊃ Gx) ∴ �x(Fx ∧ ¬Hx)

and the finished tree looks like this (still adding line numbers for ease of reference):

(1)  �x(Fx ∧ ¬Gx) √
(2) �x(Hx ⊃ Gx)
(3) ¬�x(Fx ∧ ¬Hx) √
(4) �x¬(Fx ∧ ¬Hx)
(5) (Fa ∧ ¬Ga) √
(6) (Ha ⊃ Ga) √
(7) ¬(Fa ∧ ¬Ha) √
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(8) Fa
(9) ¬Ga

(10) ¬Ha Ga

(11) ¬Fa ¬¬Ha
✼ ✼

How was this tree produced? The first three lines are automatic, and applying the
(¬�) rule immediately gives (4). That yields an existentially quantified wff and
two universally quantified wffs unchecked. 

Now, a useful rule of thumb is where possible apply the (�) rule before the (�)
rule. Why? Because instantiating an existential quantification always introduces
a new name, and you’ll probably need to go back to the universal quantifica-
tions afterwards to extract any needed information about the named object. But
in fact, in this case, we don’t get a choice anyway. The only rule we can apply
once we’ve got to line (4) is the (�) rule to (1). So we pick one of the things
which makes ‘�x(Fx ∧ ¬Gx)’ true, and dub it ‘a’, yielding (5), and checking off
(1). We then extract ‘a’-relevant information from (2) and (4) by use of the (�)
rule. With (6) and (7) in place, the rest is straightforward.

We can translate the next argument thus:

K′ (�x(Fx ∧ ¬Gx) ⊃ ¬Gn), Gn ∴ �x(Fx ⊃ Gx)

Note carefully the bracketing in the translation of the first premiss. The tree then
starts in the standard way, applying the rule (¬�) to (3):

(1)  (�x(Fx ∧ ¬Gx) ⊃ ¬Gn) √
(2) Gn
(3) ¬�x(Fx ⊃ Gx) √
(4) �x¬(Fx⊃ Gx)

(5) ¬�x(Fx ∧ ¬Gx) ¬Gn
✼

The left-hand branch now continues

(6) �x¬(Fx ∧ ¬Gx)
(7) ¬(Fa ⊃ Ga)

applying first the (¬�) rule to (5), and then the (�) rule to (4). Then, after apply-
ing the (�) rule to (6), we quickly finish:

(8) ¬(Fa ∧ ¬Ga)
(9) Fa
(10) ¬Ga

(11) ¬Fa ¬¬Ga
(12) ✼ ✼

✼
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Finally, here’s a translation of the third argument (why the existential quantifi-
ers for ‘anyone’? – compare §24.1, Example 10):

L′ (�xLox ⊃ Ho), (�xLxn ⊃ Lon), Lmn ∴ Ho

The tree is then fairly straightforward:

(1) (�xLox ⊃ Ho) √
(2) (�xLxn ⊃ Lon) √
(3) Lmn
(4) ¬Ho

(5) ¬�xLox √ Ho (from 1)
(6) �x¬Lox ✼

(7) ¬�xLxn √ Lon (from 2)
(8) �x¬Lxn ¬Lon (from 7; from 6)
(9) ¬Lmn ✼ (from 8)

✼

Note that on the right-hand branch at (8), we could have instantiated the univer-
sal quantifier at (6) by any of the names ‘m’, ‘n’, or ‘o’: our choice, however, is the
sensible one, as it makes the right-hand branch close. Similarly at (9), we make
the obvious choice of how best to instantiate the quantifier at (8).

25.5 Open and closed trees
We’ve introduced the language QL. We’ve explained four rules that we need in
addition to the rules for connectives in order to construct QL tree arguments to
show various inferences are valid. There’s a little work to be done tidying up the
syntax for our formal language; and there’s rather a lot of work to be done
developing the semantics. We need to explore trees further, and to discuss whether
any more tree-building rules are necessary to give us a ‘complete’ system (com-
pare §20.4). In fact, we’ll see that we do need to slightly augment the rules we’ve
so far stated. But that is all to come later. For the moment, let’s concentrate on
emphasizing a crucial point which should be made straight away.

Predicate logic really comes into its own when we are dealing with inferences
involving propositions that involve more than one quantifier. We’ll look at a
range of examples in later chapters; but here’s just one to be going on with (and
to set the scene for the point we need to make). Consider the argument ‘Every-
one loves someone who is kind; no cruel person is kind; Caligula is cruel. Still, it
follows that not everyone is cruel’. That’s evidently valid, if we read the first
premiss as meaning everyone loves at least one kind person. For take Caligula.
Although he is cruel, he loves someone who is kind. And that person, being
kind, isn’t cruel. So not everyone is cruel. 

Let’s warrant this argument with a tree proof. Here’s a translation:

M �x�y(Fy ∧ Lxy), �x(Gx ⊃ ¬Fx), Gn ∴ ¬�xGx
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The tree starts in the obvious way.

(1)  �x�y(Fy ∧ Lxy)
(2) �x(Gx ⊃ ¬Fx)
(3) Gn
(4) ¬¬�xGx √
(5) �xGx

We now have three universal quantifiers to instantiate, using the rule (�). But
we’ll tackle (1) first, so we can ‘get at’ the embedded existential quantifier. At the
moment, we only have one constant in play, so we have to instantiate (1) with
that, to yield

(6) �y(Fy ∧ Lny)

Now we’ll follow the heuristic rule we noted before: where possible, we apply
the (�) rule before the (�) rule. We have to instantiate (6) with a name new to
the argument:

(7) (Fa ∧ Lna) √
(8) Fa
(9) Lna

We can now continue by extracting more ‘a’-relevant information by instantiat-
ing the universal quantifications (2) and (5):

(10) (Ga ⊃ ¬Fa) √
(11) Ga

(12) ¬Ga ¬Fa
✼ ✼

And once more we are done.
So far, so good. But note we could have taken a wrong turning after line (7).

For we might be struck by the fact that we now have the new name ‘a’ in play,
and we could instantiate (1) again with this new name, thus …

(8′) �y(Fy ∧ Lay)

We then have a new existential quantification which we can instantiate in turn
with a constant new to the argument:

(9′) (Fb ∧ Lab)

Now suppose we (unwisely, but quite legitimately) use the name ‘b’ to instanti-
ate (1) again to infer

(10′) �y(Fy ∧ Lby)

and instantiate this with respect to a new name:

(11′) (Fc ∧ Lbc)

Evidently we could go on, and on, and on without end. The unwise strategy of
returning to (1) whenever we can instantiate it with a new name could prevent
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the tree from ever closing! (Query: but what entitles us to suppose that there are
all those different things in the domain to be named ‘a’, ‘b’, ‘c’, …? Maybe the
domain only contains one thing! Reply: the question is based on a misunderstand-
ing. We are introducing a sequence of new names one after another; but maybe
the names refer to the same thing, maybe to different things: that is left open.) 

So here we encounter a very deep and important difference between PL and
QL trees. In the propositional case it doesn’t matter (except for the aesthetics) in
which order the available rules are applied. If a tree closes, then any legally con-
structed tree with the same initial trunk will also close (see §§16.4, 19.3). In the
quantificational case, by contrast, the order in which rules are applied matters.
Our first tree for M closed: but we’ve seen that a second tree, equally con-
structed in accordance with the rules, could be extended without limit, without
closing.

Now, finding one well-constructed closed tree for a QL argument is enough to
prove that the argument is valid. If one line of reasoning from the assumption
that the premisses and the negation of the conclusion are true leads to contradic-
tions all round, that settles it: if the premisses are true, the conclusion must be
true too. This result isn’t subverted by the fact that some other line of reasoning
trails off in the wrong direction and fails to reveal a contradiction.

How can QL trees have branches going on for ever when that can’t happen for
PL trees? Because our rules for unpacking complex PL wffs systematically ‘use
up’ wffs, always taking us to shorter and shorter wffs: and – assuming there are
only a finite number of premisses to begin with – eventually we will simply run
out of rules to apply. We must end up with a completed tree, either open or
closed. In the quantificational case, however, we can get into cycles like the one
that takes us from (6) to (8′) to (10′) to …, where the wffs don’t become any
simpler, and so the tree never finishes.

Of course, our second, un-ending, tree for M is constructed according to a
pretty crazy strategy. And in fact, there is a decently systematic strategy which
will always deliver us a closed tree for an argument if there is one. But intrigu-
ingly, there is no mechanical test which will show us (in finite time) whether
applying this strategy will eventually deliver a closed tree; there is no mechanical
test for whether a quantified argument is valid or not. More on this anon (see
Chapter 30).

But having seen where all this development of QL is taking us, and in particu-
lar having had a glimpse of how we can develop a tree method for warranting
inferences, we really need now to return to basics, to tidy up the details. That’s
the business for the next few chapters.

25.6 Summary
• We have introduced four new rules for quantifier tree-building, which

we’ve labelled (�), (¬�), (�), (¬�), and given some motivation for them.
We’ll state the rules for QL trees more carefully in Chapter 29.
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• QL trees give us sound proofs of validity: i.e. when a properly constructed
tree closes, the argument whose premisses and negated conclusion start the
tree is indeed valid. But we noted that valid arguments can also generate
(infinite) open trees.

• QL trees are not a mechanical method for demonstrating the validity or
invalidity of arguments. There can’t be one. 

Exercises 25
A Show the following simple arguments are valid by translating into QL and

using trees.

1. Everyone is rational; hence Socrates is rational.
2. No-one loves Angharad; hence Caradoc doesn’t love Angharad.
3. No philosopher speaks Welsh; Jones is a philosopher; hence Jones

does not speak Welsh.
4. Jones doesn’t speak Welsh; hence not everyone speaks Welsh.
5. Socrates is rational; hence someone is rational. 
6. Some philosophers speak Welsh; all Welsh speakers sing well;

hence some philosophers sing well.
7. All electrons are leptons; all leptons have half-integral spin; hence

all electrons have half-integral spin.
8. All logicians are philosophers; all philosophers are rational peo-

ple; no rational person is a flat-earther; hence no logician is a flat-
earther.

9. If Jones is a bad philosopher, then some Welsh speaker is irra-
tional; but every Welsh speaker is rational; hence Jones is not a
bad philosopher. 

B Consider the following rule

(¬�′) If ¬�vC(…v…v…) appears on an open path, then we can add
¬C(…c…c…) to that path, where c is any constant which already
appears on the path.

Show informally that this rule would do as well as our rule (¬�). What
would be the analogous rule for dealing with negated universal quantifiers
without turning them first into existential quantifiers?

C Suppose we had set up predicate logic with a single quantifier formed using
the symbol ‘N’, so that NvCv holds when nothing is C. Show that the
resulting language would be expressively equivalent to our now familiar
two-quantifier language QL. What would be an appropriate set of rules for
tree-building in a language with this single quantifier? 



Over the last four chapters, we have explored the language QL in an informal
way, and we have introduced the tree method for warranting quantifier argu-
ments once they are regimented into QL form. In this chapter, we pin down the
syntactic details of QL much more carefully, as a preparation for getting the
semantics into clear focus in the next chapter. We start with a couple of prelimi-
nary sections, motivating the full-dress syntactic story in §26.3.

26.1 How not to run out of constants, predicates or variables
In PL, we supplied ourselves with an unlimited number of atomic wffs. That’s
because we didn’t want to put a limit on the complexity of arguments that we
can express using that language. For exactly the same reason, we will supply
ourselves with an unlimited number of constants and predicates in QL. And we
don’t want to run out of variables either, because we want to be able to express
propositions with arbitrary numbers of quantifiers.

Consider predicates first. Each predicate of QL comes with a fixed number of
slots to be filled up with names (or individual variables). We won’t put any fixed
limit on the number of places a predicate can have. Why shouldn’t we be able to
argue with five-place or twenty-five-place predicates? 

So we want an unlimited supply of n-place predicates, for each n. Probably the
neatest way of securing this is to help ourselves to the numerals. Assume ‘P’ (for
‘predicate’) is in the alphabet of QL; then we can adopt the rule that any occur-
rence of this letter with superscript and subscript numerals j, k (where j, k � 0)
counts as a predicate. The superscript fixes the number of places the predicate
has; and the subscript distinguishes the various predicates which share that
number of places. To be sure, it won’t look very pretty having predicates like

P14
3 , P15

3 , P254
9 , …

but at least we are not going to run out of supplies! 
We could produce the same effect more in the style of PL by using two

sequences of primes (one sequence to indicate the number of places, and another
to distinguish among predicates with the same number of places): but that would
be typographically even messier. 

26

The syntax of QL
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We’ll adopt the same device of using numerical subscripts to give us unlimited
numbers of names and variables. So we will assume that ‘c’ (for ‘constant’) is in
alphabet of QL, and have the rule that any occurrence of this letter with a sub-
script numeral k � 0 counts as a constant. Similarly, let’s assume ‘v’ (for ‘varia-
ble’) is in the alphabet; there shouldn’t be any confusion with the ‘∨’ sign for
disjunction. The corresponding rule to generate an unlimited number of varia-
bles is that any occurrence of ‘v’ with a subscript numeral counts as a variable. 

By using the subscript trick, we now know we are not going to run out of con-
stants, predicates and variables.

On the other hand, we most certainly don’t want to be continually writing
down ugly wffs like

P14
3 c7c3c9 , �v5P14

3 c7v5c9 ,  …

or worse. Nor do we want retrospectively to rule out all our examples over
recent chapters from counting as official wffs of QL. So, although it complicates
things, let’s also add to our vocabulary all the unadorned letters for names, pred-
icates, and variables that we’ve met before, plus a few extra.

One last comment. A three-place predicate like P14
3 takes three names to form

an atomic wff of QL. What about a zero-place predicate like P2
0 (for note, we did

allow the superscript indicating the number of places to take the value zero)? By
parity of reasoning, a zero-place predicate is an expression that takes zero names
to make an atomic wff – in other words, it already is an atomic wff! So a zero-
place predicate functions exactly like a propositional atom of PL. This has the
kind of neatness that mathematically inclined logicians just love. Instead of saying
that our language QL has both predicates of all degrees from one upwards plus
propositional atoms as well, we say more crisply that the language has predi-
cates of all degrees from zero upwards. (It could be convenient, however, to have
a few simple letters for propositional atoms in addition to the zero-superscripted
instances of ‘P’. Since ‘P’ and ‘R’ are already recruited for other uses, let’s add ‘A’,
‘B’, ‘C’ for this purpose. By this stage in the game, no-one is going to confuse
these object-language sans-serif letters with the italic letters ‘A’, ‘B’, ‘C’ we use as
metalinguistic schematic variables when generalizing about wffs).

26.2 How to introduce quantifiers
In Chapter 22, we showed how we can build up quantified wffs by the operation
of quantifying in. We take a wff with a constant in it, and then – in one go, so to
speak – we replace the constant with a variable and also prefix a quantifier
formed using that same variable (thereby ‘binding’ the variable to the quanti-
fier). To take the simplest kind of example, we can start from the atomic wff
‘Fm’, and quantify in to form the wff ‘�x Fx’.

Here’s an alternative way of proceeding. We could say that atomic wffs are
formed by combining a predicate with the right number of constants and/or
variables. So, by this more generous rule for atomic wffs, ‘Fx’ is itself a wff.
Then the rule for adding quantifiers is: given a wff C(…v…v…) involving one or
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more occurrences of the variable v, but not already containing the quantifier �v
or �v, then we form another wff by prefixing one of those quantifiers. So since
‘Fx’ is a wff by our first new rule, ‘�xFx’ is a wff by the new second rule. (This
second rule says we can only prefix quantifiers that link to variables that aren’t
already tied to quantifiers. That prevents us going on to form expressions like
‘�x�xFx’ or ‘�y�xFx’.)

In Chapter 22, we quickly demonstrated that ‘�y�x�zRzyx’ is a wff by setting
out a possible way of constructing it by three operations of quantifying in, with
the following sequence of steps: 

Rmno
�zRzno
�x�zRznx
�y�x�zRzyx

Note, by the way, that we could equally well have followed the steps

Rnom
�zRzom
�x�zRzox
�y�x�zRzyx

So on our previous story, wffs don’t have a unique ‘constructional history’ (cf.
§8.2). But given our new rules, to construct the same wff, we instead start from
‘Rzyx’ and simply add the quantifiers like this:

Rzyx
�zRzyx
�x�zRzyx
�y�x�zRzyx

and this constructional history is unique under our new rules. That’s one differ-
ece between the old and new rules. But the key difference between our two ways
of proceeding is that on the new one, expressions with variables ‘dangling free’,
like ‘Rzyx’ or ‘�x�zRzyx’ count as wffs, which they didn’t before. Every old-style
wff is a new-style wff, but not vice versa. 

Quantifiers in QL need variables, and the point of variables is to be tied to
quantifiers; so our approach in Chapter 22, where they get introduced in tandem
is in some ways the more natural one. But the more liberal two-step approach,
which also allows wffs with ‘free’ variables, has some presentational advantages
when we turn to technicalities. And perhaps more to the point, it is still the more
common approach (to the extent that it would be odd to study quantificational
logic and never hear of wffs with free variables). We’ll follow the common con-
vention and adopt the more liberal rules for forming wffs from now on.

26.3 The official syntax
We’ll now put together all the ideas about syntax from Chapter 22, and from
§§26.1, 26.2 above, into one composite story. This is done for convenience and
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for the sake of completeness; there are no new ideas here. We state the rules
using metalinguistic variables like ‘A’ and ‘v’ in the now familiar way.

The story looks complicated; but divide it into two parts. The second part,
comprising the definition of a term, and the A-rules and W-rules, is clean and

The official syntax for QL

The alphabet for QL is as follows:

for forming constants: a, b, c, m, n, o
for forming predicates: A, B, C, F, G, H, L, M, P, R, S
for forming variables: v, w, x, y, z
for superscripts and subscripts: the arabic numerals
for constructing complex wffs: ∧, ∨, ¬, ⊃, �, �, (, )
for expressing arguments: ∴, ✼, plus also the comma.

The basic elements of QL are then:

individual constants: a, b, c, m, n, o, ck
individual variables: w, x, y, z, vk
0-place predicates (propositional atoms): A, B, C, P0

k
1-place predicates: F, G, H, P1

k
2-place predicates: L, M, P2

k
3-place predicates: R, S, P3

k
j-place predicates: P j

k

where the indices j, k run over all values � 0.

We add a standard definition:

A term is an individual constant or individual variable.

Then the rules for forming atomic wffs are straightforward:

(A1) For all j � 0, a j-place predicate followed by j terms is an atomic
wff of QL.

(A2) Nothing else is an atomic wff.

Finally, we can state the rules for the full class of wffs:

(W1) Any atomic wff of QL is a wff.
(W2) If A is a wff, so is ¬A.
(W3) If A and B are wffs, so is (A ∧ B).
(W4) If A and B are wffs, so is (A ∨ B).
(W5) If A and B are wffs, so is (A ⊃ B).
(W6) If A is a wff, and v is an individual variable which occurs in A,

(while neither �v nor �v occurs in A), then �vA is also a wff.
(W7) If A is a wff, and v is an individual variable which occurs in A,

(while neither �v nor �v occurs in A), then �vA is also a wff.
(W8) Nothing is a wff that cannot be shown to be so by applications of

rules (W1) to (W7).
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simple. So the complication is all in the first part where we give the basic ele-
ments for our version of QL. To repeat, the mess is there so we don’t always
have to write messy wffs with letters bedecked with superscripts and subscripts. 

Let’s quickly show that the following (see §24.1, Example 14) is a wff by our
official rules:

¬�x((Fx ∧ �zMxz) ⊃ �y((Gy ∧ Lyx) ⊃ Lxy))

First, laboriously, we’ll give an annotated proof in the style of §§5.2, 8.2, listing
the principles of construction that are being appealed to at each stage:

(1) ‘Fx’ is a wff (by A1)
(2) ‘Mxz’ is a wff (by A1)
(3) ‘�zMxz’ is a wff (from 2 by W7)
(4) ‘(Fx ∧ �zMxz)’ is a wff (from 1, 3 by W3) 
(5) ‘Gy’ is a wff (by A1)
(6) ‘Lyx’ is a wff (by A1)
(7) ‘(Gy ∧ Lyx)’ is a wff (from 5, 6 by W3)
(8) ‘Lxy’ is a wff (by A1)
(9) ‘((Gy ∧ Lyx) ⊃ Lxy)’ is a wff (from 7, 8 by W5)
(10) ‘�y((Gy ∧ Lyx) ⊃ Lxy)’ is a wff (from 9, by W6)
(11) ‘((Fx ∧ �zMxz) ⊃ �y((Gy ∧ Lyx) ⊃ Lxy))’ is a wff (from 4, 10 by W5)
(12) ‘�x((Fx ∧ �zMxz)⊃ �y((Gy ∧ Lyx)⊃ Lxy))’ is a wff (from 11 by W6)
(13) ‘¬�x((Fx ∧ �zMxz)⊃ �y((Gy ∧ Lyx)⊃ Lxy))’ is a wff (from 12 by W2)

But this chain of inferences is, of course, more perspicuously represented in the
form of a construction tree in the manner of §8.2:

Gy Lyx

Mxz (Gy ∧ Lyx) Lxy

Fx �zMxz ((Gy ∧ Lyx) ⊃ Lxy)
(Fx ∧ �zMxz) �y((Gy ∧ Lyx) ⊃ Lxy)

((Fx ∧ �zMxz) ⊃ �y((Gy ∧ Lyx) ⊃ Lxy))
�x((Fx ∧ �zMxz) ⊃ �y((Gy ∧ Lyx) ⊃ Lxy))
¬�x((Fx ∧ �zMxz) ⊃ �y((Gy ∧ Lyx) ⊃ Lxy))

where, recall, every expression on the tree is to be understood to come within an
unwritten frame ‘“…” is a wff’. Here’s another quick example, the wff

�x(((Fx ∧ �zMxz) ∧ �y(Mxy ⊃ Rxny)) ⊃ Lnx)

(which is the translation for Example 15, §24.1) has the tree

Mxz Mxy Rxny

Fx �zMxz (Mxy ⊃ Rxny)
(Fx ∧ �zMxz) �y(Mxy ⊃ Rxny)

((Fx ∧ �zMxz) ∧ �y(Mxy ⊃ Rxny)) Lnx

(((Fx ∧ �zMxz) ∧ �y(Mxy ⊃ Rxny)) ⊃ Lnx)
�x(((Fx ∧ �zMxz) ∧ �y(Mxy ⊃ Rxny)) ⊃ Lnx)
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Given our new construction rules, construction trees are unique – at least, if
we stick to the convention adopted in §8.2 and, when branches join, put the
wffs above the inference line in the same left-to-right order in which they occur
as components in the wff below the line. 

One more construction tree, this time for 

�x(�yMxy ⊃ �y(¬Mxy ∧ Lxy))

(the second version of the translation for Example 12, §24.1). The variable ‘y’ in
the end gets quantified twice; we want to show that this is legitimate.

Mxy

¬Mxy Lxy

Mxy (¬Mxy∧ Lxy)
�yMxy �y(¬Mxy ∧ Lxy)

(�yMxy ⊃ �y(¬Mxy ∧ Lxy))
�x(�yMxy ⊃ �y(¬Mxy ∧ Lxy))

Note that the two ‘�y’ quantifiers get introduced on separate branches of the
tree. At each introduction, left and right, the quantifier is applied to a wff where
the variable ‘y’ occurs and hasn’t yet been quantified. So the construction fol-
lows our rules. Compare 

�x(Fx ⊃ �x(Gx ∧ Lxn))

which isn’t a wff by our rules. If we try to produce a tree, we could get as far as
showing that ‘Fx’ and ‘�x(Gx ∧ Lxn)’ are wffs, and so

(Fx ⊃ �x(Gx ∧ Lxn))

is a wff. But we can’t use (W6) to add the quantifier ‘�x’, because that last wff
already contains one of the quantifiers ‘�x’ or ‘�x’.

26.4 Some useful definitions
We’ll define (or redefine) some useful syntactic notions. First, as in PL,

• A wff A is a subformula of a wff B if A appears anywhere on the construc-
tion tree for B.

And, similarly to PL,

• The main logical operator (quantifier or connective) of A is the operator
introduced at the final step in the construction tree.

Next, we want to capture the idea of an expression being within the scope of an
operator (quantifier or connective). As in §8.2, a neat way of doing this is to
define some wff as being the scope of an operator, and then any part of this wff
will count as being in the scope of the operator:

• The scope of a quantifier in a QL wff is the subformula that starts with that
quantifier. In other words, it is the wff that occurs at the step on the
construction tree where the quantifier is introduced. Take for example the
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wff ‘�x(�yMxy ⊃ �y(¬Mxy ∧ Lxy))’:

the scope of the first ‘�y’ is ‘�yMxy’;
the scope of the second ‘�y’ is ‘�y(¬Mxy ∧ Lxy)’;
the scope of ‘�x’ is the whole wff.

• The scope of a connective is likewise the wff on the construction tree where
the connective is introduced.

Now let’s tidy up the intuitive notion of a ‘free’ variable. The idea is that a
variable dangles free when it isn’t tied down by a matching quantifier. So let’s say

• An occurrence of a variable v in a wff A is bound if and only if it is in the
scope of some matching quantifier �v or �v that occurs in A.

• An occurrence of a variable v in a wff A is free if and only if it is not bound.

Thus consider the wffs

(Mxy ⊃ Rxny)
�y(Mxy ⊃ Rxny)
((Fx ∧ �zMxz) ∧ �y(Mxy ⊃ Rxny))

In the first, both variables are free. In the second,‘y’ is bound and ‘x’ is free. In
the third, ‘y’ and ‘z’ are both bound, but ‘x’ still remains free. Again, in

(Mxy ⊃ �y(¬Mxy ∧ Lxy))

which counts as a wff by our rules, the first occurrence of ‘y’ is free but the oth-
ers are bound (so we can’t quantify the whole wff using ‘�y’ again). 

With that terminology now to hand, the rules (W6) and (W7) come to this: If
A is a wff, and v is an individual variable which only occurs free in A, then �vA
and �vA are also wffs.

We need a term for those wffs without any occurrences of variables remaining
free:

• A sentence of QL (alternatively, a closed wff) is a wff with no free occur-
rences of variables.

• If a wff isn’t closed it is open.

If ‘F’ means … is wise, then (remembering that variables operate like pronouns)
we might read an open wff like ‘Fx’ as meaning something like he is wise. But
taken as a stand-alone claim, without anything to tell us who ‘he’ is referring to,
this doesn’t express a determinate proposition: it isn’t yet either true or false. By
contrast, closed wffs can be true or false.

Finally, we define again the notion of a substitution instance of a quantified
wff (§22.4):

• Suppose a wff C(…c…c…) results from �vC(…v…v…) or �vC(…v…v…)
by stripping off the initial quantifier, and then substituting some individual
constant c for all the occurrences of the associated variable v. Then
C(…c…c…) is said to be an instance of the quantified sentence.
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26.5 Summary
• We have now taken a semi-permissive line on what is to count as an official

wff of QL. We are allowing wffs with free variables, though we are still rul-
ing out expressions with redundant or duplicated quantifiers.

• We have given ourselves an unlimited supply of predicates, names and var-
iables, using numerical subscripts and superscripts.

• The key building rule for constructing quantified sentences is: if A is a wff,
and v is an individual variable which only occurs free in A, �vA and �vA
are also wffs.

• Demonstrations that an expression is indeed a wff according to our rules
can be set out as construction trees; looking at how the tree is built up will
reveal the scope of the various logical operators, and which occurrences of
variables are free at which stage of the construction.

Exercises 26
Which of the following are wffs of QL? Which are sentences, i.e. closed wffs? In
the open wffs, which occurrences of which variables are free? What is the main
logical operator of each wff?

1 �z�y(Myz ∨ ¬�y(Mxy ∧ Lxy))
2 �z(�yMyz ∨ ¬(Mxy ∧ Lxy))
3 �z(�yMyz ∨ ¬�y(Mxy ∧ Lxy))
4 ¬�z(�yMyz ∨ ¬�x�y(Mxy ∧ Lxy))
5 �z�x(�yMyz ∨ ¬�y(Mxy ∧ Lxy))
6 �x(Gx ⊃ �y�z(Hy ∧ Hz) ∧ Rxyz))
7 (Gx ⊃ �x�z((Hy ∧ Hz) ∧ Rxyz))
8 �x�y(Gx ⊃ �y¬�z((Hy ∧ Hz) ∧ Rxyz))
9 �x(Gx ⊃ �y�x((Hy ∧ Hz) ∧ Rxyz))
10 (�x(Gx ⊃ �z((Hy ∧ Hz) ∧ Rxyz)) ∨ �zHz)
11 �x�y�z((Fx ∧ Fy) ∧ Rzxy) ⊃ Gz)
12 ¬�x�y(((Fx ∧ Fy) ∧ �zRzxy) ⊃ Gz)



Having now tidied up the syntax, in this chapter we give the official story about
the semantics of QL. In particular, we define the key notion of a q-valuation of
QL wffs (the analogue of a truth-valuation for PL).

27.1 Q-valuations vs. interpretations
When describing the semantics for PL in Chapter 9, we quickly moved on from
discussing interpretations of wffs to discussing valuations. A valuation, recall,
starts with an assignment of truth-values to some of the building blocks of PL
(i.e. some atomic wffs). This initial assignment then generates a valuation of all
the molecular wffs that can be built up from these atomic wffs using the logical
resources of the language (i.e. the connectives). We also defined the notion of
tautological validity – where an inference is tautologically valid if every valua-
tion which makes the premisses true makes the conclusion true. Tautological
validity implies plain validity; but there are valid arguments (e.g. a PL transla-
tion of ‘Jo is a sister, hence Jo is female’) which are not tautologically valid.

We now proceed similarly, by introducing the notion of a q-valuation. An
interpretation of (some) QL wffs tells us what the relevant wffs mean; a q-
valuation fixes which of these wffs are true. A q-valuation must start by fixing
the domain of discourse; then it needs to assign truth-relevant values to some of
the building blocks of QL (i.e. some constants and predicates). This initial
assignment then generates a valuation of all the wffs that can be built up from
these ingredients using the logical resources of the language. In particular it tells
us which closed wffs (sentences, wffs without free variables) are true. We can
then define the key notion of q-validity, where an inference is q-valid if every
q-valuation which makes the premisses all true makes the conclusion true.
Q-validity implies plain validity; but there are valid arguments (e.g. a QL trans-
lation of ‘Jo is a sister, hence Jo is female’) which are not q-valid.

Valuations are crucial for propositional logic, thought of as the study of argu-
ments that are valid because of the way that the truth-functional connectives dis-
tribute among premisses and conclusion. Q-valuations are crucial for
quantificational logic, thought of as the study of arguments that are valid

27

Q-valuations
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because of the way connectives and quantifiers distribute among premisses and
conclusion. Irritatingly and confusingly, you will find q-valuations are elsewhere
usually called ‘interpretations’. But an interpretation (in the intuitive sense of the
term, which accords with our use in this book) gives the meaning or sense of
some expressions: by contrast, a q-valuation just specifies the features of these
expressions which fix the truth-values of wffs.

27.2 Q-valuations defined
Given a bunch of QL wffs, let’s say that their vocabulary is the set V of constants
and predicates that appear in those wffs. So a q-valuation for a set of wffs with
vocabulary V needs to (1) fix a domain D for the quantifiers to run over, and then
assign truth-relevant properties to (2) the constants and (3) the predicates in V.

(1) We’ll allow the domain D to be any collection of objects, big or small. The
domain might be a ‘natural’ set like all people, or all numbers. But any old gerry-
mandered collection, such as the set {The Eiffel Tower, the number four, Bill
Clinton, Mount Everest} – or even the tiny set {Jennifer Lopez} containing just
one item, namely Jennifer – can also serve as a domain of discourse. 

Could we allow the domain to contain absolutely everything? It isn’t clear that
this idea makes sense. For take a domain as big as you like. Then isn’t there
always a more inclusive collection of things containing all the objects in the orig-
inal domain plus something else, namely the set of those objects? But we won’t
tangle here with that kind of issue. We’ll just allow domains to be any determi-
nate collection of objects, however big that might possibly be.

To go to the other extreme, could we allow the domain to be empty, to have
nothing in it? There are pros and cons to the proposal that we should allow
empty domains. Tradition is on the side of requiring that any domain contains at
least one object; and, as we’ll see, some technicalities do go more smoothly if we
follow tradition. So we’ll take the standard line and require domains to be non-
empty. More on this in §29.3.

(2) Consider an ordinary-language sentence like ‘Bill is wise’. What is required
for this to be true? A certain man has to be wise. And the role of the name ‘Bill’
is to pick out the individual who has to be wise if the sentence is to be true. In
other words, what matters about the name here, as far as truth is concerned, is
to whom it refers. 

To be sure, there can be differences in associations, tone, or sense between
names that have the same reference, like ‘Bill’ and ‘Mr Clinton’. But as far as the
truth of what we say goes, it normally doesn’t matter which name we use. For
example, ‘Bill kissed Monica’ and ‘Mr Clinton kissed Monica’ attribute the same
action to the same man, and hence are true or false together. 

Constants are the QL analogues of ordinary-language names. So similarly,
what matters about a constant, as far as truth is concerned, is which object it
refers to. Or as we’ll say: the q-value of a constant is its reference. Of course, this
object should be in the domain of discourse; for the reference of a constant c
should be one of the things that is in question when we talk of ‘everything’! 
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(3) The third component of a q-valuation deals with predicates. Again, we take
our lead from elementary reflections about their ordinary-language correlates.

‘Bill is wise’ is true just if the man picked out by the name ‘Bill’ is one of the
wise. That way of putting it immediately suggests a simple way of looking at
what matters about ‘… is wise’ as far as truth is concerned. The predicate is cor-
related with a set of things – the things that satisfy the condition of being wise. If
Bill is in that set, the sentence in question is true; if not, not. 

The set of objects that satisfy a predicate is standardly called the extension of
the predicate. So another way of putting things is this: a sentence like ‘Bill is wise’
is true just if the object referred to by the name is in the extension of the predi-
cate. (Maybe no one is wise: in that case the extension of the predicate is empty.)

Moving from ordinary language to QL, we again can say that (as far as truth
is concerned) what matters about a one-place predicate is its extension, the set of
objects of which the predicate is true. These objects should be in the domain D;
the things of which a predicate is true should again be among the things which
count as ‘everything’. So the q-value of a one-place predicate F is a (possibly
empty) set of objects from the domain. And an atomic wff of the form Fc will be
true if and only if the q-value of c (i.e. the object which c refers to) is in the q-
value of F (i.e. is in the extension of F).

What about evaluating two-place predicates? Well, ‘Romeo loves Juliet’ is true
just so long as the pair of people 〈Romeo, Juliet〉 is in the set of pairs such that
the first in the pair loves the second. So what matters about a relational term like
‘loves’ is the set of pairs of things it picks out: this set of pairs is the extension of
the relation. Likewise for two-place relations in QL. The q-value of a two-place
relation R is its extension, a set of pairs of things from the domain. And a wff of
the form Rmn is true if and only if the q-values of the constants m and n taken in
that order form a pair that belongs to the extension of R. (When we talk about
pairs here, we of course mean ordered pairs, so that we can indeed sensibly talk
of a first and second member.)

Similarly, the q-value of a three-place relation S is a set of ordered triples
(namely, the triples that satisfy S). A wff of the form Smno is true if the q-values
of the names taken in order form an ordered triple which is in the extension of
the predicate. And so it goes. 

It is useful to introduce some standard jargon here. We’ve spoken of individ-
ual objects, ordered pairs or couples, and ordered triples. What comes next, of
course, are ordered quadruples, quintuples, and so on. So let’s refer to all such
items as tuples: tuples with n members are, of course, n-tuples. We can then snap-
pily say: for n > 0, the q-value of an n-place predicate is a set of n-tuples. (That
works, at any rate, if we stipulate that ‘1-tuples of objects’ are just the objects.) 

But remember, we are also allowing zero-place predicates in QL (§25.1). Such
expressions are already atomic wffs in their own right, just like the propositional
variables in PL. If there are any such expressions in the vocabulary V, then we
will give them their own distinctive kind of values on a q-valuation, namely
truth-values.
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So putting all that together, we have the following definition:

A q-valuation defined over vocabulary V:

(1) specifies a (non-empty) collection of objects to be the domain D;
(2) it assigns to any constant in V some object in D as its q-value;
(3) it assigns a truth-value to any 0-place predicate in V; and it assigns to

any n-place predicate in V, where n > 0, a (possibly empty) set of n-
tuples of objects from D.

27.3 The semantics of quantifiers: a rough guide
A q-valuation defined over the vocabulary V fixes the truth-values for atomic sen-
tences built from constants and predicates in V in the obvious way. An atomic
sentence formed from an n-place predicate followed by n constants is true just in
case the n-tuple formed by taking the q-values of the n constants in order is in
the extension of the n-place predicate (except for the special case where n = 0,
when the q-valuation directly assigns the 0-place predicate its own truth-value). 

Further, we’ll let QL’s truth-functional connectives look after themselves for
the moment in the obvious way (so it will still be the case that a conjunction is
true if both the conjuncts are true, and so on and so forth). 

So the key question is how to deal semantically with quantified wffs. For
example, when is the wff ‘�xFx’ true? 

• We remarked before on a wrong answer. We can’t say that ‘�xFx’ is true
just when all its substitution instances in the given vocabulary V are true,
i.e. when ‘Fm’, ‘Fn’, ‘Fo’, … are all true. There may not be names in V for
every object in the domain; so even if all the instances we can construct are
true, ‘�xFx’ could still be false, because of an uncooperative unnamed
object (see §22.4). 

• To introduce a correct answer, note that ‘Every man is such that he is
mortal’ is true just so long it doesn’t matter which man in the domain we
choose, he is mortal – i.e. if ‘He is mortal’ is true, whoever we use the
pronoun ‘he’ to point to in the domain of men. We can say something sim-
ilar about ‘�xFx’ (for recall that we introduced variables in QL to do the
work of pronouns, and remember too that we are now allowing expres-
sions with free variables to count as wffs). So, ‘�xFx’ is true if ‘Fx’ is true
when ‘x’ is treated as a pronoun pointing to an object in the domain, no mat-
ter which object in the domain the pronoun is taken to be picking out. 

The rejected answer wrongly tries to explain when ‘�xFx’ is true by generalizing
about names. Our new, correct, suggestion explains when it is true by generaliz-
ing about objects in the domain.

Following that lead, consider three wffs of the forms

(a) �vC(…v…v…)
(b) �vC(…v…v…)
(c) C(…v…v…)
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Then the key idea is that (a) is true if the corresponding wff (c) comes out true
when v is treated as a pronoun, no matter what object in the domain the pro-
noun v is taken to be ‘pointing to’. Likewise (b) is true when there is some object
in the domain such that (c) comes out true when v is treated as a pronoun pick-
ing out that object. 

This straightforward and entirely intuitive idea is the key that unlocks the
semantics of quantifiers. Everything that follows in the rest of this chapter just
develops this one idea a bit more formally; it should be easy enough to grasp the
official version as long as you don’t lose sight of this underlying motivation. 

So, to develop the key idea, we now allow q-valuations to be extended to val-
uations which assign temporary references to one or more variables. Take the
simplest case where just one variable v is involved:

• We extend a given valuation q by assigning an object o from the domain
for v to ‘pick out’ when the variable occurs free. Call this extension q+. We
can then treat wffs with free occurrences of v as if the variable is a tempo-
rary name for the object o assigned to the variable by q+. So,
�vC(…v…v…) is true on q just if C(…v…v…) is true on every possible
extension q+ giving a reference to v – i.e. no matter what object o in the
domain is assigned to v, C(…v…v…) still comes out true when v is treated
as a pronoun referring to o. Similarly, �vC(…v…v…) is true on q if
C(…v…v…) is true on some extension q+.

Let’s take a simple example. Suppose we are interpreting items in the vocabulary
V = {‘m’, ‘F’, ‘L’} to mean, respectively, Socrates, … is a philosopher, and … loves
…, and we understand the quantifiers as running over all people (past and
present). Then the corresponding q-valuation q will say:

(1) the domain of discourse is the set of all people;
(2) ‘m’ refers to Socrates (i.e. has Socrates as its q-value);
(3) the extension of ‘F’ is the set of philosophers; and the extension

of ‘L’ is the set of pairs of people such that the first loves the
second.

Helping ourselves to the obvious rules for the connectives, we can now work out
the value of the wff

(a) �x(Fx ∧ Lmx)

(translation: Socrates loves some philosopher). This is true so long as there is
some extension q+ of q, which assigns an object in the domain to ‘x’, which
makes

(a*) (Fx ∧ Lmx)

come out true. Which there is. Take the extension q+ which assigns Plato to ‘x’.
Then, with the variable/pronoun treated as referring expression picking out
Plato, ‘Fx’ is true since Plato is in the set of philosophers; and ‘Lmx’ is true since
the pair 〈Socrates, Plato〉 is famously in the set of pairs such that the first member
of the pair loves the second. Hence the conjunction ‘(Fx ∧ Lmx)’ is true on q+.
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Now compare

(b) �x(Fx ⊃ Lmx)

(translation: Socrates loves every philosopher). This comes out false. For (b) is
true only if

(b*) (Fx ⊃ Lmx)

is true on every possible extension q+ of q. But consider the extension q+ which
assigns Bertrand Russell to ‘x’. Russell is in the set of philosophers, so ‘Fx’ is true
on q+. ‘Lmx’ is false, because the pair 〈Socrates, Russell〉 is presumably not in the
set of pairs such that the first member of the pair loves the second. So this q+

makes the antecedent of (b*) true and its consequent false, so makes (b*) false.
Hence (b*) isn’t true on all possible extensions of q; so (b) is indeed false on the
original q-valuation.

So far, so good. Things get only a little more complicated when have to deal
with wffs involving more than one quantifier. We then have to consider extended
valuations which assign references to more than one variable. Take for example

(c) �y�x(Fx ∧ Lyx)

(translation: There’s someone who loves a philosopher). (c) is true on our valua-
tion q so long as

(c*) �x(Fx ∧ Lyx)

is true on some possible extension q+ which assigns a reference to the variable
‘y’. One such extension q+ assigns Socrates to ‘y’. So let’s ask, is (c*) true on q+?
Well, (c*) will be true on that valuation if there is some further extension q++

which as well as assigning Socrates to ‘y’ also assigns someone to ‘x’, where 

(c**) (Fy ∧ Lxy)

is true on q++. And there is such an extension – assign Plato to ‘x’ again! 
What about 

(d) �y�x(Fx ∧ Lyx)

(translation: Everyone loves some philosopher)? This is true on q if for every
extension q+ which assigns a reference to ‘y’ there is a further extension q++

which assigns a reference to ‘x’ which makes (c**) true. 
And so it goes. The main ingredients for our official story about the semantics

of QL are now in place. And it should already seem plausible that, however
complex a closed QL wff W is, a q-valuation for its vocabulary suffices to fix
W’s truth-value (just as a valuation of the atoms in a complex PL wff fixes the
truth-value of that wff). And generalizing: a q-valuation defined over the vocab-
ulary V of some set of closed wffs Σ will similarly fix the truth-values of every
wff in Σ.

The rest of this chapter just wraps up these ideas into an official story pre-
sented rather more formally. But if you find that kind of more abstract presenta-
tion hard going, just skim and skip, or even omit. Our informal presentation so
far is all you really need to know.
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27.4 The official semantics
To summarize so far. The standard truth-valuational story about PL gives rules
for working out the truth-values of more complex wffs in terms of the values of
their simpler constituent subformulae (§9.4). We now want to give similar rules
for working out the values of complex QL wffs in terms of the q-values of their
constituents. En route, we will want to say how the value of the wff ‘�xFx’
relates to valuations of its subformula ‘Fx’, and similarly how the value of
‘�y�x(Fx ∧ Lyx)’ relates to valuations of its subformulae, ultimately ‘Fx’ and
‘Lyx’. But of course, those subformulae don’t have a truth-value on a q-valuation
just of constants and predicates. In order to do systematic semantics, going via
these subformulae with free variables, we are going to have to follow the idea of
the last section and consider extended valuations which treat variables as if they
have temporary references. And the truth of ‘Fx’ on one extended valuation
won’t ensure the truth of ‘�xFx’. As we saw, we have to generalize over extended
valuations to give the right truth-conditions for quantified wffs.

So first, let’s augment the definition in the previous box (§27.2) by defining
extended valuations. That’s easy:

An extended q-valuation defined over vocabulary V is a q-valuation
defined over V, augmented by an assignment of objects as q-values to one
or more variables.

Henceforth, we’ll use ‘(extended) valuation’ to cover both original q-valuations
and extended ones. We are also going to need the following definition:

An extended q-valuation q′ is a v-variant of the (extended) valuation q if
q′ assigns some object o as q-value to the variable v and otherwise agrees
exactly with q.

If q doesn’t assign any object to v already, then a v-variant q′ will of course
extend q by giving a value to v. If q does already assign an object to v, then a v-
variant q′ may (but needn’t) change that assignment. To revisit an example from
the last section, suppose q is the q-valuation defined over {‘m’, ‘F’, ‘L’} that we
met before; q1 is just the same, except that it also assigns Socrates to ‘x’; and q2 is
the same as q except it assigns Plato to ‘x’. Then q1 is an ‘x’-variant of q (and of
q2), and q2 is an ‘x’-variant of q1 (and of q).

With that notion to hand we can neatly give the rules that determine the truth
value of any wff built from vocabulary V, on some valuation q which covers V.
First, we need the rule (Q0) to deal with the atomic wffs on valuations extended
or otherwise (recall, ‘term’ means ‘constant or variable’, see §26.3): 

(Q0) An atomic wff, i.e. an n-place predicate followed by n terms, is true
on the (extended) valuation q if either n = 0, and the q-value of the
0-place predicate is true, or else n > 0, and the n-tuple formed by
taking the q-values of the terms in order is in the extension which is
the q-value of the n-place predicate. Otherwise it is false.
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Second, here are the clauses to cover the various ways in which the truth-values
of more complex wffs depend on the values of simpler ones. For brevity, we use
‘⇒q T’ to mean ‘is true on the (extended) q-valuation q’ (dropping quotation
marks before ‘⇒’; see §16.3). Each clause is of course intended apply to any val-
uation, and so can be read as if prefixed by ‘For all (extended) valuations q, …’:

(Q1) For any wff A, ¬A ⇒q T if A ⇒q F; otherwise ¬A ⇒q F.

(Q2) For any wffs A, B: (A ∧ B) ⇒q T if both A ⇒q T and B ⇒q T; other-
wise (A ∧ B) ⇒q F.

(Q3) For any wffs A, B: (A ∨ B) ⇒q F if both A ⇒q F and B ⇒q F; other-
wise (A ∨ B) ⇒q T.

(Q4) For any wffs A, B: (A ⊃ B) ⇒q F if both A ⇒q T and B ⇒q F; other-
wise (A ⊃ B) ⇒q T.

(Q5) For any wffs A, B: (A � B) ⇒q T if either both A ⇒q T and B ⇒q T,
or both A ⇒q F and B ⇒q F; otherwise (A � B) ⇒q F.

(Q6) For any wff C(…v…v…) with variable v free, �vC(…v…v…) ⇒q T
if C(…v…v…) ⇒q+ T for every q+ which is a v-variant of q; other-
wise �vC(…v…v…) ⇒q F.

(Q7) For any wff C(…v…v…) with variable v free, �vC(…v…v…) ⇒q T
if C(…v…v…) ⇒q+ T for some q+ which is a v-variant of q; otherwise
�vC(…v…v…) ⇒q F.

Clauses (Q1) to (Q5) preserve the familiar truth-functional reading of the basic
connectives; compare (P1) to (P3) in §9.4, and (P4) and (P5) in §14.5. So that
confirms that we are indeed justified in carrying over the old connectives to their
new use. (Q6) and (Q7) neatly capture the key idea about quantifiers.

It should be clear that, given a closed wff with vocabulary V and a valuation q
defined over V, the rules taken together do in principle fix the truth-value of the
wff on q. But to convince you of this, it might help to work through …

27.5 A toy example
Take, then, the following q-valuation q:

(1) The domain of discourse is {Socrates, Plato, Aristotle}
(2) Constants are assigned references as follows:

‘m’ ⇒ Socrates
‘n’ ⇒ Plato

(3) Predicates are assigned extensions as follows:
‘F’ ⇒ {Socrates, Aristotle}
‘G’ ⇒ { }
‘L’ ⇒ {〈Socrates, Plato〉, 〈Plato, Aristotle〉, 〈Plato, Socrates〉, 
〈Aristotle, Aristotle〉}

Here, curly brackets are used (as is absolutely standard) to form expressions to
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denote sets; the members of the set are as listed. In particular, ‘G’ is being
assigned the empty set; i.e. nothing satisfies that predicate. We are again using
the equally standard convention of using angled brackets to indicate tuples; so
‘〈Socrates, Plato〉’ denotes the ordered pair who first member is Socrates and
whose second member is Plato, and ‘〈Aristotle, Aristotle〉’ denotes the pair
whose first member is Aristotle and whose second member is Aristotle too.

A Consider first ‘�xFx’. Then, we have by (Q6)

‘�xFx’ ⇒q T just if ‘Fx’ ⇒q+ T for every q+ which is an ‘x’-variant of q.

Each of the three objects in the domain is available to be assigned to ‘x’ by an
extension to q, so there are three ‘x’-variants of q. Take q2 to be the second of
these, so q2 is the same as q except it also assigns ‘x’ the value Plato. By (Q0), 

‘Fx’ ⇒q2
 T just if the q-value of ‘x’ on q2 is in the q-value of ‘F’ on q2, i.e.

just if Plato is in {Socrates, Aristotle}.

So, on q2, ‘Fx’ is false. Hence ‘�xFx’ ⇒q F.

B Consider next ‘�y¬(Fy ∧ Gy)’. By (Q6), and then (Q1)

‘�y¬(Fy ∧ Gy)’ ⇒q T just if ‘¬(Fy ∧ Gy)’ ⇒q+ T for every q+ which is a
‘y’-variant of q; i.e. just if ‘(Fy ∧ Gy)’ ⇒q+ F for every q+ which is
a ‘y’-variant of q.

Now consider any ‘y’-variant of q. Inspection shows that ‘(Fy ∧ Gy)’ is indeed
false on all of them because ‘Gy’ is always false. So that means ‘�y¬(Fy ∧ Gy)’ is
true on q.

C Thirdly, consider ‘�x�yLxy’. By (Q6) again, 

‘�x�yLxy’ ⇒q T just if ‘�yLxy’ ⇒q+ T for every q+ which is an ‘x’-variant
of q.

There are again three ‘x’-variants to consider. Take the first, q1, which assigns
Socrates to ‘x’. Then by (Q7) 

‘�yLxy’ ⇒q1
 T just if ‘Lxy’ ⇒q++ T for some q++ which is a ‘y’-variant of q1.

Inspection shows that there is such an q++. Take the ‘y’-variant of q1 which
assigns Plato to ‘y’. On this valuation, ‘Lxy’ is true, since the pair 〈the q-value of
‘x’, the q-value of ‘y’〉, i.e. 〈Socrates, Plato〉, is in the extension of ‘L’. So ‘�yLxy’ is
true on q1. Likewise, ‘�yLxy’ comes out true on the two other ‘x’-variants of q.
So ‘�x�yLxy’ ⇒q T.

These calculations are all more than a bit laborious (and just imagine if the
domain had been a bigger one!). But tracking through this sort of toy example
should convince you that the values of shorter subformulae – together with their
values taken across families of appropriate variant valuations – will at least in
principle always determine the values of more complex wffs in the intended way.
The rules do indeed work as advertised!
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27.6 Five results about (extended) q-valuations. 
In the next few chapters, we’ll invoke a number of elementary and intuitive
results about (extended) q-valuations. It’s convenient to explain them here. But
in fact it is enough if you read through claims (V1) to (V5) in their italicized
informal versions, and are happy to accept them as intuitively true. You needn’t
worry too much about the arguments which show that they are indeed true.

(V1) If a valuation makes a universal quantification true, it makes its instances
true too (so long as we use names the valuation ‘knows about’). For example,
suppose q is an (extended) valuation defined over vocabulary V including the
name ‘n’, and ‘�xFx’ is true on q. Then ‘Fn’ must also be true on q. (Proof: Let
the reference of ‘n’ according to q be the object o. By assumption, ‘Fx’ is true on
every ‘x’-variant of q. So, in particular, ‘Fx’ must be true on the variant which
assigns object o to ‘x’. So o has to be in the extension of ‘F’. That means ‘Fn’
must be true.)

Relatedly, suppose that q is an (extended) valuation defined over vocabulary V
which includes no constants and ‘�xFx’ is again true on q. Then there is an
extension q+ of q to cover the vocabulary V plus the new name ‘a’, such that ‘Fa’
is true on q+. (Proof: By definition there is at least one object o in the domain of
q. And by assumption, ‘F’ is true of everything, so is true of o. Define q+ as q
plus the assignment of o to the new name ‘a’. That will make ‘Fa’ true on q+.)

(V2) If a valuation makes an existential quantification true, it has an extension
(which assigns a q-value to a new name) which makes an instance of the quanti-
fication true too. For example, suppose q is defined over vocabulary V which
does not include the name ‘a’, and suppose ‘�xFx’ is true on q. Then there is an
extension q+ of q to cover the vocabulary V plus the new name ‘a’, such that ‘Fa’
is true on q+. (Proof: By assumption, ‘Fx’ is true on some ‘x’-variant of q. So is
there is some object o in the domain that can be assigned to ‘x’ which makes ‘Fx’
true. Define q+ as q plus the assignment of this object o to the new name ‘a’.
That will make ‘Fa’ true on q+.)

(V3) Valuations respect the equivalence between ¬�v and �¬v. For example,
suppose q is a an (extended) valuation which makes ‘¬�xFx’ true. Then it makes
‘�x¬Fx’ true. (Proof: By assumption q must make ‘�xFx’ false. So some ‘x’-vari-
ant of q of q makes ‘Fx’ false. So this variant makes ‘¬Fx’ true. So q has an ‘x’-
variant which makes ‘¬Fx’ true. So q makes ‘�x¬Fx’ true.)

(V4) Valuations respect the equivalence between ¬�v and �¬v. For example,
suppose q makes ‘¬�xFx’ true. Then q makes ‘�x¬Fx’ true. (Proof: Similar to
proof for (V3).)

(V5) Extending a valuation to deal with a new constant doesn’t affect the values
of wffs not containing that constant. (Proof: Inspection of the rules shows that
when we calculate the truth-value of a wff W on an (extended) valuation q, we
only need to consider the specification of the domain, and the q-values of the
names, free variables, and predicates actually in W. Suppose, for example, the
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name ‘a’ doesn’t appear in W; then it won’t matter what q assigns it. And if this
wff W is true on some q that doesn’t evaluate ‘a’, it will remain true on an exten-
sion of q which assigns some reference to that irrelevant name.)

Summing up, then, and putting things a little more formally:

(V1) If an (extended) valuation q makes a wff of the form �vC(…v…v…)
true, then (assuming q assigns a value to the constant c), q makes
C(…c…c…) true. And if q doesn’t assign a value to c, there is an
extension of q to q+ which gives a q-value to c and makes
C(…c…c…) true.

(V2) If q makes a wff of the form �vC(…v…v…) true, and c is a constant
which q does not evaluate, there is an extension of q to q+ which
gives a q-value to c and makes C(…c…c…) true.

(V3) If q makes a wff of the form ¬�vC true, then it also makes true the
corresponding wff of the form �v¬C.

(V4) If q makes a wff of the form ¬�vC true, then it also makes true the
corresponding wff of the form �v¬C.

(V5) Suppose q is defined over vocabulary V which doesn’t include the
constant c; and suppose q+ extends q by assigning some object in the
domain to c. Let W be some wff using vocabulary from V. Then if q
makes W true, so does q+.

27.7 Summary
• A q-valuation defined over QL vocabulary V fixes a set of objects to be the

domain of discourse D; it assigns individual constants in V objects in D as
references; it assigns a truth-value to any 0-place predicate in V; and when
n > 0, it assigns an n-place predicate in V a (possible empty) set of n-tuples
of objects in D.

• The key to understanding the semantics of the quantifiers is the following
idea: �vC(…v…v…) is true if C(…v…v…) would come out true, no matter
which object we took v to pick out, if we regard v here as a pronoun. Simi-
larly �vC(…v…v…) is true if C(…v…v…) would come out true, for some
possible reference for v.

• To implement this idea, we introduce the idea of an extended q-valuation,
which assigns references to one or more variables as well as individual con-
stants. Then we can say, roughly, that �vC(…v…v…) is true if C(…v…v…)
is true no matter which object the extended valuation assigns to v, i.e. is
true on all relevant extended valuations. And �vC(…v…v…) is true if
C(…v…v…) is true on some such extended valuation.

• Together with the natural rules for the propositional connectives, the rules
for evaluating quantified wffs ensure that a q-valuation defined over vocab-
ulary V fixes a truth-value for any closed wff built up from that vocabulary. 
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Exercises 27
Take the following q-valuation: 

The domain is {Romeo, Juliet, Benedick, Beatrice}

Constants are assigned references as follows:
‘m’ ⇒ Romeo
‘n’ ⇒ Juliet

Predicates are assigned extensions as follows:
‘F’ ⇒ {Romeo, Benedick}
‘G’ ⇒ {Juliet, Beatrice}
‘L’ ⇒ {〈Romeo, Juliet〉, 〈Juliet, Romeo〉, 〈Benedick, Beatrice〉, 

〈Beatrice, Benedick〉, 〈Benedick, Benedick〉}

Then what are the truth values of the following wffs?

1. �x Lmx
2. �x Lxm
3 (�x Lmx ⊃ Lmn)
4. �x(Fx � ¬Gx)
5. �x(Gx ⊃ (Lxm ∨ ¬Lmx))
6. �x(Gx ⊃ �yLxy)
7. �x(Fx ∧ �y(Gy ⊃ Lxy))

Now take the following q-valuation: 

The domain is {4, 7, 8, 11, 12}

Constants are assigned references as follows:
‘m’ ⇒ 7
‘n’ ⇒ 12

Predicates are assigned extensions as follows:
‘F’ ⇒ the even numbers in the domain
‘G’ ⇒ the odd numbers in the domain
‘L’ ⇒ the set of pairs 〈m, n〉 where m and n are in the domain and

m is less than n

What are the truth values of the wffs (1) to (7) now?



Using the idea of a q-valuation introduced in the last chapter, we can now define
the idea of a q-valid argument (i.e. one whose conclusion must be true on a q-
valuation if its premisses are). Unfortunately, we can’t mechanically test for q-
validity in the way we can for tautological validity. But we will introduce various
ways of establishing arguments to be q-valid or q-invalid.

28.1 Q-validity defined
Back in Chapter 13, we met the notion of a tautological entailment: 

The PL wffs A1, A2, …, An tautologically entail the wff C if and only if
there is no valuation of the atoms involved in the premisses Ai and the
conclusion C which makes A1, A2, …, An simultaneously all true and yet
C false. 

We can now introduce an analogous definition for q-entailment:

The QL closed wffs A1, A2, …, An q-entail the closed wff C if and only if
there is no q-valuation of the vocabulary V involved in the premisses Ai
and the conclusion C which makes A1, A2, …, An simultaneously all true
and yet C false. 

Note we’ve defined q-entailment only for closed wffs – i.e. wffs with no variables
dangling free, and which thus have determinate truth-values on a q-valuation of
their vocabulary. When certain premisses tautologically entail a conclusion we
say that the inference in question is tautologically valid; similarly, when a bunch
of premisses q-entail a conclusion, we will say that the inference is q-valid.

Here are some more definitions:

• First, if a q-valuation makes some collection of closed wffs all true, then the
valuation is said to satisfy those wffs or, equivalently, to be a model of those
wffs. So another way of defining q-validity is this: an inference is q-valid
just if there is no model of the premisses and negation of the conclusion.

• Second, if a q-valuation does make the premisses of some inference all true
while making the conclusion false, then we will say that the valuation is a

28

Q-validity
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countermodel for the inference. So we can also say: an inference is q-valid
just if it has no countermodels.

• Third, we introduce the QL analogue of the PL notion of a tautology. A PL
wff is a tautology if it is true on all valuations of its atoms. Similarly, we
will say that a closed QL wff is a q-logical truth if it is true on all q-valua-
tions of its vocabulary.

However, we should frankly signal that this last bit of terminology is entirely
non-standard. In fact, the customary term for a q-logical truth seems to be ‘valid
wff’ – which is a rather perverse bit of nomenclature given the logician’s loud
insistence elsewhere, as in §2.5, on emphatically distinguishing validity (a property
of inferences) from truth (a feature of wffs or propositions)! 

28.2 Some simple examples of q-validity
Take the argument

A �x(Fx ⊃ Gx), Fn ∴ Gn

which we might read as the QL rendition of ‘All philosophers are egocentric;
Jack is a philosopher; hence Jack is egocentric’ (§§1.2, 25.1).

The inference here is certainly valid; and intuitively it is also q-valid, for it
surely depends just on the way the quantifier and the conditional works, and not
on the particular interpretation of the predicates. But how can we prove this?
After all, we can’t directly check through each and every permissible q-valuation
to see what happens to the premisses and conclusion in each case: there are just
too many possibilities. The first step in specifying a q-valuation is fixing the
domain of discourse: but this can be any non-empty set you care to choose, how-
ever enormous. And having chosen the domain, a one-place predicate can then
have as its extension any arbitrarily selected set of objects from the domain. The
possibilities here are literally endless. So how can we proceed?

Let’s try an indirect approach. Suppose there is a q-valuation q of the vocabu-
lary {‘n’, ‘F’, ‘G’} which makes the premisses and the negation of the conclusion
of A all true. We’ll use ‘⇒q T’ again as shorthand for ‘is T on valuation q’, drop-
ping quotation-marks before ‘⇒’ (as we did in §16.1). Then we are supposing:

(1) Fn ⇒q T
(2) �x(Fx ⊃ Gx) ⇒q T
(3) ¬Gn ⇒q T

At the end of the last chapter, we noted the obvious principle (V1): if the q-valu-
ation q makes a wff of the form �vC(…v…v…) true, then q makes C(…c…c…)
true, for any constant c which q evaluates. So, given (2), this principle tells us

(4) (Fn ⊃ Gn) ⇒q T

Now we are in familiar territory with a familiar connective, and can continue:

(5)  ¬Fn ⇒q T Gn ⇒q T
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But the left branch of (5) contradicts (1), and the right branch contradicts (3).
Hence there can be no such valuation q which is a countermodel to A. Which
proves that the argument is indeed q-valid.

For a second example, consider

B �xFx, �x(Fx ⊃ Gx) ∴ �xGx

which renders, as it might be, ‘Someone is a great logician; all great logicians are
cool; hence someone is cool’. 

Again, we need to proceed indirectly and assume for the sake of argument that
there is a q-valuation q which makes the premisses true and conclusion false: 

(1) �xFx ⇒q T
(2) �x(Fx ⊃ Gx) ⇒q T
(3) ¬�xGx ⇒q T

But if a valuation q makes ‘¬�xGx’ true, it will make ‘�x¬Gx’ true (as we noted
in §27.6, V4). So we must also have

(4) �x¬Gx ⇒q T

Now, if a valuation q makes ‘�xFx’ true, then some object in the domain must be
in the extension of ‘F’: so we can construct a q+ which extends q by assigning
that object to be the referent of the new name ‘a’ (§27.6, V2). And then

(5) Fa ⇒q+ T

What else holds on q+? If a wff not involving ‘a’ is true on a valuation q, then it
remains true on any extension q+ to deal with that constant (see §27.6, V5). So
(2) implies that �x(Fx ⊃ Gx) ⇒q+ T too; and applying (V1) again, we get

(6) (Fa ⊃ Ga) ⇒q+ T

Similarly (4) implies 

(7) ¬Ga ⇒q+ T

But unpacking (6) immediately generates contradictions:

(8)  ¬Fa ⇒q+T Ga ⇒q+ T
✼ ✼

There can be no q+ which makes (5) to (7) all true; hence there is no q that is a
countermodel to B. So this argument is q-valid too.

Let’s take just one more example. Consider the inference

C (�x(Fx ∧ ¬Gx) ⊃ ¬Gn), Gn ∴ �x(Fx ⊃ Gx)

We again start be assuming that this is not q-valid. That is, we suppose that there
is a q-valuation q such that:

(1)  (�x(Fx ∧ ¬Gx) ⊃ ¬Gn) ⇒q T
(2) Gn ⇒q T
(3) ¬�x(Fx ⊃ Gx) ⇒q T

Immediately, by (V3), we can infer
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(4) �x¬(Fx ⊃ Gx) ⇒q T

Applying to (1) the familiar rule for dealing with conditionals gives

(5) ¬�x(Fx ∧ ¬Gx) ⇒q T ¬Gn ⇒q T
✼

We can apply the principle (V4) to continue the left-hand branch

(6) �x¬(Fx ∧ ¬Gx) ⇒q T

And now looking at (4), we can apply (V2) again: if a valuation q makes
‘�x¬(Fx ⊃ Gx)’ true, and ‘a’ is a new constant that q doesn’t evaluate, then there
must be an extension q+ of q to cover the new name ‘a’, such that

(7) ¬(Fa ⊃ Ga) ⇒q+ T

We again remember that wffs not involving ‘a’ that are true on q must remain true
on an extended valuation that assigns some object to ‘a’. That holds in particular
of (6). So ‘�x¬(Fx ∧ ¬Gx)’ remains true on q+. And applying (V1) we get (8), and
then can quickly finish:

(8) ¬(Fa ∧ ¬Ga) ⇒q+ T
(9) Fa ⇒q+ T
(10) ¬Ga ⇒q+ T

(11) ¬Fa ⇒q+ T ¬¬Ga ⇒q+ T
(12) ✼ ✼

We hit contradictions again. There can be no q+ which makes (7) and (8) both
true; hence there is no q is a countermodel to C, and so the inference is q-valid.

But of course, we’ve seen trees very like these before! In fact, strip off the
explicit assignments of values and these are exactly the trees we met informally
in Chapter 25 (Examples A, F, K). So what is going on here?

28.3 Thinking about trees again
Recall what we said about PL trees. We first introduced these as a way of pre-
senting ‘working backwards’ arguments in English about valuations. We then
dropped the explicit assignments of truth-values, for the sake of brevity. Still, the
trees remained ways of presenting metalinguistic arguments. In Chapter 20,
however, we pointed out that these same unsigned trees could equally well be
read as object-language arguments (i.e. arguments in PL, not arguments about
PL). Read that way, they represent inferences within PL, revealing the commit-
ments of an initial bunch of assumptions. And a closed tree shows that this
bunch of assumptions is inconsistent.

In Chapter 25, we introduced QL trees. We didn’t then have the notions of a
q-valuation and of q-validity to hand. So at that point, we couldn’t think of the
trees metalinguistically, as arguments about QL valuations. We had to think of
them in the second way, as representing inferences within QL, with a closed tree
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showing that an initial set of assumptions is inconsistent. And the tree inferences
were then justified intuitively, using an informal notion of validity. 

But now we do have formal semantic notions in play. So we can now con-
struct metalinguistic tree arguments about possible q-valuations. 

Looking at our three quick examples of metalinguistic trees, we see that the
way they are constructed exactly parallels the object-language arguments we met
before. And the principles (V1) to (V5) of §27.6 justify analogues of the intuitive
rules for the quantifiers that we adopted before. In particular, (V1) tells us that
we can extend a tree argument about the q-valuation q by instantiating a univer-
sal quantification with respect to a constant that q already ‘knows about’. And
(V2) tells us that if q makes an existential quantification true, then there will be
an extension q+ which makes true an instantiation of it by a new name. So we
can extend a tree argument about the q-valuation q by instantiating an existen-
tial quantification with respect to a new constant, to get something true on q+.

We will tidy up these observations in §30.1. But what they suggest is that the
unsigned trees we introduced in Chapter 25 (as arguments to establish the intui-
tive validity of certain QL inferences) can also be viewed as shorthand for argu-
ments about q-valuations, with closed trees establishing not just the validity but
the q-validity of inferences.

28.4 Validity, q-validity, and ‘quantification logical form’
The idea of tautological entailment captures the idea of an inferential move’s
being valid by virtue of the distribution of the truth-functional propositional
connectives among the premisses and conclusion (i.e. being valid irrespective of
the meanings of the atoms the connectives connect). Similarly, the idea of q-
validity captures the idea of an inference which is valid in virtue of ‘quantifica-
tional logical form’, i.e. in virtue of the distribution of connectives and quantifi-
ers among the premisses and conclusion (so valid irrespective of the meanings of
the names and predicates that are involved in the argument).

Compare our remarks about logical form in §§3.6 and 13.6. While the notion
of logical form in general is murky, the notion of a QL argument’s being valid in
virtue of its quantificational logical form is in perfect order and can be formally
defined. It is just the notion of q-validity. 

An inference can be valid without being tautologically valid; and it can be
valid without being q-valid either. For example, consider the reading of QL
where the domain of discourse is humans, the predicate ‘F’ means father, and ‘G’
means male. Given those interpretations, the little argument

D �xFx ∴ �xGx

is evidently valid (if there are fathers, there must be males). But it isn’t valid in
virtue of quantificational logical form. There are q-valuations of the vocabulary
which make the premiss true and the conclusion false: e.g., let the extension of
‘F’ be the set of great Cambridge philosophers, and let the extension of ‘G’ be
empty. Of course, this q-valuation doesn’t conform to the interpretation that we
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just gave ‘F’ and ‘G’. That’s allowed, though, exactly as we allowed PL truth-val-
uations which do not respect the meanings of atoms (see §13.2). The q-valua-
tions of wffs are intended to generate assignments of truth-values which are
allowed so far as the meanings of the connectives and quantifiers are concerned.

However, although there can be arguments which are valid without being tau-
tologically valid, we saw that any PL argument which is tautologically valid is
plain valid (see §13.2 again). Similarly, although there can be arguments which are
valid without being q-valid, any QL argument which is q-valid is plain valid. Or
to put it the other way about, if an argument isn’t valid, it can’t be q-valid. Why?

Take the single premiss case for simplicity (the generalization is trivial). If the
inference from A to C is not valid, there must be some possible situation which
would make A true and C false. But when A and C are wffs of QL, a situation
can only make A true and C false by fixing the domain and imposing certain q-
values on the constituent names and predicates, since these values are all that
matters for determining the truth-values of QL wffs. Hence if the inference from
A to C is indeed invalid, there must be a q-valuation of their vocabulary which
makes A true and C false – and that means that A does not q-entail C. (For a
cautionary remark, however, see §34.4.)

Summing that up: q-validity stands to QL arguments as tautological validity
stands to PL arguments.

28.5 The undecidability of q-validity
We saw that we can mechanically decide whether a PL argument is tautologi-
cally valid by exhaustively looking at all the possible different valuations of the
atoms that occur in the argument (that’s a finite number, of course), and asking
whether any valuation makes the premisses true and the conclusion false. As we
remarked before, we can’t similarly test whether a QL argument is q-valid by
exhaustively looking at all the possible different q-valuations of the vocabulary
that occur in the argument. There are just too many possibilities.

Still, although we can’t do a brute-force search through all possible q-valua-
tions of some vocabulary, couldn’t there be some alternative mechanical method
of determining whether any argument is q-valid? 

There are some special cases where there are mechanical tests: the simplest one
is where all the predicates that appear in the argument are one-place. Construct
a QL tree, applying the rules as often as possible. Either it closes, and the argu-
ment is proved valid. Or it must terminate with no more rules left to apply (once
we’ve instantiated any universal quantifier with every name in sight), but leaving
an open branch. And then we can read off a countermodel to show the argument
is invalid: see §29.3. 

However, as soon as there is even a single two-place predicate featuring in an
argument, trees needn’t terminate, and there won’t in general be a mechanical
method for deciding q-validity. That result is mathematically demonstrable.
However, we can’t demonstrate it here. For a start, we would have to carefully
investigate the general theory of ‘mechanical methods’, which is in effect the
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general theory of what computers can do: and that is evidently a non-trivial
business which would take us too far afield. (The undecidability result belongs
to a family of exciting ‘limitative’ results about what can be done by mechanical
methods, discovered in the 1930s by Kurt Gödel, Alan Turing and others.) 

If we can’t in general test for q-validity by anything akin to a truth-table test,
we have to resort to the likes of tree proofs to demonstrate validity. And as we’ll
see, our tree system can be beefed up to become a complete proof system in the
sense that, if an argument is valid, we can always show it to be valid using trees.
But that point doesn’t conflict with the point about undecidability: claiming that
we can always prove an argument is q-valid by some approved method if it is q-
valid doesn’t mean that there is a mechanical way of telling whether there is a
proof or not.

In short, then, to explore the logic of QL arguments further we need to con-
sider methods of proof, such as trees. So we return to them in the next chapter.

28.6 Countermodels and invalidity
But before moving on to consider tree proofs again, let’s consider how we might
directly show that a q-invalid argument is q-invalid.

How do we do that? By finding q-valuations that work as countermodels, of
course. Later, we’ll see how we can sometimes do this systematically by reading
valuations off open trees (§§29.4, 30.4). Here we’ll just work very informally
through a few examples. 

Consider the inference:

E �x(Fx ⊃ Hx), �x(Gx ⊃ Hx) ∴ �x(Fx ⊃ Gx)

Suppose we interpret the predicates so this translates as ‘All cats are mammals;
all dogs are mammals; hence all cats are dogs’. We immediately see that E is
invalid by the invalidity principle (§2.3). And this interpretation can be parlayed
into a formal countermodel to show the q-invalidity of E. Just put

Domain of discourse is the set of animals
Extension of ‘F’ = the set of cats
Extension of ‘G’ = the set of dogs
Extension of ‘H’ = the set of mammals

and we get a q-valuation which makes the premisses true and the conclusion false.
However, we just picked that counterexample/countermodel out of thin air.

Can we proceed a little bit more methodically? 
We are looking for a q-valuation which makes ‘�x(Fx ⊃ Gx)’ false. That

requires there to be an object in the domain which is in the extension of ‘F’ but
not in the extension of ‘G’ (why?). Let’s insert an object into the domain to play
this role – anything will do, e.g. Gwyneth Paltrow, Brad Pitt, … or the number 0.
Take the latter (as it is less distracting!). And let’s try to be minimalist, and start
off with nothing else in the domain, so we’ll try to build up our q-valuation
starting as follows:
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Domain = {0}, i.e. the set containing just 0
Extension of ‘F’ = {0}
Extension of ‘G’ = { }, i.e. the empty set

This evidently makes the conclusion of E false; so far, so good. Next, to make
‘�x(Fx ⊃ Hx)’ true, anything which is in the extension of ‘F’ must be in the exten-
sion of ‘H’ (why?). So, let’s put

Extension of ‘H’ = {0}

and the first premiss comes out true. And as it happens, that’s enough to make
the second premiss true too. That’s because ‘�x(Gx ⊃ Hx)’ is true on this valuation
so long as ‘(Gx ⊃ Hx)’ comes out true on every extension which assigns an object
in the domain to ‘x’. The only object in the domain is 0; and ‘(Gx ⊃ Hx)’ is true
when ‘x’ is treated as referring to that, since the antecedent of the conditional
will be false and the conclusion true. Therefore our mini-model for the premisses
is indeed another countermodel for the inference.

Take a second example:

F �x(Fx ∨ Gx) ∴ (�xFx ∨ �xGx)

This is q-invalid (and plain invalid for most readings of ‘F’ and ‘G’). Compare:
every number is even or odd; but it doesn’t follow that every number is even or
that every number is odd. Hence, for a countermodel, suppose the domain is the
set of natural numbers, the extension of ‘F’ is the even numbers, and the exten-
sion of ‘G’ is the odd numbers. 

Again, we can proceed more methodically. We are looking for a valuation
which makes ‘(�xFx ∨ �xGx)’ false, i.e. makes each of ‘�xFx’ and ‘�xGx’ false.
So there must be something in the domain which isn’t in the extension of ‘F’ and
also something in the domain which isn’t in the extension of ‘G’. Can we get a
countermodel with a one-element domain? Well, if the domain is {0}, then the
extensions of ‘F’ and ‘G’ will have to be empty to make ‘�xFx’ and ‘�xGx’ false.
But then ‘�x(Fx ∨ Gx)’ will be false too, so we haven’t got a countermodel.

So let’s try a two-element domain, say {0, 1}. A bit of experimenting shows
that e.g.

Domain = {0, 1}
Extension of ‘F’ = {0}
Extension of ‘G’ = {1}

will do the trick and provide a countermodel.
If we only have monadic predicates in play, things stay fairly simple (again, see

§29.3). But if an inference involves even one dyadic predicate, then we may need
an infinite countermodel to show that it is invalid. Thus consider

G �x�yLxy, �x�y�z((Lxy ∧ Lyz) ⊃ Lxz) ∴ �xLxx

Here, the first premiss says that everything stands in the relation L to something
or other; and the second premiss says that L is a transitive relation (a relation L
is transitive if when a has L to b, and b has L to c, then a has L to c: for example
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‘being an ancestor of’ or ‘being taller than’ are transitive). Now, suppose that
these premisses are satisfied in a finite domain. Start from some element o1 in the
domain. Then by the first premiss, this initial element is related by L to some ele-
ment o2 in the domain, and o2 is related by L to some element o3, and so on and
so forth. And if there are only a finite number of elements to choose from, we
must in the end revisit some element on we’ve met before. In short, we will have
a finite L-related chain of elements such that

o1 → o2 → … → on → on+1 → … → on

But, by the second premiss, if on is L to on+1, and on+1 is L to on+2, then on is L
to on+2; and if on is L to on+2 and on+2 is L to on+3, then on is L to on+3. And so
on. In other words, by the transitivity premiss, on is L-related to everything
further down the chain. So in particular, on is L-related to on itself. Which makes
‘�x Lxx’ true. In short, if the premisses of G are true in a finite domain, so is the
conclusion!

Yet the argument G is evidently invalid. Compare ‘Take any number, there is
some number it is less than; if a number is less than a second number, and the
second is less than a third, then the first is less than the third; hence there is a
number which is less than itself’, which has true premiss and a false conclusion.
That’s a counterexample to the validity of G, and the corresponding infinite
countermodel is

Domain = {0, 1, 2, …}, i.e. the infinite set of all positive integers
Extension of ‘L’ = the set of pairs 〈m, n〉 such that m < n.

28.7 Summary
• A q-valid inference is a QL inference which is such that, on any q-valuation

of the vocabulary V in the premisses and the conclusion, if the premisses
are all true together, the conclusion is true too.

• There is no generally applicable mechanical method for determining
whether an argument is q-valid (contrast the truth-table test for mechani-
cally settling the tautological validity of PL arguments).

• We can establish a q-valid argument to be q-valid by showing that the idea
that there is a countermodel (a q-valuation which makes the premisses true
and conclusion false) leads to contradiction. Such a proof is again naturally
set out as a tree.

• We can establish a q-invalid argument to be q-invalid if we can find a counter-
model. But in the general case, countermodels may need infinite domains.

Exercises 28
A Let’s use ‘f’ now to abbreviate ‘q-entails’ (compare §13.7). Which of the

following claims are true? Provide arguments in the style of §§28.2 and
28.6 to defend your answers.
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1. �x(Fx ⊃ Gx) f �x(Gx ⊃ Fx)
2. �x(Fx ⊃ Gx) f �x(¬Gx ⊃ ¬Fx)
3. �x�yLxy f �y�xLyx
4. �x((Fx ∧ Gx) ⊃ Hx) f �x(Fx ⊃ (Gx ⊃ Hx))
5. (�xFx ∨ �xGx) f �x(Fx ∨ Gx)
6. �x(Fx ⊃ Gx), �x(¬Gx ⊃ Hx)f �x(Fx ⊃ ¬Hx)
7. �x(Fx ∧ Gx), �x(¬Hx ⊃ ¬Gx) f �x(Fx ∧ Hx)
8. �x�y(Fy ⊃ Gx) f �y�x(Gx ⊃ Fy)
9. �x�y(Lxy ⊃ Lyx) f �xLxx
10. �x(�yLxy ⊃ �zLzx) f �x�y(Lxy ⊃ Lyx)

B How can the techniques of §§28.2 and 28.6 be used to show that certain
wffs are or are not q-logical truths? Which of the following claims are q-
logical truths? Defend your answers.

1. �x((Fx ∧ Gx) ⊃ (Fx ∨ Gx))
2. �x((Fx ∧ Gx) ⊃ (Fx ∨ Gx))
3. (�x�y(Lxy ⊃ Lyx) ⊃ �xLxx)
4. (�x�yLxy ⊃ �y�xLxy)
5. (�y�xLxy ⊃ �x�yLxy)
6. (�x�y(Lxy ⊃ ¬Lyx) ⊃ �x¬Lxx)

C (For enthusiasts!) Show that the following claims are true:

1. Some QL wffs of the form (A ∨ ¬A) are not q-logical truths.
2. Any QL sentence of the form (A ∨ ¬A) is a q-logical truth.
3. If W is a PL wff involving just the PL atom A, and if B is a QL

atomic sentence, then the result of systematically replacing every
occurrence of A in W with an occurrence of B yields a QL sen-
tence.

4. If W is a PL tautology involving just the PL atom A, and if B is a
QL atomic sentence, then the result of systematically replacing
every occurrence of A in W with an occurrence of B yields a q-
logical truth of QL.

5. If W is a PL tautology involving just the PL atoms A1, A2, …, An,
and if B1, B2, …, Bn are QL atomic sentences, then the result of
systematically replacing every occurrence of Ai in W with an
occurrence of the corresponding Bi yields a q-logical truth of QL.

6. If W is a PL tautology involving just the PL atoms A1, A2, …, An,
and if B1, B2, …, Bn are any QL sentences (atomic or molecular),
then the result of systematically replacing every occurrence of Ai
in W with an occurrence of the corresponding Bi yields a q-logical
truth of QL.



This chapter begins by gathering together the rules for QL trees introduced in
Chapter 25. We look at some more complex examples using closed trees to dem-
onstrate q-validity. We then explain a needed small addition to one of the rules.
Finally, we consider what can be learnt from looking at trees that don’t close.

29.1 The official rules
In the boxes over the next two pages, we summarize the rules for building the
unsigned QL trees that we’ve already encountered. Rules (a) to (i) are the famil-
iar rules for the connectives, trivially re-ordered. Then we add the current four
rules for quantifiers. How are these rules to be interpreted and applied?

First, a quick reminder of what we mean when we say that a wff W is e.g. of
the form (A ⊃ B) or �vC(…v…v…). We mean, in the first case, that W can be
constructed from the template ‘(A ⊃ B)’ by replacing ‘A’ and ‘B’ by QL wffs: in
that case, ‘⊃’ is the main logical operator of W (see §26.4). In the second case,
we mean that W can be constructed by prefixing the universal quantifier �v to a
wff where the variable v has only free, i.e. unbound, occurrences: the quantifier
�v is the main logical operator of W.

In each case, then, the tree-building rules tell us how to extend a tree depend-
ing on the main operator of the wff W which is being processed. Given the wff

(�x(Fx ∧ Gx) ⊃ Fn)

we can apply the appropriate tree-splitting rule (g), to deal with ‘⊃’; but we
cannot apply the rule (�), as ‘�x’ is not the main operator. Likewise, given the wff

�x¬¬(Fx ∧ Gx)

we can apply the quantifier rule (�) but not the double-negation rule (a). And so on.
Given a QL inference (involving only closed wffs, as we said before) we build

a corresponding tree in the following stages, just as with a PL inference: 

(1) Start off the trunk of the tree with the premisses A1, A2, …, An and the
negation of conclusion C of the inference under consideration.

(2) Inspect any not-yet-closed path down from the top of the tree to see
whether it involves an explicit contradiction, i.e. for some wff W it

29

More on QL trees
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Rules for building QL trees

Suppose that W is a non-primitive wff on an open branch. We can then
apply the corresponding rule: 

(a) W is of the form ¬¬A: add A to each open path containing W.
Check off W. Schematically, 

¬¬A √
|
A

(b) W is of the form (A ∧ B): add both A and B to each open path con-
taining W. Check off W.

(c) W is of the form ¬(A ∨ B): add ¬A and ¬B to each open path con-
taining W. Check off W.

(d) W is of the form ¬(A ⊃ B): add A and ¬B to each open path con-
taining W. Check off W.

 (A∧ B) √ ¬(A ∨ B) √ ¬(A ⊃ B) √
| | |
A ¬A A
B ¬B ¬B

(e) W is of the form (A ∨ B): add a new fork to each open path containing
W, with branches leading to the alternatives A and B. Check off W.

(f) W is of the form ¬(A ∧ B): add a new fork to each open path con-
taining W, with branches leading to the alternatives ¬A and ¬B.
Check off W.

(g) W is of the form (A ⊃ B): add a new fork to each open path con-
taining W, with branches leading to the alternatives ¬A and B.
Check off W.

(h) W is of the form (A � B): add a new fork to each open path con-
taining W, leading to the alternatives A, B and ¬A, ¬B. Check off
W.

(i) W is of the form ¬(A � B): add a new fork to each open path con-
taining W, leading to the alternatives A, ¬B and ¬A, B. Check off W.

(A ∨ B) √ ¬(A ∧ B) √ (A ⊃ B) √

A B ¬A ¬B ¬A B

(A � B) √ ¬(A � B) √

A ¬A A ¬A
B ¬B ¬B B



274 More on QL trees

Rules for building QL trees, continued*

(¬�) W is of the form ¬�vC: add �v¬C to each open path on which W
appears. Check off W.

(¬�) W is of the form ¬�vC: add �v¬C to each open path on which W
appears. Check off W.

 ¬�vC √ ¬�vC √
 | |

�v¬C �v¬C

(�) W is of the form �vC(…v…v…): add C(…c…c…) to an open path
on which W appears, where c is a constant on that path (which
hasn’t already been used to instantiate W on that path). W is not
checked off. 

�vC(…v…v…)  
|

C(…c…c…) [c old]

(�) W is of the form �vC(…v…v…): add C(…c…c…) to each open
path on which W appears, where c is a constant new to the paths.
Check off W.

�vC(…v…v…)  √
|

C(…c…c…) [c new]

contains both W and also the corresponding formula ¬W. If it does, then
we close that path with a star as an absurdity marker. 

(3) If we have run out of rules to apply to unchecked non-primitive formulae
left on any open path, then we have to stop!

(4) Otherwise, we choose some unchecked non-primitive formula W that sits
on an open path. We then apply the appropriate rule, and extend the tree
by adding more (closed) wffs in the described way. We can then check off
W, except after an application of rule (�).

(5) Loop back to step (2).

As we saw (§25.5), this process may not terminate in the case of QL trees – and
it is possible for injudicious choices at step (4) of the tree-building process to lead
to a non-terminating tree even though other choices would lead to a closed tree.

Why do we check off a wff W when we apply the appropriate tree-building
rule, except when W is universally quantified wff and we are applying the (�)
rule? Because in the other cases, the unpacking rules effectively exhaust the con-
tent of the wff we are unpacking (and there is no point in doing that twice over).

* But NB the extended version of the (�) rule in §29.3!
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By contrast, a universal quantified wff tells us that everything in the domain
satisfies a certain condition. We can of course infer that a particular named
object in the domain satisfies that condition. But there is more content to the
original quantified claim than is given by that particular implication of it. 

And why does the (�) rule tell us not to re-instantiate a universally quantified
wff using the same constant again on the same path? Because that would be
quite redundant. It would just put a duplicate of the same wff on the same path.

29.2 Further examples of closed trees
Let’s consider more inferences involving wffs with multiple quantifiers. Take first:

A Some people are boastful. No one likes anyone boastful. So some
people aren’t liked by anyone.

To confirm the argument is valid, translate it into QL, e.g. by

�xFx, �x�y(Fy ⊃ ¬Lxy) ∴ �x�y¬Lyx

where the translation manual we are using is plain. Then the tree starts:

(1)  �xFx
(2) �x�y(Fy ⊃ ¬Lxy)
(3) ¬�x�y¬Lyx

Before we continue, let’s set down a couple of handy rules of thumb for applying
quantifier tree-building rules in a sensible order:

• At each step, deal with any negated quantifiers first.

• Instantiate existential quantifiers before universals (see §25.4).

Applying these in turn, the tree will continue …

(4) �x¬�y¬Lyx

Note, by the way, that the rule (¬�) applied to (3) only pushes the negation sign
past the initial quantifier. Next, instantiating (1) with a new constant, we have

(5) Fa

Now how shall we proceed? We eventually want to instantiate the inner univer-
sal quantifier of (2), to get another occurrence of ‘Fa’; but rule (e) does not allow
us to instantiate inner quantifiers; the tree-building rules insist we proceed step
by step, from the outside in. So let’s instantiate (4) instead:

(6) ¬�y¬Lya

We’ve now got another negated quantifier, so deal with that next …

(7) �y¬¬Lya

This gives us a new existential quantification, so the second rule of thumb
enjoins us now to deal with that, instantiating (7) with a new name, of course:

(8) ¬¬Lba

Now return to instantiate the initial quantifier in (2) with ‘b’; that yields another
universally quantified wff, we can instantiate by ‘a’:
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(9) �y(Fy ⊃ ¬Lby)
(10) (Fa ⊃ ¬Lba)

(11) ¬Fa ¬Lba
✼ ✼

And we are done. The inference is q-valid, and hence valid. (Make sure you see
why it was sensible to instantiate (2) with ‘b’ rather than ‘a’.)

Consider next

B Everyone admires some logician; whoever admires someone respects
them. So everyone respects some logician.

The translation of the premisses and negated conclusion shouldn’t cause trouble
by now (just note that the second premiss means that for any pair, if the first
admires the second, then the first respects the second):

(1)  �x�y(Fy∧ Lxy)
(2) �x�y(Lxy⊃Mxy)
(3) ¬�x�y(Fy ∧ Mxy)

Checking off (3), the next steps are more or less automatic. 

(4) �x¬�y(Fx∧ Mxy)
(5) ¬�y(Fy∧ May) √
(6) �y¬(Fy ∧ May)

We could instantiate (6) using ‘a’, but that would be pointless. So let’s next
instantiate (1) and (2) instead:

(7)  �y(Fy∧ Lay)
(8) �y(Lay ⊃ May)

Next, instantiating the existential quantification first (following our rule of
thumb), and remembering to use a new constant, we get

(9) (Fb ∧ Lab)

Using this new constant to instantiate the two remaining universal quantifiers at
(6) and (8), we get

(10)  ¬(Fb ∧ Mab)
(11) (Lab ⊃ Mab)

Finally the tree closes using the familiar connective rules:

(12)  Fb
(13)  Lab

(14) ¬Fb ¬Mab

(15) ¬Lab Mab
✼ ✼

✼
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Let’s next revisit an example from §5.4:

C No girl loves any sexist pig. Caroline is a girl who loves whoever
loves her; Henry loves Caroline; hence Henry is not a sexist pig.

Rendered into QL using an obvious translation dictionary, the tree will start:

(1)  �x(Gx⊃ ¬�y(Fy ∧ Lxy))
(2) (Gm ∧ �x(Lxm ⊃ Lmx))
(3) Lnm
(4) ¬¬Fn

And the next few steps are straightforward. Just unpack the conjunction in (2),
checking it off, and then instantiate (1) with respect to ‘m’:

(5) Gm
(6) �x(Lxm ⊃ Lmx)
(7) (Gm ⊃ ¬�y(Fy ∧ Lmy)) √

(8) ¬Gm ¬�y(Fy ∧ Lmy) √
(9) ✼ �y¬(Fy ∧ Lmy)

That leaves us with two universal quantifications, at (6) and (9), to instantiate.
Instantiating (9) by ‘n’ will give us ‘Fn’ in the scope of a negation, which should
contradict the earlier ‘¬¬Fn’. And it does …

(10) ¬(Fn ∧ Lmn) √

(11) ¬Fn ¬Lmn
✼

The obvious thing to do now is to instantiate (6) with respect to ‘n’ as well, to
conclude the tree

(12) (Lnm ⊃ Lmn) √

(13) ¬Lnm  Lmn
✼ ✼

We are done: the inference is valid.
Our fourth sample argument is of a type which was recognized by medieval

logicians as being valid, but couldn’t be shown to be so within their logic of
general propositions: 

D All horses are mammals; so any horse’s head is a mammal’s head.

Modern logicians can do better than their predecessors here. In fact, as soon as
we see how to translate the conclusion into QL, finding a tree to show that D is
indeed q-valid is straightforward. 

First, then, the translational problem. ‘Any horse’s head is a mammal’s head’
is equivalent to ‘For any x, if x is the head of some horse, then x is the head of
some mammal’, i.e. ‘for any x, if (for some horse y, x is the head of y), then (for
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some mammal z, x is the head of z)’. So, let’s fix on the dictionary

‘F’ means … is a horse
‘G’ means … is a mammal
‘M’ means … is the head of …

and set the domain to be e.g. earthly things. Then C’s conclusion can be rendered 

�x{�y(Fy ∧ Mxy) ⊃ �z(Gz ∧ Mxz)}

The tree will therefore commence

(1)  �x(Fx⊃ Gx)
(2) ¬�x{�y(Fy ∧ Mxy) ⊃ �z(Gz ∧ Mxz)} √
(3) �x¬{�y(Fy ∧ Mxy) ⊃ �z(Gz ∧ Mxz)} √
(4) ¬{�y(Fy ∧ May) ⊃ �z(Gz ∧ Maz)} √
(5) �y(Fy ∧ May)
(6) ¬�z(Gz ∧ Maz)

That’s pretty much automatic given our two rules of thumb for tree-building. We
dealt first with the negated quantifier at (2) to give (3). That leaves us with the
universally quantified (1) and the existentially quantified (3), so we apply the
‘existentials before universals’ rule. Stripping off the quantifier ‘�x’, and replac-
ing every occurrence of ‘x’ with a new name gives us (4). Note the bracketing in
(4); it is a negated conditional. So applying the relevant rule gives us (5) and (6).
Again, we first deal with the negated quantifier, and check off (6) to yield

(7) �z¬(Gz ∧ Maz)

Now we have two universally quantified propositions at (1) and (7), and the
existential quantification at (5). So next instantiate (5) with a new name:

(8) (Fb ∧ Mab) √
(9) Fb
(10) Mab

and then the rest is straightforward. Instantiating (1) and (7) with respect to ‘b’
(why try ‘b’ rather than ‘a’?), and then unpacking the connectives, we finish …

(11) (Fb ⊃ Gb) √
(12)  ¬(Gb ∧ Mab) √

(13) ¬Fb Gb

(14) ¬Gb ¬Mab
✼ ✼

Finally in this section, we’ll return to §5.1, and again consider

E Everyone loves a lover; Romeo loves Juliet; so everyone loves Juliet.

We saw that this is valid if the first premiss is interpreted to mean ‘everyone
loves anyone who is a lover’ (i.e. ‘everyone x is such that, take anyone y, if y
loves someone then x loves y’). Using ‘L’ for loves, etc., we begin the tree

✼
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(1)  �x�y(�z Lyz⊃ Lxy)
(2) Lmn
(3) ¬�xLxn

Following the rule of thumb ‘negated quantifiers first’, we can check off (3) and
add:

(4) �x¬Lxn

Remembering the other tip, ‘existentials before universals’, we instantiate (4):

(5) ¬Lan

But now what? Let’s try instantiating the two quantifiers in (1) – one at a time! –
with ‘a’ and ‘n’, which will make the consequent of the conditional ‘Lan’, prepar-
ing the way for a contradiction with (5). So we get 

(6) �y(�z Lyz ⊃ Lay)
(7)  (�z Lnz ⊃ Lan) √

(8) ¬�z Lnz √ Lan
(9) �z¬Lnz ✼

How do we carry on from here? Consider the argument we gave to show that
this inference is valid in §5.1. We in fact had to use the first premiss twice there,
at lines (4) and (7) of the informal proof. We might expect to have to use the
premiss twice to close off this tree. So let’s press on, and instantiate (1) again

(10) ¬Lnm
(11) �y(�z Lyz ⊃ Lny) (from 1)
(12) (�z Lmz ⊃ Lnm) √

(13) ¬�z Lmz √ Lnm
(14) �z¬Lmz ✼

(15) ¬Lmn
✼

With a bit of effort, again we are done. The inference E is q-valid (and so valid). 
It’s worth pausing just a moment to compare this last demonstration of valid-

ity with the simple informal proof in §5.1. Evidently, the tree proof is a lot less
‘natural’ and direct than the informal one. 

But remember: trees are not being sold as the best way of formally mimicking
ordinary styles of deduction (cf. §20.3): they are not a ‘natural deduction’ proof
system. All that is being claimed is that trees are one well-motivated and reason-
ably manageable way of showing that inferences are q-valid when they are.

For yet more examples of our tree-rules at work, see Chapter 35.

29.3 Extending the (�) rule
As we noted before (§28.3), our stated rules for tree-building certainly look
sound (i.e. an argument warranted by a closed tree built following our rules is
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indeed q-valid). If we start a tree by assuming that A1, A2, …, An,¬C are all true
on some valuation q, then the quantifier rules for extending the tree are war-
ranted by the principles (V1) to (V5) about valuations (§27.6). Hence, if the tree
does end up in contradictions, there can be no such valuation q; and then the
target inference A1, A2, …, An ∴ C must be q-valid. We’ll turn this rough and
ready proof-idea into a tidier affair in the next chapter.

But is our basic set of rules complete (i.e. do we have enough tree-building
rules to find a closed tree corresponding to every q-valid inference)? 

Consider the inference ‘�xFx ∴ �xFx’. If we try to construct a tree, we’ll get as
far as

(1)  �xFx
(2) ¬�xFx √
(3) �x¬Fx

Then we have to stop, as there is no further rule to apply. So the tree doesn’t
close. On the other hand, the inference is q-valid according to our account. Take
any q-valuation q. If q makes ‘�xFx’ true, then every object in q’s domain needs
to be in the extension of ‘F’. Since domains are non-empty, that means at least
one thing is in the extension of ‘F’. So q must make ‘�xFx’ true too.

Now, this last point only holds because we chose to say that domains always
have at least one member (§27.2). Suppose we’d taken the other tack and
allowed empty domains. Then ‘�xFx ∴ �xFx’ would no longer be q-valid. Given
an empty domain it is vacuously true that, if any object is in the domain, it is in
the extension of ‘F’ (that’s a general conditional claim with an antecedent which
is always false). So ‘�xFx’ is true in an empty domain. But ‘�xFx’ will be false.

In sum, our tree-rules are currently out of harmony with our definition of q-
validity. Our rules don’t warrant the inference ‘�xFx ∴ �xFx’; our definition of
q-validity does. What to do?

There is a forking of the paths here. You might think the obvious response is
to backtrack hastily, revise our definition of validity, adopting instead the idea of
q0-validity (defined in terms of q0-valuations, which are exactly like q-valuations
except that they allow empty domains). And if we do that, it can be proved that
our current set of rules would then be complete. There are closed trees using our
existing rules for all and only the q0-valid arguments. So that looks like a happy
restoration of harmony. Unfortunately, there is a snag.

Consider the inferences ‘�xFx ∴ Fn’ and ‘ Fn ∴ �xFx’. These are both straight-
forwardly q0-valid (take any valuation of the vocabulary in the premisses and
conclusion: that will involve assigning an object as q-value to ‘n’; so these valua-
tions won’t have empty domains). Then we have ‘�xFx ∴ Fn’ and ‘ Fn ∴ �xFx’
are q0-valid and ‘�xFx ∴ �xFx’ isn’t. Or putting it more starkly, we have A q0-
entails B, B q0-entails C, but A does not q0-entail C. Which goes clean against
our normal assumption that entailments can be chained into longer arguments
and our ultimate conclusion will still follow from our initial premiss(es). What
to do?

Well, we could adopt a notion of entailment which allows exceptions to that
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fundamental assumption. Or we could be revisionary in another way and reject
‘�xFx ∴ Fn’ as a valid entailment in the absence of an explicit premiss to the
effect ‘n exists’. But most logicians prefer to stick to the two assumptions that we
can unrestrictedly chain entailments and endorse ‘�xFx ∴ Fn’.

We are going to follow the majority here (though see Chapter 36 for some
more comments). Hence we shall not revise our definition of q-validity to allow
empty domains. That means ‘�xFx ∴ �xFx’ remains q-valid. It also means, how-
ever, that we need a further tree-building rule if we are to be able to warrant every
q-valid argument by means of a closed tree.

One popular option here is to relax the rule (�) rather radically. The rule cur-
rently says that if W is of the form �vC(…v…v…), then we can add C(…c…c…)
to any open path on which W appears, where c is a constant already on the path.
Suppose instead that we are allowed to instantiate W with any constant, old or
new. Then we can close the tree which we had trouble with before:

(1)  �xFx
(2) ¬�xFx √
(3) �x¬Fx
(4) Fc0
(5) ¬Fc0

✼

Here we’ve just arbitrarily chosen to use the constant ‘c0’. Since we are assuming
that there is at least one thing in the domain, pick such an object, and we can
surely use a new name to dub it. Instantiating the universal quantifications at (1)
and (3) with a name of this object then exposes a contradiction. 

But our suggested generous rule rather ruins the memorable symmetry
between our rules (�) and (�), summed up in the slogan ‘instantiate universals
with old constants, existentials with new ones’. There’s something unattractive
too about relaxing (�) to allow us to instantiate universals with any constant,
and then immediately having to issue the warning that you’d be daft ever to
instantiate a universal with a random constant except in the very special circum-
stances that there are no other constants in sight to play with.

So rather than go too radical, here’s our preferred revision of the rule (�).
We’ll keep the old rule for when there are constants already on the relevant path,
and just add a clause to deal with the special case when we want to instantiate a
universal quantification and there are no preceding constants:

(�′) W is of the form �vC(…v…v…): add C(…c…c…) to an open path
on which W appears, where c is a either a constant on that path
(and which hasn’t been used to instantiate W before), or is a new
constant (and there are no other constants appearing on the path).
W is not checked off. 

�vC(…v…v…)  
|

C(…c…c…) [c old, or unprecedented]
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NB: Rule (�′) still allows us to construct our mini-tree warranting ‘�xFx ∴ �xFx’.
We will show in the next chapter that this minor extension of our original rule

does indeed give us a sound and complete set of rules. So for the rest of this
book, we’ll assume the revised rule (�′) is in play.

29.4 What can be learnt from open trees?
We have emphasized before that the fact that a quantifier tree doesn’t close doesn’t
always show the argument under consideration is invalid. An injudicious sequence
of choices of the rules to apply can mean that a trees trails off down an infinite
path, when better choices would close off the tree (see §25.5 again).

However, in simple cases, a tree can terminate with no more rules left to apply,
but leaving an open branch. If there is an open branch on such a completed tree,
then we can read off from the tree a q-valuation which makes the premisses true
and conclusion false and which thus demonstrates q-invalidity. Consider, for
example,

E �x(Fx ⊃ Hx), �x(Gx ⊃ Hx) ∴ �x(Fx ⊃ Gx)

Starting in the obvious way, and omitting the unofficial line numbers, we get:

�x(Fx⊃Hx)
�x(Gx ⊃ Hx)
¬�x(Fx ⊃ Gx) √
�x¬(Fx ⊃ Gx) √
¬(Fa ⊃ Ga) √

Fa
¬Ga

(Fa ⊃ Ha) √
(Ga ⊃ Ha) √

¬Fa Ha

¬Ga Ha

The tree has open branches. The only unchecked wffs which aren’t atomic wffs
or negations of atomic wffs are the universal quantifications at the top of the
tree. But we have no new names available to instantiate them with. So we can’t
use the (�′) rule again. There are no more rules to apply. 

In the case of PL trees, if a branch stays open, we can read off a valuation
which makes all the wffs on the branch true. The trick is to pick a valuation
which makes the primitives on the branch, i.e. the atoms and negated atoms, all
true. Then truth percolates up the branch. That makes the initial premisses and
negated conclusion all true, and the valuation therefore shows that the inference
is invalid (cf. §§16.2, 19.2). Let’s try the very same trick here. 

In the present case, it doesn’t matter which open branch we choose, the primi-
tives on the branch are ‘Fa’, ‘¬Ga’, and ‘Ha’. We need to choose a reference for

✼
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the name ‘a’. Let’s assign it the first number, i.e., 0. And then, to give the primi-
tives the right values, we need the extensions of ‘F’ and ‘H’ to include 0, and the
extension of ‘G’ not to include 0. 

A domain must of course always contain any named objects and/or objects
which are involved in the extension of predicates. So in the present case, we know
the domain must contain at least 0. What else should we put in the domain? Noth-
ing. We don’t want any extra objects in the domain which we haven’t any infor-
mation about (and which might therefore have unwanted effects on the truth-
values of quantified wffs). So, keeping the domain as small as possible, we get:

Domain = {0}, i.e. the set containing just 0.
Reference of ‘a’ = 0.
Extension of ‘F’ = extension of ‘H’ = {0}.
Extension of ‘G’ = { }, i.e. the empty set.

This makes the primitives all true. And it is readily checked that this indeed
makes all the wffs on an open branch of our tree true; and in particular, it makes
the premisses of E true and conclusion false (compare the discussion of the same
argument in §28.5).

Here’s another example:

F �x(Fx ∨ Gx), �x(Gx ⊃ Hx) ∴ (�xFx ∨ �xHx)

Using our rules of thumb, we get the following (again omitting line numbers):

�x(Fx∨Gx)
�x(Gx ⊃ Hx)

¬(�xFx ∨ �xHx) √
¬�xFx √
¬ �xHx √
�x¬Fx √
�x¬Hx √
¬Fa
¬Hb

(Fa ∨ Ga) √
(Fb ∨ Gb) √
(Ga ⊃ Ha) √
(Gb ⊃ Hb) √

Fa Ga

¬Ga Ha

¬Gb Hb

Fb Gb
✼

✼

✼

✼
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Here, the initial steps are pretty automatic. Then we instantiate the two univer-
sal quantifications with every name in sight, and unpack the resulting wffs.
There are no more rules to apply, and the tree stays open. So let’s try to construct
a countervaluation for the argument. Take the open path, where we have 

¬Fa, Fb, Ga, ¬Gb, Ha, ¬Hb

There are two names here to which we need to assign q-values. Let’s take them
in order to refer to the first two numbers. Again we take the domain of discourse
to be no larger than it needs to be to include those references for the names. The
resulting valuation which makes the primitives all true is then:

Domain = {0, 1}
Reference of ‘a’ = 0
Reference of ‘b’ = 1
Extension of ‘F’ = {1}
Extension of ‘G’ = {0}
Extension of ‘H’ = {0}

It is easily checked again that this valuation makes all the wffs on the open
branches true. In particular, it makes the premisses of F true and conclusion
false. Why does it make, e.g., the universal quantification (1) true? Because it
makes an instance true for each object in the domain (to emphasize, there are no
more objects in the domain than the named ones). 

When does this trick work, i.e. this trick of reading valuations from the primi-
tives on an open branch on a QL tree and arriving at a countervaluation for the
argument in question? For a start, it works for arguments where the proposi-
tions don’t feature quantifiers embedded one inside the other. Instantiate all the
existential quantifiers, thereby introducing a collection of new names; instantiate
all the universal quantifications with respect to all the names thereby introduced
(plus any others in the original premisses and conclusion). And if the tree doesn’t
close, construct the ‘smallest domain’ valuation which contains one object per
name and which makes the primitives on some open branch true, and you’ll get
the desired countermodel.

We saw, however, that when an argument involves embedded quantifiers life
gets more complicated. It may be the case that the only countermodels which
show that the inference is invalid are infinite ones; see the discussion of §28.5 G.
Yet it may also be the case that, when we do find an infinite branch that never
closes, it doesn’t show that the argument is invalid, and we can’t read off a gen-
uine countervaluation from the branch; see again the discussion of the example
in §25.5. Looking more closely at the infinite open branch in that last case, we
see that it in fact was constructed by ignoring its lines (3) and (5). No surprise
then that choosing a valuation that makes all the primitives on that branch true
won’t make (3) and (5) true too! We can only form countermodels from infinite
branches when the trees have been constructed more systematically, without
ignoring any complex wffs on an open branch; but that’s not entirely straightfor-
ward (more on this in the next chapter).
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29.5 Summary
• We summarized our original set of tree-building rules for quantifier trees,

and argued for a modification of the rule (�) to match our restriction to
non-empty domains.

• A couple of useful heuristic tips – not strict rules, but guides for applying
the rules in a sensible order: eliminate negated quantifiers first and then
instantiate existentials before universals.

• In some simple cases at any rate, we can read countervaluations from open
trees (choose a ‘smallest domain’ interpretation that makes the primitives
on an open branch true).

Exercises 29
A Use QL trees to evaluate the entailment claims (1) to (10) in Exercises 28A.

B Using trees, show the following arguments are valid:

1. Some philosophers admire Jacques. No one who admires Jacques
is a good logician. So some philosophers are not good logicians.

2. Some philosophy students admire all logicians; no philosophy
student admires any rotten lecturer; hence, no logician is a rotten
lecturer.

3. There’s a town to which all roads lead. So all roads lead to a town.

4. Some good philosophers admire Frank; all wise people admire
any good philosopher; Frank is wise; hence there is someone who
both admires and is admired by Frank.

5. Any true philosopher admires some logician. Some students
admire only existentialists. No existentialists are logicians. There-
fore not all students are true philosophers.

6. Everyone loves a lover; hence if someone is a lover, everyone loves
everyone!

7. If anyone speaks to anyone, then someone introduces them; no
one introduces anyone to anyone unless they know them both;
everyone speaks to Frank; therefore everyone is introduced to
Frank by someone who knows him. [Use ‘Rxyz’ to render ‘x intro-
duces y to z’.]

8. Any elephant weighs more than any horse. Some horse weighs
more than any donkey. If a first thing weighs more than a second
thing, and the second thing weighs more than a third, then the
first weighs more than the third. Hence any elephant weighs more
than any donkey.

C Redo the first three examples of §29.2 as signed trees (as in §28.2).



In this chapter, we prove the ‘Basic Result’ about QL trees: there is a closed QL
tree for an argument if and only if the inference is q-valid. Like Chapter 19, this
can certainly be skipped by those with no taste for abstract metalogical argu-
ment. Still, the Basic Result is often located the other side of the threshold that
divides elementary logic from the serious stuff. So it is nice to show that the
work we’ve already done in fact allows us to give a fairly painless proof.

30.1 Soundness
(Revision homework: re-read §§19.1, 20.4, 27.4, 27.6, 28.2, 28.3!)

We first need to show that QL tree proofs are sound, i.e. reliable. If a properly
constructed QL tree closes, then the argument under scrutiny is indeed q-valid.
That’s equivalent to saying

(S)  If an inference is not q-valid, then a corresponding QL tree will never close.

A quick reminder: we will say that a path through a tree is satisfiable if there is
a q-valuation which makes all the wffs on the path true. A satisfiable path
plainly cannot contain contradictory wffs, so can’t close.

Proof of (S) Suppose that the inference A1, A2, …, An ∴ C is not q-valid.
Then there is some valuation q which ensures that 

 A1 ⇒q T, A2 ⇒q T, …, An ⇒q T, ¬C ⇒q T

and the initial ‘trunk’ of the corresponding tree is satisfiable. Now consider
what happens as we extend our tree, step by step, applying the tree-
building rules. At each stage, a satisfiable path will get extended to a longer
satisfiable path. So a tree with a satisfiable trunk will never close.

To show that a satisfiable path always gets extended to a longer satisfiable
path, we just have to inspect the building rules one at a time. It is easy to see
that the result holds for the rules telling us how to unpack wffs whose main
logical operator is one of the connectives (compare §19.1). Take, for exam-
ple, the non-branching rule that unpacks a wff (A ∧ B) into its conjuncts. A
q-valuation q which satisfies a path including (A ∧ B) will of course continue
to satisfy the path we get by adding A and B, since q will make both these

30

QL trees vindicated
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added new wffs true as well. Or take, for another example, the branching
rule which tells us to extend a path containing (A ∨ B) by adding a fork
with A on one branch and B on the other. If q satisfies a path including
(A ∨ B) then at least one of A and B must be true on q, hence q will
continue to satisfy at least one of the extended paths. You can easily check
that the same is true for extensions by means of other connective rules.

Next, suppose q satisfies a path including a wff of the form ¬�vC; then
applying the relevant rule means adding �v¬C. This added wff must also
be true on q (that’s obvious, but also see (V3) of §27.6). So q continues to
satisfy the extended path. Likewise for continuing a path using the (¬�) rule.

That leaves us just two rules to consider. First take the (�) rule. Suppose
q satisfies a path including a wff of the form �vC(…v…v…). The (�) rule
says we can add C(…c…c…) where c is a constant new to the path. By (V3)
of §27.6, q must have some extension q+ which is just like q except it also
assigns a reference to c and it makes C(…c…c…) come out true. And by
(V5) all the wffs previously on the path (which didn’t involve c and were
true on q) remain true on q+. So q+ makes all the wffs on the extended path
true, both the old ones and the new addition. Hence the newly extended
path is satisfied by q+; so the path is still satisfiable.

Lastly, take the revised (�′) rule. Suppose q satisfies a path including a
wff of the form �vC(…v…v…). The (�′) rule says we can add C(…c…c…)
in two sorts of case: 

Case (i): c is a constant already on the path. Then by (V1), q must also
make C(…c…c…) true, so the extended path remains satisfiable; q contin-
ues to do the trick. 

Case (ii): c is a new constant. Then by (V1), q must have some extension
q+ which assigns a reference to c and makes C(…c…c…) come out true. By
(V5) again, all the wffs previously on the path remain true on q+. So the
extended path is satisfiable; in this case, the extended valuation q+ does the
trick.

So every legitimate way of extended a satisfiable path leads to a longer
satisfiable path (though the valuation doing the satisfying may alter). Hence
a tree with a satisfiable trunk will never close. QED.

Of course, all we are doing here is setting out very carefully the reasoning which
we more briskly used to motivate the quantifier tree rules for unsigned trees in
§28.3, once we had noted how our original tree rules parallel the natural rules
for making signed trees for arguing about q-valuations.

30.2 Completeness: strategy
We are aiming next to show that the rules for QL trees give us a complete proof
system, in the sense that any q-valid inference at all can be shown to be valid by
some closed tree. We know that we might fail to construct a closed tree for an
argument which actually is q-valid because, by misadventure, we manage
instead to construct some never-closing branch. Still, the completeness claim is
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that for any q-valid inference there is some closed tree. That’s equivalent to saying: 

(C) If every QL tree starting with sentences A1, A2, …, An, ¬C stays open,
then the inference A1, A2, …, An ∴ C is not q-valid.

We are going to prove (C) by proving two results:

(Sys) There’s a way of systematically applying the tree-building rules such
that the resulting (possibly infinite) QL tree either (i) closes or else
(ii) has an open path the wffs on which form a syntactically consistent
saturated set.

(Sat) Every syntactically consistent saturated set of closed wffs is satisfiable.

We’ll explain the jargon in a moment. However, you don’t need to understand it
to see that these two results will give us exactly what we want. If every possible
tree starting from the sentences A1, A2, …, An, ¬C stays open, then by (Sys)
there must in particular be a systematically built tree which has an open path,
the wffs on which form a consistent saturated set (the wffs are closed sentences,
as on any legal tree). By (Sat) there is a q-valuation which makes all the wffs in
that set true. This q-valuation in particular makes all of the trunk A1, A2, …, An,
¬C true. So the inference A1, A2, …, An ∴ C is not q-valid. QED.

So to establish (C), we’ll prove (Sat) in the next section, and (Sys) in §30.4.

30.3 Consistent, saturated sets are satisfiable
(Further revision homework: re-read §§19.2, 19.3!)

As before, we’ll say that a set of wffs Σ is syntactically consistent if it contains
no pairs of wffs of the form A, ¬A.

And a set Σ of closed QL wffs is saturated if the following conditions all
obtain:

(a) if a wff of the form ¬¬A is in Σ, then so is A;
(b) if a wff of the form (A ∧ B) is in Σ, then so are both A and B;
(c) if a wff of the form ¬(A ∨ B) is in Σ, then so are both ¬A and ¬B;
(d) if a wff of the form ¬(A ⊃ B) is in Σ, then so are both A and ¬B;
(e) if a wff of the form (A ∨ B) is in Σ, then so is at least one of A and B;
(f) if a wff of the form ¬(A ∧ B) is in Σ, then so is at least one of ¬A and ¬B;
(g) if a wff of the form (A ⊃ B) is in Σ, then so is at least one of ¬A and B;
(h) if a wff of the form (A � B) is in Σ, then so are either both A and B or

both ¬A and ¬B;
(i) if a wff of the form ¬(A � B) is in Σ, then so are either both A and ¬B or

both ¬A and B;
(¬�) if a wff of the form ¬�vC is in Σ, then so is �v¬C;
(¬�) if a wff of the form ¬�vC is in Σ, then so is �v¬C;
(�) if a wff of the form �vC(…v…v…) is in Σ, then so is C(…c…c…) for

every constant c that appears anywhere in Σ (and further, at least one
such instance C(…c…c…) appears in Σ),

(�) if a wff of the form �vC(…v…v…) is in Σ, then so is C(…c…c…) for
some constant c.
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Here’s a simple example of a saturated set:

((�x�yRxy ∧ �x¬Fx) ∨ �y�xRxy), (�x�yRxy ∧ �x¬Fx), �x�yRxy, �x¬Fx,
�yRmy, �yRny, ¬Fm, ¬Fn, Rmn, Rnn.

Now, when we introduced saturated sets of PL wffs, we explained the label by
remarking that these sets are ‘saturated with truth-makers’. Every non-primitive
wff W in such a PL set (i.e. every wff that isn’t either atomic or the negation of
an atomic wff) has truth-makers in the set. In other words, take any non-primi-
tive W, then there are one or two simpler wffs W1 and W2 also in the set, whose
truth on a valuation is enough to make W true on that valuation. 

Something similar holds for a saturated set of QL sentences, Σ. Take any non-
primitive W in Σ; then – if we are careful about how we choose the domain of
discourse – there are one or more wffs Wi in Σ whose joint truth on a q-valua-
tion is enough to make W true on that valuation. 

That’s obvious for any complex wff that isn’t a universal quantification. In
each such case, the relevant condition defining saturation plainly guarantees that
if a wff W of a certain form is in the set, so are one or two wffs whose truth on a
valuation would be enough to make W true too. 

So what about a wff W of the form �vC(…v…v…)? Condition (�) tells us that
if W is in Σ, so is at least one substitution instance, and maybe very many more.
However, we noted before (§22.4) that even if a lot of substitution instances
C(…c…c…) are true, �vC(…v…v…) need not be. Some nameless thing in the
domain may not satisfy the condition expressed by C. But suppose we choose a
q-valuation for the wffs in Σ whose domain has a distinct object for each of the
constants c that appears in Σ, but has nothing else in it. With this special choice
of domain in play, if all the instances C(…v…v…) are true – one for each con-
stant in Σ – then so is �vC(…v…v…).

In our mini-example above, suppose we make the primitives ‘¬Fm’, ‘¬Fn’,
‘Rmn’, ‘Rnn’ all true, and put nothing in the domain but the objects picked out
by ‘m’ and ‘n’; then all the wffs in the set are true.

In sum: by choosing the right domain we can ensure that every non-primitive
wff in the saturated set Σ has truth-makers in the set. The more complex wffs
will have simpler truth-makers, which have yet simpler truth-makers, … until we
bottom out at the level of primitives. And now the argument will go pretty much
as for the PL case. We can define a q-valuation q, designed to make all the prim-
itives in Σ true. Having chosen the domain correctly, these true primitives will
then make true the next level of wffs in Σ, and these will be truth-makers for the
next most complex wffs, and so on upwards. Hence q will make true all the wffs
in Σ, showing that the set is indeed satisfiable. Which proves (Sat), i.e. that every
syntactically consistent saturated set of closed wffs Σ is satisfiable.

To really nail down this line of proof, then, we just need to confirm

(C1) for any syntactically consistent saturated set of closed wffs Σ, there is
a q-valuation which makes the primitives true;

(C2) we can choose the domain of a q-valuation which makes the primi-
tives in Σ true so that it will make all the wffs in Σ true.
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For the sake of elegance, though, we will first prove a restricted version of these
claims, which assumes that the constants in Σ are all of the form ck – i.e. constants
with numerical subscripts – and also that there are no zero-place predicates in Σ.
Lifting these restrictions afterwards is very easy: it just makes for a bit of mess.

Proof of (C1) Consider the following q-valuation (‘the chosen valuation’):

The domain: the set of numbers k such that ck is in Σ.

Constants: each ck has as q-value the corresponding number k.

Predicates: If F is a monadic predicate, then its extension is the set of
numbers k such that the wff Fck is in Σ; if R is a dyadic predicate, then
its extension is the set of pairs of numbers 〈j, k〉 such that the wff
Rcjck is in Σ; if S is a three-place predicate, then its extension is the set
of pairs of numbers 〈i, j, k〉 such that the wff Scicjck is in Σ; and so on.

This valuation evidently makes each (un-negated) atomic wff in Σ true. For
example, if Fck is in Σ, then by definition the q-value of ck (i.e. the number
k) is in the extension of F. So Fck is true. Similarly for other atomic wffs.
Suppose next that the negation of an atomic wff appears in Σ, e.g. ¬Fcj.
Since Σ contains no contradictions, the corresponding bare atomic wff Fcj
can’t appear in Σ. On the chosen valuation q, then, the number j is not in
the extension of F; so Fcj is false and hence ¬Fcj is true. Similarly for other
negated atomic wffs in Σ. Hence q makes all primitives in Σ true. QED.

Proof of (C2) Suppose that the chosen valuation q does not make all the
wffs in Σ true. Choose one of the least complex of these false wffs (i.e. a
false wff with the least number of connectives and/or quantifiers). Since the
primitives are all true by (C1), this selected false wff is non-primitive. And
since Σ is saturated, this wff must satisfy the appropriate condition for
belonging to a saturated set. So now we just consider cases. 

Suppose the selected false wff is of the form (A ∧ B): then both A and B
must be in Σ, and being less complex must by assumption be true on q. But
that’s impossible; we can’t have (A ∧ B) false on q yet A and B each true.
Again, suppose the selected false wff is of the form (A ∨ B): then either A or
B must appear in Σ, and being less complex must by hypothesis be true on q.
That’s impossible too; we can’t have (A ∨ B) false yet one of its disjuncts true
on q. The other cases where conditions (a) to (i) apply are similar. 

Suppose the selected false wff is of the form ¬�vC: then by condition
(¬�) the equally complex corresponding wff �v¬C must also be false and
in Σ, so we turn our attention to that instead. Similarly suppose the selected
false wff is of the form ¬�vC: then the corresponding wff �v¬C must also
be false and in Σ, and we turn our attention to that.

Suppose next that the selected false wff is of the form �vC(…v…v…).
Then by condition (�) an instance C(…c…c…) for some constant c is in Σ;
and being less complex must be true on q. But then �vC(…v…v…) must be
true on q after all.
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Suppose finally that the selected false wff is of the form �vC(…v…v…).
Then by condition (�) the instance C(…c…c…) is in Σ for each constant c
appearing anywhere in Σ; and being shorter, those instances must all be true
on q. But we’ve chosen the domain of q to contain no more than the refer-
ences of all the constants in c. So that means that C holds true of every
object in the domain of q. So �vC(…v…v…) must be true on q after all.

In sum, there is no way that a non-primitive can be false on q. So q makes
every wff in Σ true. QED.

To finish off, we just need to relax those two suppositions which we made for
the sake of an elegant argument. First, suppose that Σ contains some of the six
constants ‘a’, ‘b’, etc., which lack numerical subscripts. Then form the chosen
valuation by assigning them the numbers 0, 1, etc., as references, and then assign
ck the number k + 6. Make compensating adjustments elsewhere; so, for exam-
ple, if Fck is in Σ, put k + 6 into the extension of F. Then this will make all primi-
tives true as before. Not so elegant, but it works!

Second, suppose that Σ contains some zero-place predicates (in effect, proposi-
tional letters). These need truth-values as q-values. We just follow the lead of our
proof of the analogous result for PL and assign a zero-place predicate the q-
value true just if it is in Σ. With this addition the chosen valuation will still make
all primitives true. (And, as a final wrinkle, if Σ only contains zero-place predi-
cates and so no constants and no quantifiers, you can choose anything you like
to be the domain, since it plays no further part in evaluating the wffs.)

So we’ve established (C1) and (C2). And, to repeat, they together entail the
desired conclusion (Sat): every syntactically consistent saturated set Σ of closed
QL wffs is satisfiable. Note carefully that nothing in the argument for (Sat)
depends on the size of Σ. The argument still goes through just the same if Σ has
infinitely many members.

30.4 Systematic trees
We now want to show (Sys): there’s a way of systematically applying the tree-
building rules such that the resulting tree either closes or has an open path, the
wffs on which form a syntactically consistent saturated set.

Now, our systematic procedure may never terminate, and hence may describe
an infinite tree. So we are going to need the following simple result about infinite
trees, an instance of what’s called ‘König’s lemma’ (a ‘lemma’ is a mini-theorem,
a stepping stone to a more weighty result):

(KL) Any infinite tree built by our rules will have an infinite branch. 

That’s because at any fork there are only two branches, so we can’t make an infi-
nite tree of finite height by (so to speak) infinite sideways sprawl. If that remark
doesn’t convince you, here’s a proof:

Proof of (KL) Call a node n which is above an infinite number of nodes
(on paths through n) exciting; other nodes are dull. Suppose a node d is fol-
lowed by a dull node – or two dull nodes if the branch forks there. Then d
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will have only a finite number of descendants, and be dull too. Hence if a
node is exciting, then at least one of the nodes immediately below it must
be exciting too. The top-most node 
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of an infinite tree is exciting by
assumption. So there will be a node 
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immediately below it which is excit-
ing; and a node 
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immediately below 
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which is exciting; and so on for
ever, giving us an infinite branch 
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…. QED.

Next, then, we will describe one possible systematic method of tree building
(there are various options here, but this is as simple as any):

 

A systematic procedure

 

Start at the top of the tree, and work methodically
downwards examining the wffs on the tree (at any level of the branching
tree, look at the nodes at that level from left to right). You can of course
ignore wffs that are on closed branches. If the wff under examination has a
connective as the main logical operator, apply the appropriate tree-building
rule of type (a) to (i) – see the box in §29.1. If the wff is of the form 

 

¬

 

�

 

vC

 

or 

 

¬

 

�

 

vC,

 

 apply the relevant rule for negated quantifiers. If the wff is of the
form 
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…) to each relevant path 

 

for every
constant c that appears on that path

 

 (or instantiate with a new constant if
there no other constants on the path). Finally, if the wff is of the form
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…) to each relevant path where 
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 is new
to those paths, 

 

and then instantiate again with this new name c every previ-
ously visited universally quantified wff on those paths, and add those new
instantiations to the foot of every relevant path too

 

.

The basic idea, of course, is that we keep using the rule (

 

�

 

) to instantiate any
universal quantifiers with 

 

every

 

 name on its path, systematically revisiting them
if we add a new name to the path because we’ve just instantiated an existential
quantifier. And we keep on going for ever, unless the tree closes off, or we run
out of rules to apply. Call the result a 

 

completed systematic tree

 

. (‘Completed’
doesn’t mean finished in a finite number of steps: we are, so to speak, taking a
God’s eye view of the procedure! If you don’t like this dramatic idiom, drop it;
just think of completed trees as ordered sets of wffs with the right structure.)

This completed systematic tree is either finite or infinite. In the finite case, the
tree is obviously either closed or open (either every branch ends in absurdity, or
at least one doesn’t). What about the infinite case? Can something weird happen
then? No: if a tree is infinite then, by König’s lemma, there will be an infinite
path through the tree – and an infinite path has to be open (for if it eventually
contains 

 

A

 

 and 

 

¬

 

A

 

,

 

 

 

that path would be finitely terminated after all). So a
completed tree is either finite and closed, or it has an open path. And whether
the open path is infinite or not, the wffs on it will form a saturated set, by con-
struction. For compare the tree-building rules in §29.1 with our definition of
saturation. Clause by clause they match, so that the application of our tree-
building rules (with as many return visits to universals as there are names on the
branch) is 

 

exactly

 

 what we need to produce saturation.
Which proves (Sys). In sum, our systematic way of tree-building produces a

closed tree, or one with an open path, whose wffs form a syntactically consist-
ent, saturated set (finite or infinite).
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30.5 Completeness completed
Putting that all together: we’ve proved (Sat) in §29.3, (Sys) in §29.4; and as we
already remarked at the outset, those results trivially entail that any q-valid
inference at all can be shown to be valid by some closed tree. 

So our tree proof system for QL is complete in the sense of §20.4. Which is a
really beautiful metalogical theorem. 

Of course, we have made proving completeness easy for ourselves by choosing
a tree-based proof system. For the key concept of saturated sets – which under-
lies the neatest completeness proofs for all the various alternative proof systems
for QL – is so easy to motivate if we’ve encountered trees. But the relative ease
of our proof doesn’t make it trivial. It is a deep and important result, with some
intriguing consequences (topics for exploration in more advanced logic books).

Returning to our turnstile symbolism (§20.4), if there is a QL tree-proof start-
ing from A1, A2, …, An and ¬C, we can write A1, A2, …, An gQL C (and drop the
subscript if it is clear which proof system is in question). Likewise, if the infer-
ence from A1, A2, …, An to C is q-valid, we can write A1, A2, …, An fq C (and
again drop the subscript if it is clear which semantic notion of validity is in ques-
tion). What we have shown in this chapter, in briskest headline form, is the syn-
tactic turnstile and the semantic turnstile relate the same wffs: that is, 

A1, A2, …, An gQL C if and only if A1, A2, …, An fq C.

30.6 Summary
• Our rules for extending trees are provably sound; i.e. if the original trunk

A1, A2, …, An, ¬C is satisfiable, so is at least one path on the tree extended
using the rules. Since a satisfiable path can’t close, that means that if a tree
starts with a satisfiable trunk, it will stay open. Equivalently, if a tree
closes, then its trunk won’t be satisfiable, i.e. the inference from A1, A2, …,
An to C is q-valid.

• A saturated set of (closed QL) wffs has truth-makers for every non-
primitive wff in the set, assuming that there is one object in the domain per
constant in the set.

• (Sat) Every syntactically consistent saturated set of closed wffs is satisfiable.

• (Sys) We can systematically apply the tree-building rules so that the result-
ing tree is either closed or has an open path whose (closed) wffs form a syn-
tactically consistent saturated set.

• (Sat) plus (Sys) entails that there is a closed tree corresponding to every q-
valid inference, so our tree-based proof-system is complete.



In the last ten chapters:

• We informally introduced the language QL which provides an elegant and
well-motivated symbolism for unambiguously encoding quantified proposi-
tions. QL does ride roughshod over the distinctions marked in ordinary
language between e.g. saying what kind a thing belongs to, saying it has a
certain property, and saying what it is doing (§23.5). It also involves ignor-
ing the differences between e.g. ‘all’, ‘any’ and ‘every’ (§21.2). But the pay-
off is a certain uniformity of treatment of closely related arguments. For
example, consider the arguments (1) ‘All men are mortal, Socrates is a
man, hence Socrates is mortal’, (2) ‘Anyone who is white is pale, Socrates is
white, hence Socrates is pale’, (3) ‘Everyone who walks moves, Socrates is
walking, hence Socrates is moving’. Despite dealing respectively with kinds,
properties and activities, and despite the different vernacular quantifiers,
there is something, surely, in common here in the inferential moves. And
they can all be rendered into QL in the same way: ‘�x(Fx ⊃ Gx), Fn ∴ Gn’.

• We noted that standard QL treats restricted quantifiers with a certain artifi-
ciality. That’s because a QL valuation fixes on a certain domain of discourse
as being in play throughout an argument, so that we need to use conjunc-
tions and conditionals when we want to generalize over just parts of that
fixed domain. The artificiality buys us ease of logical manipulation.

• We introduced QL trees as a way of showing valid QL inferences are
indeed valid (we start by assuming the premisses and negation of the target
conclusion, and derive contradictions). In contrast to the logical apparatus
available to our ancient and medieval predecessors, QL and its proof meth-
ods allows us to deal smoothly with arguments involving multiply quanti-
fied propositions.

• We then developed the formal syntax and semantics of QL: in particular,
we explained the idea of a q-valuation (which specifies a domain of dis-
course, and assigns objects in the domain to constants and sets of n-tuples
of objects from the domain to predicates). We explained how a q-valuation
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of the vocabulary in a closed wff without free variables fixes the truth-
value of the wff.

• Next came the idea of q-validity. An argument is q-valid if every q-valua-
tion which makes the premisses true makes the conclusion true. The q-valid
arguments are those that are valid in virtue of their quantificational logical
form (i.e. in virtue of the way that quantifiers and connectives are distrib-
uted in the premisses and conclusion). This gives us another sharp (but nar-
row) notion of ‘validity in virtue of form’: compare §13.6.

• We noted (but didn’t prove) that there is no mechanical test for q-validity.
However, we can establish q-validity by assuming an inference has a coun-
termodel and deriving a contradiction, tree-style. 

• We then looked at some more examples of trees in action, and also saw
how we can in some cases use trees that don’t close to construct counter-
models to show that an inference is invalid.

• Finally, we confirmed that our system of tree-building rules enables us to
establish the q-validity of all (but only) the genuinely q-valid arguments.

The foundations of one version of classical predicate logic (i.e. first-order quanti-
fication theory) are therefore in place. So after all this, where next?

First, we are going to back-track a little. When we were motivating the seman-
tics of QL, we claimed that what normally matters about an ordinary-language
name – as far as the truth or falsity of what we say using the name is concerned
– is the reference of the name. This claim is worth exploring at greater length,
and our next chapter on ‘extensionality’ does so.

We then extend our treatment of predicate logic in an absolutely standard way
by adding a special predicate for identity (the notion involved in ordinary claims
like ‘George Orwell is the one and the same as Eric Blair’, ‘the Morning Star is
one and the same as the Evening Star’). This notion of identity has the kind of
generality and topic-neutrality to make it arguably a logical concept. Adding an
identity predicate to the resources of QL very significantly increases the expres-
sive power of the language. For example, in plain QL, we can express ‘at least
one thing is F’; in our extended language QL=, we can express ‘exactly one thing
is F’ (or equivalently, ‘there is an F, and any F is one and the same thing as it’),
‘at least two things are F’, ‘everyone except n is F’, etc.

Having described this augmented language, we will then make a correspond-
ing addition to our logical proof devices, adding rules for making QL= trees.

Another standard topic on our agenda is the treatment of ‘definite descrip-
tions’, i.e. referring expressions like ‘the current President’ or ‘the greatest living
logician’. The standard way of dealing with definite descriptions within QL= is
via ‘Russell’s Theory of Descriptions’. 

We’ll conclude by briefly considering a further extension of QL= to include
expressions for functions. 



QL is a fully extensional language; an ordinary language like English isn’t. This
chapter discusses what this means and whether it matters. 

31.1 Interpretations vs. valuations
From time to time, we have informally talked about sets (sets of propositions,
sets of objects forming a domain, etc.). Sets are collections of things considered
independently of their order and of the way they are specified. In other words, A
is one and the very same set as B if anything which is a member of A is a member
of B and vice versa. Sets are identical if they have the same members. 

Consider then the set of humans and the set of terrestrial featherless bipeds.
Anyone who is a human is a terrestrial featherless biped and vice versa. So we
have just one set here. In other words, the predicates, ‘… is human’ and ‘… is a
terrestrial featherless biped’ have the same set as their shared extension. Like-
wise, take the set of humans over ten feet tall and the set of humans over 200
years old. No one falls into either set. Vacuously, if anyone is a member of one
they are a member of the other. So again these are the same set, in this case the
empty set. Hence the two predicates ‘… is a human over ten feet tall’ and ‘… is a
human over 200 years old’ also share the same extension. 

But of course, the sentences ‘Jack is a human over ten feet tall’ and ‘Jack is a
human over 200 years old’ don’t mean the same; the predicates here may share
the same extension, but they differ in meaning. Likewise the two predicates, ‘…
is human’ and ‘… is a terrestrial featherless biped’ have different meanings even
if they have the same extension. If predicates mean the same, they must share
extensions; but not vice versa.

Now, with some exceptions, the extension of a predicate is what matters for
fixing the truth of sentences that contain it. So, for the purposes of logic – which
is all about truth-preserving arguments – our semantic story can concentrate on
these extensions. But when we are trying to interpret what someone is saying, we
need to know more than the extensions of their predicates. On the ordinary
understanding of the term, an interpretation of a language needs to specify the
meaning of a predicate (in other terms, it needs to give the sense of the predicate,

31
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or to indicate what concept is expressed by the predicate). 
It is pretty much agreed on all sides that we need a meaning/extension distinc-

tion for predicates. More controversially, a similar distinction seems to apply to
names as well. Take for example ‘Superman’ and ‘Clark Kent’, two different
names of the same person. It is quite possible for someone not to know that
these are two names for the same person. Thus Lois Lane has both names in her
repertoire, but she thinks of Superman as the handsome superhero in tights, and
of Clark Kent as the bespectacled reporter. The names, for Lois, are associated
with different ways of thinking about the same person, different ‘modes of pres-
entation’ (as Frege famously puts it); and she doesn’t make the connection.
That’s how she can assert ‘Superman can fly’ yet deny ‘Clark Kent can fly’.
That’s also how ‘Superman is Clark Kent’ can be informative for her.

In interpreting Lois’s behaviour, and trying to see it as rational, we need to dis-
tinguish when she is thinking about the person she is interacting with as Super-
man and when she is thinking about him as Clark Kent. Why isn’t she alarmed
when she sees the person in front of her leap out of a window? Because she takes
him as being Superman (not Clark Kent). To report Lois as thinking that Clark
Kent can fly when she is reporting the man’s marvellous deeds and referring to
him as ‘Superman’ would be to misrepresent her take on the world. 

In short, for the purposes of interpretation, we need to know more than the
reference of the names. We need to know something of the modes of presentation
Lois associates with the names, or (to use Frege’s term) need to know the sense the
name has for her. Just as two predicates can have different senses but the same
extension, two names can have different senses but the same reference, as do
‘Superman’ and ‘Clark Kent’ for Lois. However, as far as the truth of her asser-
tions is concerned, it doesn’t seem to matter whether Lois says ‘Superman is F’
or ‘Clark Kent is F’; the claims will stand or fall together depending on whether
that single individual falls into the extension of the predicate. The truth (at least
for most fillings for ‘F’) depends only on who is being referred to, not how he is
being thought of. 

By the way, don’t for a moment get distracted by the fact that we have gone
along with a vivid fictional example here. We could equally well, though perhaps
much less memorably, use examples like ‘George Eliot’ vs. ‘Mary Ann Evans’, or
Frege’s own example of ‘The Morning Star’ vs. ‘The Evening Star’ (which he
treats as two names for the planet Venus).

What goes for English also goes in principle for uses of artificial languages like
QL. Pretend that Lois uses a QL-style code in her diary, using ‘m’ to record
encounters when rescued by a superhero and ‘n’ to record the doings of her
reporter colleague. Then to capture the thoughts she is expressing in her coded
notes, we would need to translate ‘m’ as ‘Superman’ and ‘n’ as ‘Clark Kent’,
rather than vice versa. But this close translation, matching sense with sense,
would not normally matter for determining the truth of what she writes: if our
focus is on truth, then what matters is whom she is referring to. Hence our claim
that a q-valuation apt for logical purposes, which assigns truth-relevant proper-
ties to expressions of QL, need only assign references (not senses) to constants.
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31.2 Extensional and intensional contexts
Suppose the q-valuation q assigns the two names m and n the same reference.
Then it is easily seen that a QL sentence of the form C(…m…m…), involving the
name m, will be true on q if and only if the corresponding sentence C(…n…n…),
where n appears instead of m, is also true on q. It is only the shared reference of
m and n that matters for truth. Hence, co-referential names can be intersubsti-
tuted in QL wffs salva veritate (i.e., preserving the truth).

Again, suppose q assigns the two predicates F and G the same extension. Then
similarly, a QL sentence C(…F…F…) involving the predicate F will be true on q
exactly when the corresponding sentence C(…G…G…) is true on q. In other
words, co-extensional predicates can be intersubstituted salva veritate.

We’ll call a context within which pairs of co-referential names and pairs of co-
extensional predicates can be intersubstituted preserving the truth an extensional
context. A language where all sentences are extensional contexts is called an
extensional language. QL is in that sense an extensional language.

Now, very many sentences of a natural language like English are extensional.
What matters for their truth is the reference of names and the extensions of
predicates (that’s what motivated the idea of a q-valuation for their QL ana-
logues). But English is not a fully extensional language. Some ordinary-language
constructions yield non-extensional or intensional contexts. In other words, we
can form pairs of sentences C(…m…m…), C(…n…n…) which take different
truth-values, despite the fact that m and n are names denoting the same thing.
Similarly, we can form pairs C(…F…F…), C(…G…G…) which take different
truth-values, despite the fact that F and G have the same extension.

We will look below at two main types of example (arising in psychological
and modal contexts). First, however, we’ll limber up by saying something about
the quotational contexts that may – or may not! – provide a useful comparison
case.

31.3 Quotation
‘Bill’ and ‘Clinton’ are names picking out the same man. In many, many contexts
we can interchange the names, salva veritate. Take, for example, 

(1) Bill kissed Monica.
(2) Clinton kissed Monica.

These must either both be true or both be false. But compare

(3) ‘Bill’ has four letters.
(4) ‘Clinton’ has four letters.

Here swapping the names ‘Bill’ and ‘Clinton’ leads from truth to falsehood.
But how is that possible? How can swapping the names make a difference?

The answer is absolutely obvious and trivial. In (3), the expression 

 Bill

is no longer functioning to pick out the man, but is part of a longer expression,
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i.e. part of the expression

 ‘Bill’

– including the quotation marks – that serves to pick out someone’s name (see
§10.2 again for a reminder about our conventions governing quotation marks).
Likewise, in (4), the expression 

 Clinton

is part of a longer expression, i.e. part of the expression

 ‘Clinton’

that serves to pick out (not the same man, but) a different name. No wonder
swapping the expressions appearing as parts of the complete quotational expres-
sions in (3) and (4) won’t always preserve truth.

Evidently, we get similar effects with quoted predicates. So, quotational occur-
rences of expressions, names and predicates, aren’t extensional. 

Or at least, that’s one way of putting it. But maybe it is a bit misleading.
Maybe we shouldn’t really say that the word ‘Bill’ has an occurrence in (3) at all,
any more than the word ‘rat’ has an occurrence in ‘Socrates walked’. The
sequence of letters ‘r’+‘a’+‘t’ appear within that sentence, but not as a separate
word. Likewise, it might be said, the sequence of letters ‘B’+‘i’+‘l’+‘l’ appears in
(3) but not as a separate word, but only as part of the longer denoting expres-
sion “‘Bill’”.

We won’t pause to try to decide the best way of thinking about quotational
contexts. What is clear is that we can’t substitute salva veritate within them. 

31.4 Intentional contexts are intensional
Our first more serious kind of example of a non-extensional context is suggested
by the discussion of §31.1 above. The names ‘Superman’ and ‘Clark Kent’ are
co-referential: and in simple, straightforward, contexts they can be intersubsti-
tuted preserving the truth. For instance, compare

(5) Superman can fly.
(6) Clark Kent can fly.

These stand or fall together, because Superman is Clark Kent. Yet, as we told the
story, the following sentences do differ in truth-value:

(7) Lois believes that Superman can fly.
(8) Lois believes that Clark Kent can fly.

Swapping ‘Superman’ and ‘Clark Kent’ now leads from truth to falsehood. But
how is that possible? How can swapping the names here make a difference? 

This time the answer is non-obvious and non-trivial. One suggestion might be
that (7) and (8) can be analysed along the lines of 

(7*) Lois accepts-as-true ‘Superman can fly’.
(8*) Lois accepts-as-true ‘Clark Kent can fly’.
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So, on this analysis, ‘Superman’ has a disguised quotational occurrence in (7*).
And the reason we can’t substitute co-referential names salva veritate in (7) is
akin to the reason we can’t substitute co-referential names in (3).

This would be a very neat account of the failure of substitutivity if (7) could
indeed be analysed as (7*). But, as it stands, the analysis is surely wrong. After
all, Lois could have beliefs, including the belief that Superman can fly, even if she
is a monoglot French speaker and so doesn’t accept as true any English sentence.
But maybe we can try to patch things up, and provide a more sophisticated ‘dis-
guised quotation’ analysis of (7) which still explains the failure of substitutivity
in the same basic way. 

An alternative line goes as follows (the idea here goes back at least to Frege).
When we say ‘Lois believes that Superman can fly’ we are not relating her to a
person; after all, she could have this belief even if Superman is a figment of her
imagination. Rather, we are relating her to a way-of-thinking, the mode of
presentation Superman which is a constituent of her thought. And if we instead
say ‘Lois believes that Clark Kent can fly’, we’d be saying something different
about the way she is thinking. In this sort of context, then, the truth of the whole
sentence depends on the sense of the embedded name. So substituting a name
with a different sense usually won’t preserve truth (even if the names happen to
have the same reference).

This second account shares with the quotational account the core idea that an
occurrence of ‘Superman’ after ‘believes that …’ no longer simply serves to pick
out the man. The quotational account has it that the reference shifts away from
the man to the word ‘Superman’; the second account (at least in the classic
Fregean version) has it that reference shifts to the sense of the word ‘Superman’.
Either way, that explains the failures of substitution.

We get similar effects with predicates. Consider the predicates ‘… is a unicorn’
and ‘… is a dragon’. These have the same extension, namely the empty set. But
plainly we can’t swap them in quotational contexts, and always hope to preserve
truth. Neither can we do so after ‘believes that …’. For example, compare

(9) Helen believes that Pegasus is a unicorn.
(10) Helen believes that Pegasus is a dragon.

The first could be true and the second false.
How can that be? Well, again two stories could be run here. Obviously a

quasi-quotational analysis of ‘believes that …’ contexts would explain the fail-
ure of substitutivity. If (9) and (10) can be analysed on the following lines –

(9*) Helen accepts-as-true ‘Pegasus is a unicorn’.
(10*) Helen accepts-as-true ‘Pegasus is a dragon’.

– then changing the quoted predicate changes the sentence that Helen accepts,
and she might accept one sentence without accepting the other. Alternatively, the
Fregean line would be (very roughly) that when we say ‘Helen believes that
Pegasus is a unicorn’ we are indicating that her thought involves the concept
unicorn. If we swap the predicate for one with a different sense, which expresses
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a different concept, then we change what we are saying about how Helen is
thinking. No wonder then that swapping co-extensional predicates with differ-
ent senses won’t necessarily preserve truth in this case.

What goes for ‘believes that …’ contexts goes for other contexts governed by
psychological verbs which take ‘that’-clauses. For example, compare

(11) Lois hopes that Superman loves her.
(12) Lois hopes that Clark Kent loves her.

Or compare

(13) Lois expects that Superman will save the world again.
(14) Lois expects that Clark Kent will save the world again.

Again, substitutivity of co-referential names typically won’t preserve truth. The
contexts are intensional.

In the philosophy of mind, states attributed by psychological ‘that’-clauses are
standardly called intentional states. We can likewise call contexts created by
such clauses intentional contexts. So, in a slogan, intentional contexts (with a ‘t’)
are intensional (with an ‘s’).

Is QL’s lack of intentional contexts a problem? You might think that it is an
expressive shortcoming of our logical symbolism. But arguably it is an advan-
tage. In an extensional language, the reference of a constant stays fixed. Not so
in a language like English. For example, a name like ‘Superman’ might some-
times pick out a superhero, and sometimes (as in ‘Lois believed that Superman
loved her’) pick out a name or the sense of a name. Perhaps the intensionality
here relates to a kind of ambiguity. So we might argue that it is good to be forced
to recast what the English says using intentional idioms into an unambiguous
extensional formalism like QL. Doing so would make it clear that sometimes we
are speaking of heroes, sometimes of their names, sometimes of the sense of their
names, so it reveals frankly and unambiguously what is going on. 

31.5 Modal contexts are intensional
Here’s a second major kind of case where extensionality fails in ordinary lan-
guage. Consider the following two sentences

(15) Necessarily, anything which is a human is a human.
(16) Necessarily, anything which is a terrestrial featherless biped is 

a human.

The first is trivially true; the second is false (there could have been non-human
featherless bipeds on earth). But the second results from the first by substituting
one predicate for a co-extensional one. Likewise, consider

(17) It is logically possible that something exists which is a unicorn.
(18) It is logically possible that something exists which is a square 

circle.

Again, it seems that the first is true, the second is false. But again, the second
results from the first by substituting a predicate for a co-extensional one.
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Notions of necessity, possibility and impossibility – notions of what could and
couldn’t be the case – are standardly called modal notions. Contexts in the scope
of modalities are intensional.

Why so? On one natural line of thought, ‘Necessarily P’ (for example)
depends for its truth on whether P holds across other possible worlds (see
§12.5). If P involves some predicate F, then whether P is true at some other
world depends on the extension F has at that world. Suppose G is some predi-
cate that happens to have the same extension as F in the actual world. Typically,
F and G can still have differing extensions at some other worlds. So swapping F
for G won’t in the general case preserve the truth-value of P at other worlds. So
the swap can change the value of ‘Necessarily P’.

For example, suppose P is ‘Anything which is a human is a human’. That’s
true however the world is, or (as it is often put) is true at all possible worlds. So
‘Necessarily P’ is true. And now consider what happens when we replace the
first occurrence of the predicate F = ‘human’ with the predicate G = ‘terrestrial
featherless biped’. These predicates are co-extensional (in the actual world), but
their extensions can peel apart in other worlds: just imagine a possible world
with where naked ostriches have evolved. So swapping the predicates can change
truth-values at other worlds. While the original P is true at all worlds, after
swapping predicates we get ‘Anything which is a terrestrial featherless biped is a
human’ which is false at some worlds. So that’s how the swap can change the
value of ‘Necessarily P’.

Is QL’s lack of intensional modal contexts a shortcoming? Perhaps so. But
then everyday modal contexts are not easy to understand. Perhaps forcing our-
selves to recast what English tries to say using modal idioms into an extensional
formalism like QL (which would involve e.g. doing some some honest quantifi-
cation over possible worlds) will again reveal frankly and unambiguously the
commitments of modal discourse. But that’s not a discussion we can even begin
to pursue here.

31.6 Summary
• QL is an extensional language, i.e. co-referential names and co-extensive

predicates can always be intersubstituted salva veritate.

• English contains intentional contexts (as in ‘Lois believes Superman can
fly’) which are intensional, i.e. non-extensional.

• Modal contexts (as in ‘It is possible that unicorns could exist’) are also
non-extensional.

• It is moot whether QL’s lack of such non-extensional contexts is an expres-
sive lack or a methodological advantage.



The idea of identity – involved, for example, in the claims that Superman is
identical to (is one and the very same as) Clark Kent, or that the Evening Star is
identical to the Morning Star – has the kind of generality and topic-neutrality
that makes it of interest to logic. In this chapter we briefly describe the funda-
mental principles governing the identity relation.

32.1 Numerical vs. qualitative identity
Compare two types of cases: 

(A) Jill and her twin sister Jane are (as we say) identical; you cannot tell
them apart. You and I have identical sweaters. Simultaneously in
London and Paris, Jack and Jacques are wrapping up identical bottles
of Chanel No. 19 to send to their respective beloveds. 

(B) Since Jill and Jane are twins, Jill’s mother is identical to Jane’s mother
(she is one and the same person). There are two sweaters, but you and
I bought them from the identical branch of Marks and Spencer. And
as luck would have it, Jack’s beloved is one and the very same as
Jacques’s; the identical woman is the object of both men’s desires.

In type (A) cases, we have what is often called qualitative identity. Jill and Jane
are distinct beings sharing the same intrinsic properties (well, in the real world,
maybe not strictly all the same properties: but let’s pretend that they are perfect
duplicates). Likewise for the two distinct but identically similar sweaters and the
two bottles of perfume. In the (B) cases, however, we don’t have mere duplicates
but rather instances of numerical identity. It is one and the very same entity (the
very same mother, the very same shop, the very same beloved woman) that is in
question each time. 

Our topic in this chapter is the notion of identity in the latter sense of strict
numerical identity. 

It is momentarily rather tempting to say that our concern is with the idea of
‘one object being the very same thing as another’. But on a moment’s reflection,
that cannot possibly be the right way to put it. If there really is ‘one object’ and

32
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‘another object’ then there are two of them, and so they of course cannot be
numerically identical after all!

32.2 Equivalence relations
We initially defined a relation as whatever is expressed by a predicate with two or
more places (§3.1). So, at least in that sense, what is expressed by ‘… is one and
the very same as …’ is indeed a two-place relation.

Moreover, strict numerical identity is an equivalence relation: as we shall also
see, it is in a good sense the ‘smallest’ equivalence relation. And the basic princi-
ple governing numerical identity is Leibniz’s Law or, as it is often called, the
‘Indiscernibility of Identicals’. The rest of this chapter explains these assertions.
This section makes a start by defining the idea of an equivalence relation.

We first need to define three features a (two-place) relation R can have. 

• We have already defined what it is for a relation R to be transitive (§28.6).
To repeat, a relation R is transitive just if, whenever a has R to b, and b has
R to c, then a has R to c. (Examples: ‘is heavier than’, ‘is an ancestor of’,
and ‘is part of’ express transitive relations.)

• A relation R is symmetric just if, whenever a has R to b, then b has R to a.
(Examples: ‘is married to’, ‘is the opposite sex to’, ‘is adjacent to’ express
symmetric relations.)

• A relation R is reflexive just if, for any a, a has R to a. (Examples: ‘is as tall
as’, ‘has a parent in common with’, ‘drives the same make of car as’ express
reflexive relations.)

In each case, we’ll assume that the objects a, b, c are ones which it makes sense
to think of standing in the relation R. We don’t, for example, want to deny that
being as tall as is a reflexive relation, just because it makes no sense to say e.g.
that the number seven isn’t as tall as itself. We might say: being as tall as is
reflexive in its domain of application.

Relations can have these features in various combinations. For example ‘is
heavier than’ is transitive, but not symmetric or reflexive. (Single-premiss) entail-
ment is also transitive and not symmetric, but is reflexive. Again, ‘has a parent in
common with’ is reflexive, symmetric, but non-transitive, while ‘is not taller
than’ is reflexive, transitive, but non-symmetric. 

We are interested now, though, in relations which have all three features:

An equivalence relation is a relation which is transitive, symmetric and
reflexive.

Examples: ‘is the same age as’, ‘has the same surname as’, ‘is a full sibling of’, ‘is
parallel to’, ‘is exactly similar to’, ‘is truth-functionally equivalent to’ express
equivalence relations.

Suppose we have got a domain of objects and an equivalence relation R
defined over those objects. Because of reflexivity, every object in the domain is R
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to something, if only itself. Note too that if a is R to b and a is R to c then, by
symmetry, b is R to a; and so by transitivity b is R to c. In other words, if a is R
related to two things they are R treated to each other. If you think about it, that
means that R carves up the domain into non-overlapping groups of things,
where the members of a group all stand in relation R to each other: these are R’s
so-called equivalence classes.

For an example, take the domain of USA citizens, and take the equivalence
relation having the same legal surname as. This carves up the domain into equiv-
alence classes of people who share the same surname. Everyone is in one such
class, and no one is in more than one class. (Some of these equivalence classes
are large: there are a lot of Smiths. Others may contain just one member – a
philosophy student once legally adopted the surname ‘qFiasco’, and it could well
be that there is still only one qFiasco!) 

For another example, take the domain of positive integers, and consider the
relation differs by a multiple of 3 from. This is an equivalence relation (its sym-
metry and transitivity are obvious; and for reflexivity, note that a number differs
by a zero multiple of three from itself). And the relation carves up the numbers
into the equivalence classes {0, 3, 6, 9, …}, {1, 4, 7, 10, …} and {2, 5, 8, 11, …}. 

32.3 The ‘smallest’ equivalence relation
Let’s now add some informal symbolism to English. When a is indeed one and
the very same thing as b, then we will write ‘a = b’ (read ‘a is identical to b’).
Note that it is perfectly appropriate to borrow the familiar mathematical symbol
here. For when in ordinary arithmetic we write, say, ‘2 + 3 = 10 – 5’ we are
claiming that the number which is the result of adding 2 and 3 is the very same
as the number which results from subtracting 5 from 10. The left-hand and the
right-hand of the equation aren’t just picking out qualitatively similar things; the
expressions on either side pick out the very same number.

What ‘=’ expresses is evidently reflexive, symmetric and transitive. Play along
with the familiar fiction again. Then, first, Clark Kent is, of course, one and the
very same as Clark Kent. More generally, 

• For any a, a = a.

Second, if Clark Kent is one and the very same as Superman, then Superman
must be one and the very same as Clark Kent. Generalizing:

• For any a and b, if a = b, then b = a.

And third, if Clark Kent is one and the very same as Superman, and Superman is
one and the very same as the Superhero from Krypton, then Clark Kent is one
and the very same as the Superhero from Krypton. Generalizing again:

• For any a, b and c, if a = b and b = c, then a = c.

As with any equivalence relation, the identity relation carves up a domain of
objects into equivalence classes. But of course, in this case, the equivalence
classes will all contain exactly one item each (the only being related to Clark
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Kent by the identity relation is that very person: to be sure, we may call him by a
variety of names, but they all pick out one and the same individual). The identity
relation, then, is the equivalence relation which partitions a domain into the
smallest possible equivalence classes, with each member of the domain in its
own separate class. 

Note, then, that the extension of the identity relation defined over a domain is
just the set of pairs {〈a, a〉, 〈b, b〉, 〈c, c〉, …} (running through each object in that
domain). But any equivalence relation defined over that domain also has in its
extension those pairs, because every equivalence relation is reflexive. What is
distinctive about the identity relation is that these are the only pairs in its exten-
sion. In other words, given a domain, the extension of the identity relation is
contained in the extension of every equivalence relation defined over that
domain.

So in that sense, identity is the ‘smallest’ equivalence relation.

32.4 Leibniz’s Law
The crucial principle governing strict numerical identity is this:

(LL) If a and b are identical (i.e. are one and the same thing), then what-
ever property a has, b has. 

There can be no exceptions to this. If the object a is one and the very same thing
as the object b, then a’s having the property P just is the identical state of affairs
as b’s having the property P.

Hence, if Superman is Clark Kent, then whatever properties Superman has,
Clark has. If Superman can fly, then so can Clark (though to look at him in the
guise of a reporter, you might not realize it!). If Superman loves Lois, so does
Clark. Likewise, if Jill’s mother is one and the very same person as Jane’s mother,
then Jill’s mother and Jane’s mother have the same properties. If Jill’s mother is a
logician, so is Jane’s; if Jill’s mother has three children, so does Jane’s. And so on. 

Our label ‘(LL)’ here is short for ‘Leibniz’s Law’. The principle is also often
called the Indiscernibility of Identicals – if a and b really are the same thing, then
of course you can’t tell ‘them’ apart. It is trivially equivalent to another
uncontroversial principle, which we can call the ‘Diversity of the Dissimilar’:

(DD) If a has some property that b lacks, then a is not identical to b.

If Superman can fly and Clark can’t, then that settles the matter: Clark isn’t the
superhero. If Jill’s mother has red hair and Jane’s mother hasn’t, then they are
different people. 

Don’t confuse the correct principle of the Indiscernibility of Identicals with the
reverse principle of the Identity of Indiscernibles. Leibniz himself held that if a
and b share all the same properties then they must be one and the very same
thing. If we are generous enough about what counts as a ‘property’ this may be
defensible. However, the Identity of Indiscernibles looks false if we mean ordi-
nary, intrinsic, properties (properties that don’t consist in relations to other
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things). For example, the two peas in the pod can surely, at least in principle, be
qualitative duplicates in each and every intrinsic respect, can be qualitatively
identical, yet still be two distinct things, differing only e.g. in their spatial loca-
tion and their spatial relations to other things.

32.5  Leibniz’s Law and co-referential designators
Note that Leibniz’s Law is a statement about things: if a and b are the same
thing, then a and b have the same properties. But it implies a claim about lan-
guage, and the interchangeability of referring expressions.

Let’s say that a designator is (roughly speaking) an expression whose standard
function is to refer to or pick out a particular individual person or thing. Names
are paradigm designators: but other instances are expressions like ‘that table’,
‘Jill’s father’, ‘the man in the corner drinking a martini’. Two designators ‘a’ and
‘b’ are co-referential if they actually refer to the same thing: in that case, the
identity claim ‘a = b’ will be true. For example, the pair of designators ‘Jack’ and
‘Jill’s father’ are co-referential if the two designators pick out the same man, and
so Jack is Jill’s father. With the terminology thus understood, (LL) implies the
following linguistic principle: 

(LL′) If ‘a’ and ‘b’ are functioning as co-referential designators in the
claims C(…a…a…) and C(…b…b…), and also the context C
expresses the same property in each case, then these claims say the
same about the same thing, and so must have the same truth-value. 

How does (LL′) square with the fact that we cannot exchange the normally
co-referential designators ‘Superman’ and ‘Clark Kent’ in the context ‘Lois
believes that Superman can fly’ and preserve the truth-value? Because, as we
noted in the last chapter (§31.4), in this sort of context the designators are not
serving to pick out their normal common reference.

Here’s another apparent exception. Suppose Jack is known to his friends as
‘Fats’. So ‘Fats’ and ‘Jack’ are co-referential designators. And no doubt ‘Fats is
so-called because of his size’ is true. But we surely can’t infer that ‘Jack is so-
called because of his size’. Is that an objection to (LL′)?

No. The predicate ‘is-so-called-because-of-his-size’, when attached to the name
‘Fats’, says that Fats (i.e. Jack) is called ‘Fats’ because of his size; while ‘is-so-
called-because-of-his-size’, when attached to the name ‘Jack’, says that Fats (i.e.
Jack) is called ‘Jack’ because of his size. So although we have ‘C(Fats)’ true and
‘C(Jack)’ false with the same linguistic filling for the context C each time, the
repeated expression ‘is-so-called-because-of-his-size’ in fact expresses different
properties in the two cases. That’s why (LL′) can’t be applied. 

To repeat, (LL) is an exceptionless principle. And apparent exceptions to its
linguistic correlate (LL′) are indeed merely apparent, involving cases where the
designators aren’t in fact co-referential or where the property expressed by the
context C shifts.
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32.6 Summary
• We must distinguish qualitative from strict numerical identity.

• Qualitative and strict numerical identity are both transitive, symmetric and
reflexive relations, i.e. are both equivalence relations. But strict numerical
identity is the ‘smallest’ equivalence relation – it relates an object to noth-
ing other than itself.

• The key principle governing identity is (LL) Leibniz’s Law: if a and b are
identical then whatever property a has, b has. 

• There is a linguistic version of this principle, (LL′): if ‘a’ and ‘b’ are func-
tioning as co-referential designators in the claims C(…a…a…) and
C(…b…b…), and also the context C expresses the same property in each
case, then these claims must have the same truth-value. Apparent excep-
tions – e.g. the behaviour of designators in intentional contexts – can be
explained away.

Exercises 32
In addition to the properties of relations already defined, we say that a relation
R is Euclidean just if, whenever a has R to b, and a has R to c, then b has R to c.
R is asymmetric if, whenever a has R to b, then b does not have R to a. R is
irreflexive if no object has R to itself. These properties, along with the properties
of being reflexive, symmetric and transitive, can all be captured by QL wffs. For
example, R’s being symmetric is captured by

�x�y(Rxy ⊃ Ryx)

Give wffs that similarly capture R’s having each of the other five properties.
Then give both informal arguments and QL trees to show

1. If R is asymmetric, it is irreflexive.
2 If R is transitive and irreflexive, it is asymmetric.
3. If R is an equivalence relation, it is Euclidean.
4. If R is Euclidean and reflexive, it is an equivalence relation.

What about

5. If R is transitive and symmetric, it is reflexive?



We now add to QL a symbol for the identity relation; and then we explore the
expressive power of the resulting augmented language QL=.

33.1 Adding identity to QL
It would be consistent with the basic design of QL to introduce a predicate letter,
say ‘I’, which belongs to the category of two-place predicates, and takes two
names to form an atomic wff such as ‘Imn’, to be read ‘m is identical to n’.

But it is absolutely standard (and a lot more perspicuous) to add the now
familiar identity sign ‘=’ to the basic alphabet of our language, and to allow this
symbol to be written in the usual way between a pair of terms (constants or var-
iables), yielding expressions like ‘m = n’, ‘x = y’ and so on. There’s no need to
introduce brackets with such expressions, any more than there is a need to
bracket other expressions involving two-place predicates. We’ll call the resulting
language QL=.

If we are going to allow these new kinds of expression, we must of course
expand our rules for forming atomic wffs. So the syntactic rules for forming
atomic wffs in QL (§26.3) can be updated to become:

(A1=) For all j � 0, a j-place predicate followed by j terms is an atomic
wff of QL=.

(A2=) A term followed by ‘=’ followed by a term is an atomic wff of QL=.
(A3=) Nothing else is an atomic wff.

The rules for building complex QL= wffs remain exactly as for QL.
What about the semantics of QL=? The basic idea is trivial: a wff like ‘m = n’

should come out true just so long as the references of the constants ‘m’ and ‘n’
are the same. But, for a systematic semantics in the style of Chapter 27, we need
to allow wffs involving free variables, and then give rules for evaluating them on
(extended) q-valuations which assign q-values to variables. What we need is:

(Q0+) An atomic wff of the form t1 = t2 is true on the valuation q just if
the terms t1 and t2 are assigned the same objects as q-values by q.

33

The language QL=



310 The language QL=

Add that to (Q0) in §27.4. Then everything else remains semantically as in QL.
In particular, we can apply the notions of q-validity, q-logical truth, etc. to cover
wffs and inferences expressed in QL=. It’s as easy as that!

The general principles about reflexivity, symmetry and transitivity of identity
can now be expressed thus:

(Ref) �x x = x
(Sym) �x�y(x = y ⊃ y = x)
(Tran) �x�y�z((x = y ∧ y = z) ⊃ x = z).

And it is easy to show that these are, as we’d expect, q-logical wffs of QL= (see
Chapter 35). 

What about Leibniz’s Law? Informally, this says: if x and y are identical, then
for any property X, if x has property X, y has it too. So what we’d like to be able
to say in our formal language is something like

(LL) �x�y�X(x = y ⊃ (Xx ⊃ Xy))

where we are not only quantifying over objects (‘take any things, x, y, …’) but
also quantifying over properties (‘for any property X’). However, we can’t do
that in QL=. For in this language we only have the first ‘order’ of quantifier, i.e.
we only have quantifiers that run over objects in the domain. We don’t have
quantifiers running over properties. For this reason, by the way, languages like
QL and QL= are standardly called first-order languages, and their logic is there-
fore called first-order logic (contrast second-order logic, where we can quantify
over properties too). 

The fact that QL and QL= are first-order languages is arguably a major limita-
tion: for example, some intuitive mathematical reasoning does seem to be essen-
tially second-order, and so can’t be captured in first-order terms. But we can’t
explore this tricky issue here.

Lacking second-order quantifiers that run over properties, the best we can do
in QL= to approximate Leibniz’s Law is to say something like this: 

Each way of filling out the following schema is true, 

(LS) �v�w(v = w ⊃ (C(…v…v…) ⊃ C(…w…w…)))

where v, w are variables, C(…v…v…) is a wff with just v free, and
C(…w…w…) is the result of substituing w for each occurence of v.

The idea, roughly, is that whatever QL= wff we put for C, then if v = w,
C(…v…v…) implies C(…w…w…). Which is indeed true, because QL= is an
extensional language (cf. §31.2). 

Instances of the Leibnizian schema (LS) include, say,

�x�y(x = y ⊃ (Fx ⊃ Fy))
�y�z(y = z ⊃ ((Lay ∧ Lby) ⊃ (Laz ∧ Lbz)))
�x�y(x = y ⊃ (�z(Lxz ⊃ z = m) ⊃ �z(Lyz ⊃ z = m)))

But note that in saying that all instances of (LS) are true, we are in effect only
committing ourselves to the claim that identical objects share every feature
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expressible in QL=, which is a weaker claim than the full-strength Leibniz’s Law
which says that identicals share every feature. 

33.2 Translating into QL=

Adding the identity sign gives us a surprisingly rich extension to our expressive
resources. Let’s run through some examples. Interpret QL= so that 

‘a’ means Angharad
‘b’ means Bryn
‘m’ means Mrs Jones 
‘F’ means … speaks Welsh
‘G’ means … is a girl
‘L’ means … loves …

and where the domain of quantification consists of human beings. We’ll trans-
late the following:

1. Angharad is none other than Mrs Jones.
2. If Angharad speaks Welsh, and Mrs Jones doesn’t, then they are

different people. 
3. Everyone except Angharad loves Bryn.
4. Someone other than Bryn loves Angharad.
5. Only Mrs Jones loves Bryn.
6. Only Angharad and Bryn love Mrs Jones.
7. Angharad only loves people who love her.
8. Angharad loves at most one person.
9. At most one girl speaks Welsh.
10. Whoever loves Mrs Jones loves no-one else.
11. If Bryn loves some Welsh-speaker other than Angharad, then he

loves Mrs Jones.
12. Every girl other than Angharad loves someone other than Bryn.

(Try translating at least the first few of these before reading on.)

1. ‘Angharad is none other than Mrs Jones’ is naturally read as simply an
assertion of identity (so note, we don’t always have to translate ‘none’ by a
quantifier). The translation is

a = m

2. Similarly, ‘they are different people’ is a denial of identity. The translation is 

((Fa ∧ ¬Fm) ⊃ ¬a = m)

Some allow a wff like ‘¬a = m’ to be written ‘a ≠ m’; but we won’t be using
that shorthand in this book. NB, the negation sign negates ‘a = m’, not ‘a’!

3. ‘Everyone except Angharad loves Bryn’ is equivalent to ‘Everyone is such
that, if they are not Angharad, they love Bryn’. Whence,

�x(¬x = a ⊃ Lxb)

Someone who says ‘Everyone except Angharad loves Bryn’ perhaps
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strongly implies that Angharad doesn’t love Bryn: but, arguably she doesn’t
actually assert that. For it would quite consistent to add ‘… and maybe
Angharad does too: I just don’t know.’ 

4. Similarly ‘Someone other than Bryn loves Angharad’ says that there is
someone who is not identical to Bryn and loves Angharad: i.e.

�x(¬x = b ∧ Lxa)

5. What about ‘Only Mrs Jones loves Bryn’? Well, this says (on the natural
reading) that Mrs Jones loves Bryn and no-one else does, i.e. anyone who
isn’t identical to Mrs Jones doesn’t love Bryn. So we have 

(Lmb ∧ �x(¬x = m ⊃ ¬Lxb))

or equivalently,

(Lmb ∧ �x(Lxb ⊃ x = m))

6. ‘Only Angharad and Bryn love Mrs Jones’ is similar: it says that they both
love Mrs Jones, and anyone who isn’t one of them doesn’t love her. Hence, 

((Lam ∧ Lbm) ∧ �x(¬(x = a ∨ x = b) ⊃ ¬Lxm))

or equivalently,

((Lam ∧ Lbm) ∧ �x(Lxm ⊃ (x = a ∨ x = b)))

7. Once we note that ‘only’ is often translated using the identity predicate,
there is a danger of getting distracted and forgetting that many uses of
‘only’ in quantified sentences don’t have anything to do with identity, and
can be translated using unaugmented QL. ‘Angharad only loves people
who love her’ is a case in point. It says just that whoever Angharad loves is
someone who loves her. Translating yields:

�x(Lax ⊃ Lxa)

8. ‘Angharad loves at most one person’ is equivalent to: if we pick someone
Angharad loves, and then again pick someone Angharad loves, we must
have picked the same person twice. So we can translate this as 

�x�y((Lax ∧ Lay) ⊃ x = y)

9. Similarly, we can render ‘At most one girl speaks Welsh’ by 

�x�y({(Fx ∧ Gx) ∧ (Fy ∧ Gy)} ⊃ x = y)

10. If we use an English/QL= mixture of the kind that we allowed ourselves in
§24.1, then ‘Whoever loves Mrs Jones loves no-one else’ is semi-translated
by

�x(Lxm ⊃ x loves no-one other than Mrs Jones)

But ‘x loves no-one other than Mrs Jones’ can be translated as 

�y(¬y = m ⊃ ¬Lxy)

or equivalently,
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�y(Lxy ⊃ y = m)

And plugging that in the half-completed translation, we finally get:

�x(Lxm ⊃ �y(Lxy ⊃ y = m))

As always, we could alternatively translate the ‘no-one’ quantification
using the existential quantifier:

�x(Lxm ⊃ ¬�y(Lxy ∧ ¬y = m))

11. The antecedent ‘Bryn loves some Welsh-speaker other than Angharad’ is
translated by

�x((Lbx ∧ Fx) ∧ ¬x = a)

So the whole conditional translates as follows:

(�x((Lbx ∧ Fx) ∧ ¬x = a) ⊃ Lbm)

12. Finally, we’ll again take ‘Every girl other than Angharad loves someone
other than Bryn’ in stages. As a half-way house we have this:

�x((Gx ∧ ¬x = a) ⊃ x loves someone other than Bryn)

Then ‘x loves someone other than Bryn’ translates as 

�y(Lxy ∧ ¬y = b)

So putting those together we get 

�x((Gx ∧ ¬x = a) ⊃ �y(Lxy ∧ ¬y = b))

33.3 Numerical quantifiers
We have just seen how to translate ‘there is at most one F’:

(1) �x�y((Fx ∧ Fy) ⊃ x = y)

We know from before how to translate ‘there is at least one F’:

(2) �xFx

Putting these together, then, we can translate ‘there is exactly one F’ (i.e. there is
at least one and at most one F) by the conjunction:

(3) (�xFx ∧ �x�y((Fx ∧ Fy) ⊃ x = y))

Here’s an alternative, simpler, translation that will do as well:

(4)  �x(Fx ∧ �y(Fy ⊃ y = x))

(Convince yourself that those two indeed come to the same!) And here’s an even
simpler version:

(5)  �x�y(Fy � y = x)

We can formally show that (4) and (5) are q-equivalent, i.e. q-entail each other
(see §35.1). But this result too should look intuitively right. For suppose x is the
one and only F. Then take anything y you like, if it is identical to x it is F (which
gives you one direction of the biconditional); and if y is F it must be none other
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than x again (which gives you the other direction of the biconditional). Inciden-
tally, you will find that (4) – or equivalently (5) – is quite often abbreviated as

(6) �!xFx

But we won’t adopt that notation here. 
Now consider the following wffs,

(7) �x�y((Fx ∧ Fy) ∧ ¬x = y)
(8) �x�y�z(((Fx ∧ Fy) ∧ Fz) ⊃ ((x = y ∨ y = z) ∨ z = x))

The first says that there is an F and also another, distinct F. In other words, (7)
says that there are at least two Fs.

Note – by the way of a quick aside – that we can, if we want, similarly trans-
late a proposition like ‘Some philosophers are logicians’ into QL= and retain the
indication that there is more than one logical philosopher, by writing e.g.

(7*) �x�y(((Gx ∧ Hx) ∧ (Gy ∧ Hy)) ∧ ¬x = y)

(8), to continue, says that if we try to pick three things which are all F, then at
least two of the Fs will be identical – i.e., there are at most two Fs. The conjunc-
tion of (7) with (8) will therefore say that there are at least two Fs and at most
two Fs, or in other words that there are exactly two Fs. Or we could equally
well, and more neatly, translate that by

(9) �x�y({(Fx ∧ Fy) ∧ ¬x = y} ∧ �z{Fz ⊃ (z = x ∨ z = y)})

which says that there is an F and another distinct F and any F you choose has to
be one of those. 

Similarly

(10) �x�y�z({((Fx ∧ Fy) ∧ Fz) ∧ ((¬x = y ∧ ¬y = z) ∧ ¬z = x)}
∧ �w{Fw ⊃ ((w = x ∨ w = y) ∨ w = z)})

says that you can find three Fs, all different, and any F you choose is one of them
– in other words there are exactly three Fs.

We can obviously keep going in a similar vein, expressing numerical quantifi-
cations (‘there are at least n Fs’, ‘there are at most n Fs’, ‘there are exactly n Fs’)
using just the familiar quantifiers, the connectives, and identity.

But the link between logic and elementary arithmetic is closer than a mere
point about QL=’s capacity to express numerical quantifiers. For suppose we
abbreviate the forms (4), (9) and (10) respectively by ‘�1vFv’, ‘�2vFv’, ‘�3vFv’.
Then consider the long wff we can then abbreviate as

(11) ({(�2vFv ∧ �1vGv) ∧ ¬�x(Fx ∧ Gx)} ⊃ �3v(Fv ∨ Gv))

What does this say? That if there are two F and one G (and nothing is F and G),
then we have three things that are F-or-G. For example, if there are two things in
my left hand, and one thing in my right, then there are three things in my hands
altogether. Or, as we learnt to say in nursery school, two and one makes three.

So here we find that a bit of simple applied arithmetic is also expressible in
QL=. But more than that, not only is this truth expressible in logical terms, but it
is in fact a q-logical truth: it can be shown, with a bit of effort, to be true on all



Exercises 33 315

q-valuations. Which raises an intriguing, deep and difficult question: just how
much arithmetic is, so to speak, just logic in disguise? 

33.4 Summary
• We add to QL the identity sign – governed by the syntactic rule that a term

followed by ‘=’ followed by a term is an atomic wff – to get QL=.

• The identity sign is governed by the semantic rule that an atomic wff of the
form ‘t1 = t2’ is true on the valuation q iff the terms t1 and t2 have the same
reference according to q.

• QL= has the resources to express more complex quantifiers like ‘Everyone
other than Angharad …’, ‘Exactly three people …’, ‘No one else …’ etc.

Exercises 33

A More Welsh affairs! Using the same translation manual as §33.2, translate
the following into QL=:

1. Angharad and Mrs Jones are one and the same.
2. At least one Welsh speaker loves Bryn.
3. Either Angharad or Bryn is Mrs Jones.
4. Someone other than Bryn loves Angharad.
5. Mrs Jones loves everyone but Angharad.
6. Some girls only love Bryn.
7. Some girls only love people who love them.
8. Only if she loves Bryn is Angharad loved by him.
9. Exactly one girl who loves Bryn speaks Welsh.
10. If Angharad isn’t Mrs Jones, then at least two people love Bryn.

B Take the domain of quantification to be the (positive whole) numbers, and
let ‘m’ denote the number zero, ‘n’ denote the number one, let ‘Mxy’ mean
that x immediately follows y in the number series (equivalently, x is an
immediate successor of y), and ‘Rxyz’ mean that x equals y plus z. Then
translate the following from QL= into natural English:

1. �x�y�z((Mxz ∧ Myz) ⊃ x = y)
2. �y�xMxy
3. ¬�zMmz
4. �x�y�z((Mxy ∧ y = z) ⊃ Mxz)
5. �x�y(Rxym ⊃ x = y)
6. �x�y(Rxyn ⊃ Mxy)
7. �x�y�z(Rxyz � Rxzy)
8. �x(Rxxx ∧ �y(Ryyy ⊃ y = x))
9. �x�y�z(Rzxy ∧ �v0(Rv0xy ⊃ v0 = z))
10. �z�x((Mxz ∧ �y(Myz ⊃ y = x)) ∧ Rznx)
11. �x�y({[((Mxm ∨ Mxn) ∧ (Mym ∨ Myn))] ∧ ¬x = y}

∧ �z{(Mzm ∨ Mzn) ⊃ (z = x ∨ z = y)})



In this chapter, we extend our discussion of the expressive resources of QL= by
considering how ‘definite descriptions’ – i.e. expressions of the kind the F – can
be translated using Russell’s Theory of Descriptions. We will also see how vari-
ous statements about existence can be translated.

34.1 Definite descriptions
Consider the expressions ‘the man in the corner drinking a martini’, ‘the oldest
woman in the world’, ‘the Queen of England’, ‘the smallest prime number’, ‘the
present King of France’, ‘the largest prime number’. Such expressions – more
generally, expressions of the type ‘the (one and only) F’ – are standardly called
definite descriptions. A definite description is a designator, or more accurately it
aims to designate a particular thing. As the last two cases remind us, definite
descriptions may in fact fail to pick out any entity: there may be nothing which
is F, and so nothing which is the F.

Imagine we are at a party. I tell you that a number of professors from different
disciplines are here, and say ‘The philosopher is over there, talking to George’.
Then it certainly seems that you can infer that there is (at least) one philosopher
present.

Generalizing, if a claim of the form ‘The F is G’ is true, then so is the corre-
sponding claim of the form ‘There is at least one F’ (ignoring for the moment
some rogue cases, where G is filled by e.g. ‘non-existent’ or ‘fictitious’). 

Suppose we want to reflect this sort of logical entailment inside QL or QL=.
How can we do that?

Take ‘F’ to mean … is a philosopher and ‘G’ to mean … is talking to George;
and let the domain be, say, people present at the party. And imagine first that we
render the designator ‘the philosopher’ by a simple constant ‘n’. Then the valid
inference ‘The philosopher present is talking to George; so there is at least one
philosopher present’ would get translated by something like ‘Gn ∴ �xFx’, which
is of course not q-valid. The translation of ‘the philosopher’ by the simple con-
stant ‘n’ misses logically relevant structure: it ignores the key fact that the defi-
nite description embeds the predicate ‘philosopher’. 

34

Descriptions and existence
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Moral: if we want to capture the logical behaviour of definite descriptions, we
need some way of translating them into our formalized language that similarly
embeds the relevant predicate.

How shall we proceed? Well, remember that we can express the proposition
that there is one and only one philosopher at the party as follows (compare
§33.3, (4)):

(1) �x(Fx ∧ �y(Fy ⊃ y = x))

Suppose we want to add that this one and only philosopher is talking to George.
Then we can just add another conjunct inside the scope of the quantifier:

(2) �x((Fx ∧ �y(Fy ⊃ y = x)) ∧ Gx)

But now note, the claim (2) – there is one and only one philosopher (here at the
party), and he is talking to George – seems to come to more or less the same as
this: the philosopher (here at the party) is talking to George. For if there is one
and only one philosopher present, there is indeed someone to be the philoso-
pher; and (2) says that that person is talking to George. Note too that (2) pretty
trivially q-entails

(3) �xFx

So the rendition (2) does enable us to reflect in QL= the valid inference from ‘The
philosopher (here at the party) is talking to George’ to ‘There is a philosopher
(here at the party)’.

Instead of (1), we could equally well use 

(1′) �x�y(Fy � y = x)

to render the proposition that there is one and only one philosopher (compare
§33.3, (5)). And hence, instead of (2), we could equally well use the snappier

(2′) �x�y((Fy � y = x) ∧ Gx) or �x(�y(Fy � y = x) ∧ Gx)

to render the proposition that the philosopher is talking to George. 
And a third equivalent way of saying the same is the more long-winded

(2″) ({�xFx ∧ �x�y((Fx ∧ Fy) ⊃ x = y)} ∧ �x(Fx ⊃ Gx))

i.e. ‘There is at least one philosopher and there is at most one philosopher and
whoever is a philosopher is talking to George’. In the next chapter we will
develop the resources to show that (2), (2′) and (2″) are indeed q-equivalent, i.e.
they q-entail each other: but for the moment let’s take this intuitively correct
claim on trust. 

Generalizing – and fixing on translations like (2) or (2′) rather than (2″) for
reasons of brevity – these remarks suggest the following thesis:

We can render a sentence of the kind ‘The F is G’ into QL= by corre-
sponding wffs of the form 

(R) �v((Fv ∧ �w(Fw ⊃ w = v)) ∧ Gv)
(R′) �v�w((Fw � w = v) ∧ Gv)
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(In stating the thesis this way, the metalinguistic ‘F’ and ‘G’ do double duty in a
now familiar way, first holding the place for English expressions, and then hold-
ing the place for the respective translations of these expressions into QL=: but
the intended idea should be clear enough.)

The claim that The F is G can be rendered into QL= by (R) or (R′) is due to
Bertrand Russell. It is part of his famed Theory of Descriptions. But this Theory
says quite a lot more. For Russell also claims: 

• Translating The F is G by (R) is not merely the best available option, given
the limited resources of QL=, but is fully accurate, in the sense of getting it
exactly right about the conditions under which The F is G is true and the
conditions under which it is false.

• Moreover, the QL= translation reflects the true underlying logical form of
sentences involving definite descriptions. Descriptions really are, in some
sense, a kind of quantifier in disguise.

Let’s briefly take these additional Russellian claims in turn.
Plausibly, as we said, if (R) is true, then The F is G is true. But do the two

match on falsehood?
Suppose that there is no F. Then anything of the form ‘�v(Fv ∧ …)’ will be

false. Hence the QL= rendition of The F is G comes out plain false when there is
no F. Would we want to say the same, however, about The F is G? Russell him-
self uses the example ‘The present King of France is bald’. Is this straightfor-
wardly false? Maybe this sort of claim is better described as not even making the
starting line for consideration for being true or false, since the definite descrip-
tion fails to pick out a referent. In other words, we might want to say that the
claim is neither true nor false.

Compare ‘Mr Brixintingle is bald’, where the apparent proper name ‘Mr Brix-
intingle’ is just a fake, invented to look vaguely name-like, but in fact attached to
no-one. That sentence fails to make any determinate claim, and so plausibly
lacks a truth-value. In other words, non-referring names arguably create truth-
value gaps. The anti-Russellian suggestion is that non-referring descriptions do
so too. And if that is right, ‘The present King of France is bald’ – neither true nor
false – is not equivalent to ‘There is one and only one King of France, and he is
bald’, or to a rendition like (2) – which is straightforwardly false.

Now, it is agreed on all sides that a claim of the form The F is G can fail to be
true in more than one way. It can fail (a) because there isn’t an F; it can fail (b)
because there are too many Fs (so we shouldn’t talk of the F); it can fail (c) when
there is a unique F but it isn’t G. The Russellian will claim that his rendition (R)
captures this very nicely: The F is G can be false in three different ways, depend-
ing on which of the three conjuncts in the analysis (R) isn’t satisfied. The anti-
Russellian disagrees, and will instead say that only in case (c) is the claim actu-
ally false; in cases (a) and (b) The F is G is neither true nor false.

But what does this disagreement really come to? How do we decide such
issues?
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It is very unclear what to say, and the principles that should guide debate here
are intensely disputed. We certainly can’t pursue these matters any further in this
book. We just have to note that there is a minefield hereabouts!

There is another minefield around claims to do with ‘logical form’. Suppose
that (R) does get it right about when The F is G is true and when it is false. It
remains quite unclear what cash-value we can give to the thesis that (R) some-
how reveals the true semantic structure of vernacular claims involving definite
descriptions. And it is again quite obscure how we are to evaluate such claims.
In Chapter 36, we’ll say just a little more that is germane to these vexed issues,
but without any hope of resolving them. 

So for the moment let’s set aside both of Russell’s more ambitious claims, and
stick to basics. This much, at any rate, is uncontroversial: given the limited
resources of QL=, wffs of the Russellian form (R), (R′), or their equivalents, are
the best we can do in rendering sentences involving definite descriptions. We’ll
therefore use the schemas (R) or (R′) henceforth, whenever we need to translate
descriptions.

34.2 Descriptions and scope
One arguable resemblance between definite descriptions and quantifiers (not in
itself enough to warrant treating the first as a disguised form of the second, but a
suggestive resemblance none the less) is that descriptions exhibit what plausibly
can be construed as scope phenomena (compare §21.3). For example, just as
ordinary-language quantifiers mixed with negation can produce scope ambigu-
ity, so ordinary-language definite descriptions mixed with negation can produce
ambiguity. 

Suppose we are discussing famous baldies. You challenge me to name ten. I
reel off a list beginning

Yul Brynner is bald,
Bruce Willis is bald,
the actor who plays ‘Captain Picard’ in Star Trek is bald,
the King of France is bald, 

and you interrupt, saying

(A) No! That last one’s not right. The King of France isn’t bald – he 
doesn’t even exist! 

Your protest is surely correct, and the way you have phrased it seems natural
enough. But now compare a second occasion. This time we are discussing people
who aren’t bald. So this time I reel off a list of famous non-baldies:

The Queen of England isn’t bald,
George W. Bush isn’t bald,
Bill Clinton isn’t bald,

(B) the King of France isn’t bald,

and again you interrupt, this time saying
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No! That’s not right. You can’t say that – he doesn’t even exist! 

Again, you are surely right. But how can it be that my assertion (B) is flawed,
when you, using exactly the same words in (A), were saying something correct?

We will have to discern an ambiguity. ‘The King of France isn’t bald’ can be
used to express two different claims, one true, the other false. And Russell’s
Theory of Descriptions gives us a very neat diagnosis of the apparent ambiguity
here; it treats it as a straightforward scope ambiguity. On one reading, the nega-
tion has wide scope, governing the whole sentence, and the resulting message
can be rendered

(1) ¬�x((Fx ∧ �y(Fy ⊃ y = x)) ∧ Gx)

This captures the truth that you asserted in (A). On the other reading, the nega-
tion has narrow scope, governing just the predicate ‘bald’, and the resulting mes-
sage can be rendered

(2) �x((Fx ∧ �y(Fy ⊃ y = x)) ∧ ¬Gx)

And this is the falsehood which I apparently asserted in (B).
Here’s another case of scope ambiguity, a modal case worth mentioning even

though it takes us beyond the resources of pure QL=. Consider:

(3) The President might have been a woman.

This again has two readings. Are we saying there’s a possible scenario in which a
different political history leads to a President in that scenario who is a woman?
Or are we saying of the actual President, that he (that very person) might have
been a woman – contemplating some kind of sex change, perhaps? If we imagine
adding a modal operator ‘�’ to be read as ‘It might have been the case that’,
then the Russellian will represent this ambiguity as between giving ‘�’ wide or
narrow scope, along the following lines:

(4) ��x((Fx ∧ �y(Fy ⊃ y = x)) ∧ Gx)

or

(5) �x((Fx ∧ �y(Fy ⊃ y = x)) ∧ �Gx)

34.3 More translations
A few more quick examples. We’ll use the translation manual

‘a’ means Angharad
‘b’ means Bryn
‘m’ means Mrs Jones
‘F’ means … speaks Welsh
‘G’ means … is a girl
‘L’ means … loves …
‘M’ means … is taller than …

and where the domain of quantification again consists of human beings, and
translate the following into QL=:
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1. The Welsh speaker who loves Mrs Jones is taller than her.
2. Bryn loves the girl who loves him.
3. Bryn only loves the girl who loves him.
4. The tallest girl speaks Welsh.
5. The girl who loves Bryn loves the Welsh speaker who loves

Angharad.

1. The first involves the definite description ‘The Welsh speaker who loves
Mrs Jones’, and ‘x is a Welsh speaker who loves Mrs Jones’ is translated by
‘{Fx ∧ Lxj}’. So following the Russellian schema (R), the complete transla-
tion will run

�x(({Fx ∧ Lxj} ∧ �y({Fy ∧ Lyj} ⊃ y = x)) ∧ Mxj)

If we’d used schema (R′), we’d get the brisker

�x�y(({Fy ∧ Lyj} � ⊃ y = x) ∧ Mxj)

2. This is similar: the definite description this time is ‘The girl who loves
Bryn’, and ‘x is a girl who loves Bryn’ is translated by ‘{Gx ∧ Lxb}’. Using
(R) again we arrive at

�x(({Gx ∧ Lxb} ∧ �y({Gy ∧ Lyb} ⊃ y = x)) ∧ Lbx)

We’ll leave the (R′)-style version to be done as an exercise.

3. To translate this, we need to add that for anyone other than this girl, x,
Bryn does not love x; or equivalently, anyone he does love is none other
than x again. Whence

�x[(({Gx ∧ Lxb} ∧ �y({Gy ∧ Lyb} ⊃ y = x)) ∧ Lbx) ∧ �z(Lbz ⊃ z = x)]

4. The tallest girl is the girl such that she is taller than all other girls. Now, ‘y
is a girl who is taller than all other girls’ can be rendered ‘{Gy ∧ �z((Gz ∧
¬z = y) ⊃ Mzy)}. Plugging that into the simpler (R′) schema, we get

�x�y(({Gy ∧ �z((Gz ∧ ¬z = y) ⊃ Mzy)} � y = x) ∧ Fx)

This time, we’ll leave the longer (R)-style version as an exercise.

5. Our last example involves two descriptions. Abbreviate ‘loves the Welsh
speaker who loves Angharad’ by ‘C’. And to reduce clutter, let’s again use
schema (R′) straight off. Then we have, as half-way translations,

The girl who loves Bryn is C
� �x�y(({Gy ∧ Lyb} � y = x) ∧ Cx)

And (using different variables, so we don’t get into a tangle),

Cx � �z�w(({Fw ∧ Lwa} � w = z) ∧ Lxz)

So, if we plug the one into the other, we get

�x�y(({Gy ∧ Lyb} � y = x) ∧ �z�w(({Fw ∧ Lwa} � w = z) ∧ Lxz))

The last translation does the trick! However, the messiness of this QL= rendition
compared to the relative simplicity of the original English might very arguably
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begin to cast some doubt on the Russellian thesis that the Theory of Descriptions
captures the true underlying ‘logical form’ of the vernacular claim.

34.4 Existence statements
We’ll consider three types of existential statement:

• examples like ‘Tame tigers exists’ and ‘Unicorns don’t exist’, i.e. statements
of the kind ‘Fs do/don’t exist’, with F filled by some more or less complex
specification of a kind of thing;

• examples like ‘The Queen of England exists’ and ‘The King of France
doesn’t exist’, i.e. statements of the kind ‘The F does/doesn’t exist’, with
‘The F’ a definite description;

• examples like ‘Gwyneth Paltrow exists’ (she’s a living breathing actress)
and ‘Lois Lane doesn’t exist’ (not really, she’s just a fictional character).

How do we render such claims into QL=?
The first case is easy. ‘Tame tigers exist’ is equivalent to ‘There are some tame

tigers’, so can be rendered as 

(1) �x(Fx ∧ Gx)

with the obvious interpretation of the predicates. Or if you want explicitly to
capture the thought that there is more than one, as signalled by the English plu-
ral, then you can write:

(2) �x�y({(Fx ∧ Gx) ∧ (Fy ∧ Gy)} ∧ ¬x = y)

Likewise, ‘Unicorns don’t exist’, which is equivalent to ‘It is not the case that
there are some unicorns’, can be rendered by 

(3) ¬�xHx

What about ‘The Queen of England exists’ and ‘The present King of France
doesn’t exist’?

The simplest suggestion is this. To say that the Queen of England exists is just
to say that there is one and only one (present) Queen of England. Rendering that
into QL= (using ‘F’ for … is a Queen of England), we’ll get 

(4) �x(Fx ∧ �y(Fy ⊃ y = x))

And if we negate the whole thing – 

(5) ¬�x(Fx ∧ �y(Fy ⊃ y = x))

– we get something which, changing the translation manual, will render the
claim that the present King of France does not exist.

Unsurprisingly, then, existence claims involving predicative expressions and
definite descriptions get rendered into QL= using the existential quantifier. But
what about the third type of existence claim, the type involving names? 

Take that interpretation of QL= which reads ‘m’ as a name of Gwyneth Pal-
trow. Can’t we simply express the thought that Gwyneth exists, i.e. that there is
indeed someone who is Gwyneth, as follows? – 
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(6) �x x = m

At first sight, that looks satisfactory; but on reflection, there’s a problem. For
note, (6) is a q-logical truth!

Why so? Well, consider any q-valuation q of the vocabulary in ‘�x x = m’. By
definition, q has to assign an object m to be the reference of ‘m’. And so q will
always have an extension q+ which also assigns m to the variable ‘x’; hence q
will always have an extension q+ which makes ‘x = m’ true. So, by definition,
‘�x x = m’ is true on any q-valuation of its vocabulary. But if ‘�x x = m’ is a q-
logical truth, then (we might surmise) it can’t really be a ideal rendition of
‘Gwyneth Paltrow exists’ (which of course isn’t a logical truth). 

To press the point further, consider the claim ‘Lois Lane doesn’t exist’. That’s
another truth. But we can’t render it into QL= by writing something like 

(7) ¬�x x = n

since (7) is false on all q-valuations of its vocabulary. 
Of course, these results about the status of (6) and (7) directly reflect the stip-

ulation that q-valuations assign a reference to any constant that is in play. By
contrast, ordinary language has ‘empty names’, names which fail to pick out an
object, yet which have a role in the language and don’t produce mere nonsense. In
the Fregean terminology of §31.1, it seems that ordinary names can have sense
even if that lack reference. That is why it is contentful to be told that Lois Lane or
Santa Claus don’t exist, but that there is such a person as Gwyneth. 

There are two reactions we can have to all this. 

• One line is to proceed to extend QL and QL= to allow meaningful but non-
denoting names. This yields a so-called free logic, i.e. a logic free of certain
existence assumptions.

• The other line is to cling to the simplicity of QL/QL= (on the grounds that
there is, after all, a sense in which non-denoting names are linguistically
defective when used in serious, fact-stating discourse, and we are in the
business of constructing a logically ideal language). 

Now, adopting a free logic does involve significant revisions and complications;
so, rightly or wrongly, the second reaction is the standard one. But if we do stick
to the standard semantic story about QL/QL=, then we must be aware of the
implications of the built-in assumption that every constant we actually use has
an object as its q-value, i.e. has a reference. 

To summarize: in our languages QL and QL=, we require any constant we use
to have a reference in the domain of discourse. The logical truths of those lan-
guages are then truths that are guaranteed once that assumption of reference is
in place. In particular, a wff like ‘�x x = n’ always comes out true on a q-valua-
tion. In this respect, there is arguably significant slippage between the semantic
nature of some QL= wffs and the apparently corresponding ordinary language
sentences. And because of that, there will be some q-valid (and hence valid) QL=

arguments whose most tempting English renditions are not valid. (Compare the
argument of §28.4.)
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A quick final remark. Apprentice philosophers often come across the slogan
‘Existence isn’t a predicate’. If this is read as saying that a language can’t have a
predicative expression (i.e. an expression with one slot waiting to be filled up by
a designator) which applies to all the things assumed to exist in its domain of
quantification, then the slogan misleads. In QL=, ‘�x x = …’ would do the job
perfectly: it is true of everything in the domain. The same expression works just
as well in some free logics too. But if the philosophical slogan is intended to
bring out the close relation between vernacular existence talk and the use of
something fundamentally different from an ordinary predicate, namely the oper-
ation of existential quantification, then the slogan is apt.

34.5 Summary
• Sentences of the form The F is G are best rendered into QL= by a corre-

sponding wff of the form  ‘�v((Fv ∧ �w(Fw ⊃ w = v)) ∧ Gv)’, or equiva-
lently by ‘�v�w((Fw � w = v) ∧ Gv)’.

• This uncontentious claim, part of Russell’s Theory of Descriptions, should
be distinguished from Russell’s much more contentious claims that this ren-
dition gets the truth-conditions of The F is G exactly right, and moreover
in some sense reveals the true logical form of vernacular statements involv-
ing descriptions.

• However, Russell’s analysis plausibly diagnoses certain apparent ambigui-
ties involving descriptions as being scope ambiguities.

• Existential claims are naturally rendered using the existential quantifier
(though there are problems about cases involving proper names, given the
assumption built into the semantics of QL and QL= that names always
have referents).

Exercises 34
Yet more Welsh affairs! Using the same translation manual as §34.3, translate
the following into QL=:

1. The Welsh speaker loves Mrs Jones.
2. The girl who loves Angharad does not loves Bryn.
3. Angharad loves the girl who loves Bryn.
4. The Welsh speaker who loves Mrs Jones is either Angharad or

Bryn.
5. Someone other than the girl who loves Bryn is taller than Ang-

harad.
6. The one who loves Angharad is the one she loves.
7. Only if she loves him does Bryn love the girl who speaks Welsh.
8. The girl other than the girl who loves Bryn is Angharad.
9. The shortest Welsh speaker loves Bryn.
10. The shortest Welsh speaker loves the tallest Welsh speaker.



We now expand our treatment of quantifier trees to cover arguments involving
identity, expressed in QL=. We first introduce and motivate two rules dealing
with wffs involving identity. We explore some introductory examples and also
show that these rules can be used to demonstrate that the basic laws of identity
are q-logical truths. Then we consider some examples involving definite descrip-
tions and numerical quantifiers.

35.1 Leibniz’s Law again
Take the argument: ‘Bertie is clever. Bertie is none other than Russell. So Russell
is clever.’ That’s valid. Translating, we have

A Fm, m = n ∴ Fn

Starting a signed tree in the standard way, we suppose that there is a valuation q
such that

(1)  Fm ⇒q T
(2) m = n ⇒q T
(3) ¬Fn ⇒q T

How are we to proceed now? Consider again Leibniz’s Law, in the form we met
in §32.5:

(LL′) If ‘a’ and ‘b’ are functioning as co-referential designators in the
claims C(…a…a…) and C(…b…b…), and also the context C
expresses the same property in each case, then these claims say the
same about the same thing, and so must have the same truth-value. 

We noted that, in English, different occurrences of the same predicate need not
attribute the same property (remember the behaviour of ‘… is so-called because
of his size’). But in our tidy artificial language QL= we just don’t have that trou-
blesome kind of predicate. And our official semantics indeed implies

(A) If ‘m’ and ‘n’ are co-referential designators according to q, then
the claims ‘Fm’ and ‘Fn’ must have the same truth-value on q.

Further, it is immediate that

35

Trees for identity
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(B) The atomic wff ‘m = n’ is true on the valuation q just if ‘m’ and
‘n’ are assigned the same q-values by q.

(That follows from (Q0+) in §33.1.) Putting (A) and (B) together, they imply

(C) If the claims ‘Fm’ and ‘m = n’ are true on the valuation q, then
‘Fn’ must also be true on q.

Hence, given (1) and (2), we can appeal to (C) and continue our tree-argument

(4) Fn ⇒q T

which immediately contradicts (3), and our tree closes.
We can evidently generalize the (A)–(B)–(C) reasoning; and this warrants the

following corresponding rule for building unsigned trees:

(L) If W1 is of the form C(…m…m…), involving one or more occur-
rences of the constant m, and W2 is of either the form m = n or the
form n = m, then we can add C(…n…n…), formed by substituting
some or all of the occurrences of m in W1 by occurrences of n, to the
foot of any open branch containing both W1 and W2. Schematically, 

C(m)
m = n or n = m

|
C(n)

Two comments on this:

• (L) differs from all our previous rules for tree-building in taking two wffs
as input. The inputs can appear, of course, in either order earlier on the
branch. Since the conclusion added to the branch does not exhaust the
combined contents of the input wffs, we don’t check them off.

• Note that previous rules involving substitution – the universal quantifier
instantiation rule (�), the existential instantiation rule (�) – tell us to uni-
formly replace every occurrence of one symbol (a variable) with another
symbol (a constant). By contrast, our rule (L) can be more permissive. It
allows us to replace one or more occurrences of one constant with another.
So take, for example, the wff

�x(Raoa ⊃ Fa)

We can focus on the middle occurrence of ‘a’, and take all ‘�x(Rao_ ⊃ Fa)’
to be ‘context’. Then, given ‘a = b’ and applying rule (L), we can infer

�x(Raob ⊃ Fa)

Alternatively, we can focus of the first and last ‘a’s, take the context to be
‘�x(R_oa ⊃ F_)’, and use (L) to infer

�x(Rboa ⊃ Fb).

Or, of course, we can infer the result of simultaneously replacing all three
occurrences of ‘a’. Each inference is plain valid.
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So now let’s take some simple examples of our rule (L) in operation.
First, consider the argument

B Either Alice or Mrs Brown is the winner. Alice isn’t the winner. So
Alice isn’t Mrs Brown.

It is trivial to render this into QL=, and the resulting tree is equally straightfor-
ward:

(1)  (Fa∨ Fb) √
(2)  ¬Fa
(3) ¬¬a = b √
(4) a = b

(5) Fa Fb
(6) ✼ Fa

✼

Here, the only step worth remarking on is (6), where we have used (L) to derive
‘Fa’ from (5) ‘Fb’ and (4) ‘a = b’. The tree closes, hence the intuitively valid argu-
ment (B) is, as we’d expect, q-valid.

For another example, consider the following:

C Only Russell is a great philosopher. Bertrand is a great philoso-
pher who smokes. Hence Russell smokes.

Put ‘F’ for great philosopher, ‘G’ for smokes, etc., and we can render this:

 (Fm ∧ �x(Fx ⊃ x = m)), (Fn ∧ Gn) ∴ Gm

A tree can then be constructed as follows:

(1)  (Fm ∧ �x(Fx ⊃ x = m)) √
(2)  (Fn ∧ Gn) √
(3)  ¬Gm
(4) Fm
(5) �x(Fx ⊃ x = m)
(6) Fn
(7) Gn
(8) (Fn ⊃ n = m) √

(9) ¬Fn n = m
(10) ✼ Gm (by (L), from 7, 9)

✼

(Check that you follow each step.) Again we have a valid argument 
What about the simple inference

D George is Mr Orwell; Mr Orwell is Eric Blair; hence George is
Eric Blair?

With the obvious translation scheme, the tree for this inference is
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(1)  m = n
(2)  n = o
(3)  ¬m = o
(4) m = o (by (L), from 1, 2)

✼

To see that the move to (4) is warranted, think of ‘m = n’ as of the form C(n),
with the context C being ‘m = _’; and then from C(n) and ‘n = o’ we infer the
corresponding C(o), i.e. ‘m = o’.

Generalizing that last example, recall the transitivity law

(Tran) �x�y�z((x = y ∧ y = z) ⊃ x = z)

This is, as we’d expect, a q-logical truth. But how can we use a tree to show this?
We start the tree with the negation of (Tran) and aim for absurdity. 

(1) ¬�x�y�z((x = y ∧ y = z) ⊃ x = z) √
(2)  �x¬�y�z((x = y ∧ y = z) ⊃ x = z) √
(3)  ¬�y�z((m = y ∧ y = z) ⊃ m = z) √
(4) �y¬�z((m = y ∧ y = z) ⊃ m = z) √
(5) ¬�z((m = n ∧ n = z) ⊃ m = z) √
(6) �z¬((m = n ∧ n = z) ⊃ m = z) √
(7) ¬((m = n ∧ n = o) ⊃ m = o) √
(8) (m = n ∧ n = o) √
(9)  ¬m = o
(10) m = n
(11) n = o
(12) m = o (by (L), from 10, 11)

✼

The moves up to line (11) are all automatic. We drive in (1)’s initial negation sign
to get (2), where we can do nothing else but instantiate the existential quantifier
to get (3). That pattern repeats twice again until we get to (8), when we apply the
familiar connective rules to get us to (9), (10) and (11). The final step is exactly
as in the previous tree.

Next, consider the following inference:

E Only Angharad and Bryn love Mrs Jones; someone who loves Mrs
Jones speaks Welsh; so either Angharad or Bryn speaks Welsh.

For simplicity, let’s use the simple ‘Gx’ to render ‘x loves Mrs Jones’ (for the inter-
nal structure of ‘… loves Mrs Jones’ isn’t actually used in the argument, so we
needn’t explicitly represent it). Then the argument goes into QL= as

((Ga ∧ Gb) ∧ �x(Gx ⊃ (x = a ∨ x = b))), �x(Gx ∧ Fx) ∴ (Fa∨ Fb)

The corresponding closed tree starts more or less automatically

(1) ((Ga ∧ Gb) ∧ �x(Gx ⊃ (x = a ∨ x = b))) √
(2)  �x(Gx ∧ Fx)
(3)  ¬(Fa∨ Fb) √
(4) (Ga ∧ Gb)
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(5) �x(Gx ⊃ (x = a ∨ x = b))
(6) ¬Fa
(7) ¬Fb

Next, following our rule of thumb ‘instantiate-existentials-before-universals’, we
check off (2) and instantiate with a new name to continue as follows:

(8) (Gc ∧ Fc) √
(9) Gc
(10)  Fc
(11) (Gc ⊃ (c = a ∨ c = b)) √

(12) ¬Gc (c = a ∨ c = b) √

(13) c = a c = b
(14) Fa Fb

✼ ✼

Here, on the left branch, ‘Fa’ is derived from (10) and (13); similarly for ‘Fb’ on
the right branch.

Finally in this section, let’s partially fulfil the promise we made in §33.3 to
show that the following wffs are equivalent: 

F �x(Fx ∧ �y(Fy ⊃ y = x))
G �x�y(Fy � y = x)

We will give a tree to show that F q-entails G:

(1)  �x(Fx ∧ �y(Fy ⊃ y = x)) √
(2) ¬�x�y(Fy � y = x) √
(3)  �x¬�y(Fy � y = x)
(4) (Fa ∧ �y(Fy ⊃ y = a)) √
(5) Fa
(6) �y(Fy ⊃ y = a)

So far, so automatic (we dealt with the negated quantifier at (2), and then instan-
tiated the only existential quantifier). We now instantiate (3) with the name ‘a’:

(7) ¬�y(Fy � y = a) √
(8) �y¬(Fy � y = a) √
(9) ¬(Fb � b = a) √
(10) (Fb ⊃ b = a) √ (from 6)

(11)  ¬Fb  b = a

(12) Fb ¬Fb Fb ¬Fb
(13) ¬b = a b = a ¬b = a b = a
(14) ✼ ¬Fa ✼ ¬Fa
(15) ✼ ✼

✼

� (from 9)
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We use (L) at line (14) to derive ‘¬Fa’ from the previous two wffs on the path:
the other paths close off without appealing to (L). We will leave it as an exercise
to show that, conversely, G q-entails F.

35.2 Self-identity
Consider next the law of self identity 

(Ref) �x x = x

This is again a q-logical truth. How can we construct a tree to show this? As
usual, by assuming it is false on an evaluation and deriving an absurdity. Com-
mencing the tree, we get:

(1)  ¬�x x = x √
(2) �x¬x = x √
(3)  ¬a = a

Now, we haven’t yet exposed a formal contradiction in the sense of a pair of
wffs of the form W and ¬W. Still, getting to something of the form ¬n = n is
surely just as bad! For plainly this is itself an outright logical absurdity. Nothing
can possibly fail to be identical to itself. So let’s adopt a new rule for closing
branches, which treats denials of self-identities on a par with contradictions.

Henceforth, then, our rules for QL= trees will be the QL rules, together with
the new rule (L) for extending trees, and now also our new rule for closing
branches – so we need to replace the structural rule (2) given in §29.1 with this:

(2=) Inspect any not-yet-closed path down from the top of the tree to see
whether it involves either an explicit contradiction (i.e. for some W, it
contains both W and also the corresponding formula ¬W), or a wff of
the form ¬n = n. If it does, then we close that path with a star as an
absurdity marker, and ignore it henceforth. 

With our last new rule in place, we can also prove e.g. that identity obeys the
symmetry law 

(Sym) �x�y(x = y ⊃ y = x).

For consider the following tree:

(1)  ¬�x�y (x = y ⊃ y = x) √
(2) �x¬�y (x = y ⊃ y = x) √
(3)  ¬�y (a = y ⊃ y = a) √
(4) �y¬(a = y ⊃ y = a) √
(5) ¬(a = b ⊃ b = a) √
(6) a = b
(7) ¬b = a
(8) ¬b = b (by (L) from 6, 7)

✼

Here, think of ‘¬b = a’ at (7) as being formed from a frame C (i.e. ‘¬b = _’) filled
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by ‘a’, and then from C(a) and ‘a = b’ we get C(b) by Leibniz’s Law. We can close
the tree as we’ve arrived at an absurd denial of self-identity.

Two comments on this last proof. First, note that the wffs at lines (6) and (7),
i.e. ‘a = b’ and ‘¬b = a’ are not a formal contradiction: for they are not strictly a
pair of the form W and ¬W. Second, we could have introduced a symmetry rule
for identity, allowing us to move from a wff of the form m = n to one of the cor-
responding wff n = m. With that rule in play, we could have completed the last
tree by applying the symmetry rule to (6) to derive 

(8′) b = a
✼

and the tree would have closed off without appeal to our new closure rule. But
with our new closure rule in play, an explicit symmetry rule would be redundant.

For another simple example, take the argument

H Only Bertrand is a great philosopher. Russell is a great philo-
sopher. Hence Bertrand is Russell.

With an obvious rendition of the argument into QL=, the tree starts

(1)  (Fm ∧ �x(Fx ⊃ x = m)) √
(2) Fn
(3)  ¬m = n √
(4) Fm
(5) �x(Fx ⊃ x = m)
(6) (Fn ⊃ n = m) √

(7) ¬Fn n = m
(8) ✼ ¬m = m (by (L) from 3, 7)

✼

Here we have completed the right-hand branch by dancing the same kind of
two-step as before – i.e. we have treated ‘¬m = n’ as C(n), and used ‘n = m’ to
infer the corresponding C(m), and then used our new structural principle for
closing trees.

35.3 Descriptions again
In this section, we’ll consider some arguments involving the use of Russell’s the-
ory of descriptions. Consider firstly

I The author of the Iliad wrote the Odyssey. Homer wrote the Iliad.
Hence, Homer wrote the Odyssey.

Taking ‘the author of the Iliad’ to mean ‘the person who wrote the Iliad’, this is
a valid argument. 

Let’s use ‘F’ to render ‘wrote the Iliad’, ‘G’ for ‘wrote the Odyssey’. Then the
argument can be rendered

�x((Fx ∧ �y(Fy ⊃ y = x)) ∧ Gx), Fm ∴ Gm
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And the corresponding tree is

(1)  �x((Fx ∧ �y(Fy ⊃ y = x)) ∧ Gx) √
(2) Fm
(3)  ¬Gm
(4) ((Fa ∧ �y(Fy ⊃ y = a)) ∧ Ga) √
(5) (Fa ∧ �y(Fy ⊃ y = a)) √
(6) Ga
(7) Fa
(8) �y(Fy ⊃ y = a)
(9) (Fm ⊃ m = a) √

(10)  ¬Fm m = a
(11) ✼ ¬Gm (by (L) from 3, 10)

✼

Note, by the way, that had we rendered the designator ‘the author of the Iliad’
by a simple unstructured name ‘n’ – so the first premiss is translated ‘Fn’ – we
wouldn’t have been able to prove validity.

Another example:

J Homer, and no-one else, wrote the Iliad. Homer wrote the Odys-
sey. Hence, the author of the Iliad wrote the Odyssey.

Translating, using the same key, we can start the tree

(1)  (Fm ∧ �x(Fx ⊃ x = m))
(2) Gm
(3)  ¬�x((Fx ∧ �y(Fy ⊃ y = x)) ∧ Gx)

Unpacking (1) and eliminating the negated quantifier in (3), we immediately get

(4) Fm
(5)  �x(Fx ⊃ x = m)
(6)  �x¬((Fx ∧ �y(Fy ⊃ y = x)) ∧ Gx)

Instantiating the universal quantification in (6) with ‘m’ – what else? –  we natu-
rally continue

(7) ¬((Fm ∧ �y(Fy ⊃ y = m)) ∧ Gm)) √

(8)  ¬(Fm ∧ �y(Fy ⊃ y = m)) √ ¬Gm

(9) ¬Fm ¬�y(Fy ⊃ y = m)
(10) ✼

Now, we’ve almost got an explicit contradiction between the right-hand wff at
(9) and (5): but not quite. ‘�x(Fx ⊃ x = m)’ and ‘¬�y(Fy ⊃ y = m)’ involve differ-
ent variables and aren’t strictly speaking a pair of the form W and ¬W. If we’d
had the foresight to render the initial premiss as ‘(Fm ∧ �y(Fy ⊃ y = m))’ – which

✼
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would have been quite legitimate – then we would have had an explicit contra-
diction by line (9). As things are, we have to continue as follows:

(10) �y¬(Fy ⊃ y = m) (from 9).
(11) ¬(Fa ⊃ a = m)

Instantiating (5) we have

(12) (Fa ⊃ a = m)
✼

And we are done. Note that, in this last case, we haven’t had to use the special
rules for identity to show this argument is valid. This is sometimes the way: use
of the identity relation may be naturally involved in the translation of the prem-
isses and conclusion of an argument; but it may so happen that showing the
resulting inference is q-valid only uses the fact that it is a relation and not the
further special logical properties of this relation.

Here, though, is another case where we do have to appeal to the special laws
of identity. Consider

K The author of the Iliad wrote the Odyssey. Hence at most one
person wrote the Iliad. 

According to Russell’s Theory of Descriptions, the premiss is only true if there is
a unique author, and is false if there is more than one author. So, on Russell’s
view, the argument is a valid one. Well, be that as it may about the vernacular
argument, its closest rendition into QL= is certainly q-valid. For consider:

(1)  �x((Fx ∧ �y(Fy ⊃ y = x)) ∧ Gx)
(2)  ¬�x�y((Fx ∧ Fy) ⊃ x = y) √
(3)  �x¬�y((Fx ∧ Fy) ⊃ x = y) √
(4) ¬�y((Fa ∧ Fy) ⊃ a = y) √
(5) �x¬((Fa ∧ Fy) ⊃ a = y) √
(6) ¬((Fa ∧ Fb) ⊃ a = b) √
(7) (Fa ∧ Fb)
(8) ¬a = b
(9) Fa
(10) Fb

So far, we’ve unpacked (2) in automatic steps. Let’s now instantiate (1), using yet
another new name, check it off and unpack the resulting triple conjunction:

(11) ((Fc ∧ �y(Fy ⊃ y = c)) ∧ Gc) √
(12) (Fc ∧ �y(Fy ⊃ y = c)) √
(13) Gc
(14) Fc
(15) �y(Fy ⊃ y = c)

Where now? Well, we plainly need to extract information from this last univer-
sal quantification. It would be pretty pointless to instantiate it with respect to ‘c’
(why?). But we have two other names to play with, yielding
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(16) (Fa ⊃ a = c) √
(17) (Fb ⊃ b = c) √

(18)  ¬Fa a = c

(19) ¬Fb b = c
✼

The right-hand branch is still open: what is there left to make use of? Well, note
that at (8) we have ‘¬a = b’, and now on the same branch we have both ‘a = c’,
and ‘b = c’, and those wffs are clearly an inconsistent triad. Take ‘a = c’ as C(c),
and use the ‘b = c’ to derive C(b) by (L), and the branch closes thus …

(20) a = b
✼

We can similarly, and rather more simply, show that the following two argu-
ments are also valid:

L The author of the Iliad wrote the Odyssey. Hence at least one
person wrote the Iliad. 

M The author of the Iliad wrote the Odyssey. Hence whoever wrote
the Iliad wrote the Odyssey.

Those cases are left as exercises. But we will demonstrate the validity of

N A least one person wrote the Iliad. At most one person wrote the
Iliad. Whoever wrote the Iliad wrote the Odyssey. Hence, the
author of the Iliad wrote the Odyssey.

The tree starts straightforwardly enough, following our familiar rules of thumb:

(1) �xFx √
(2) �x�y((Fx ∧ Fy) ⊃ x = y)
(3) �x(Fx ⊃ Gx)
(4)  ¬�x((Fx ∧ �y(Fy ⊃ y = x)) ∧ Gx) √
(5) �x¬((Fx ∧ �y(Fy ⊃ y = x)) ∧ Gx)
(6) Fa
(7) ¬((Fa ∧ �y(Fy ⊃ y = a)) ∧ Ga) √

(8)  ¬(Fa ∧ �y(Fy ⊃ y = a)) ¬Ga

So far, so automatic. The right hand branch quickly closes, for we have

(9) (Fa ⊃ Ga) (from 3)

(10) ¬Fa Ga
✼ ✼

Meanwhile, the left-hand branch can be continued from (8) like this:

✼
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(9) ¬Fa ¬�y(Fy ⊃ y = a) √ (from 8)
(10) ✼ �y¬(Fy ⊃ y = a) √
(11) ¬(Fb ⊃ b = a) √
(12) Fb
(13) ¬b = a

Inspection reveals that we haven’t yet made any appeal to (2). So let’s instantiate
it with respect to the two names in play, thus:

(14) �y((Fb ∧ Fy) ⊃ b = y) (from 2)
(15) ((Fb ∧ Fa) ⊃ b = a) √

(16) ¬(Fb ∧ Fa) b = a

(17) ¬Fb ¬Fa
✼ ✼

Once more, we arrive at a closed tree.
Note, by the way, that we could put together the proofs for examples K to M

to show that 

(R) �x((Fx ∧ �y(Fy ⊃ y = x)) ∧ Gx)

entails each of the conjuncts in the more long-winded triple conjunction

({�xFx ∧ �x�y((Fx ∧ Fy) ⊃ x = y)} ∧ �x(Fx ⊃ Gy))

And the proof for N shows that this triple conjunction entails (R) – thus justify-
ing the claim (§34.1) that these two forms of Russell’s Theory of Descriptions
for rendering ‘The F is G’ into QL= are equivalent. 

35.4 ‘One and one make two’
Finally in this chapter, consider the following inference:

O �x(Fx ∧ �y(Fy ⊃ y = x)), �x(Gx ∧ �y(Gy ⊃ y = x)), ¬�x(Fx ∧ Gx)
∴ �x�y(([{Fx ∨ Gx} ∧ {Fy ∨ Gy}] ∧ ¬x = y) ∧ 

�z[{Fz ∨ Gz} ⊃ {z = x ∨ z = y}])

which renders ‘There is exactly one F, there is exactly one G, nothing is both F
and G, so there are exactly two things which are F or G’ (i.e. one thing and
another thing make two altogether).

This inference is provably q-valid. To warrant O via a tree requires a little
effort, but it is fun (of a kind) to show that it can be done. We start:

(1) �x(Fx ∧ �y(Fy ⊃ y = x))
(2) �x(Gx ∧ �y(Gy ⊃ y = x))
(3) ¬�x(Fx ∧ Gx)
(4)  ¬�x�y(([{Fx ∨ Gx} ∧ {Fy ∨ Gy}] ∧ ¬x = y)∧ 

�z[{Fz ∨ Gz} ⊃ {z = x ∨ z = y}])

✼
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First, then, eliminate the two negated quantifiers, and then instantiate the two
existential quantifiers (what else?):

(5) �x¬(Fx ∧ Gx)
(6) �x¬�y(([{Fx ∨ Gx} ∧ {Fy ∨ Gy}] ∧ ¬x = y) ∧ 

�z[{Fz ∨ Gz} ⊃ {z = x ∨ z = y}])
(7) (Fa ∧ �y(Fy ⊃ y = a))
(8) (Gb ∧ �y(Gy ⊃ y = b))

Now we might as well unpack the conjunctions in (7) and (8):

(9) Fa
(10) �y(Fy ⊃ y = a)
(11) Gb
(12) �y(Gy ⊃ y = b)

Next, instantiate (6) with a name, and deal with the resulting negated wff.

(13) ¬�y(([{Fa∨ Ga}∧ {Fy∨ Gy}]∧¬a = y)∧ �z[{Fz∨ Gz}⊃ {z = a ∨ z = y}])
(14) �y¬(([{Fa∨ Ga}∧ {Fy∨ Gy}]∧¬a = y)∧ �z[{Fz∨ Gz}⊃ {z = a∨ z = y}])
(15) ¬(([{Fa ∨ Ga} ∧ {Fb ∨ Gb}] ∧ ¬a = b)∧ �z[{Fz ∨ Gz}⊃ {z = a ∨ z = b}])

We now have to disentangle (15), which is a negated conjunction.

(16) ¬([{Fa∨ Ga}∧ {Fb∨ Gb}]∧¬a = b) ¬�z[{Fz ∨ Gz} ⊃ {z = a ∨ z = b}]

(17) ¬[{Fa ∨ Ga} ∧ {Fb ∨ Gb}] ¬¬a = b

(18) ¬{Fa ∨ Ga} ¬{Fb ∨ Gb}
(19) ¬Fa ¬Fb
(20) ¬Ga ¬Gb

✼ ✼

Continuing the middle branch at (17):
(18′) a = b
(19′) Ga from 11, 18′
(20′) ¬(Fa ∧ Ga) from 5

(21′) ¬Fa ¬Ga
✼ ✼

And on the rightmost branch, we obviously have to continue like this:

(17′′) �z¬[{Fz ∨ Gz} ⊃ {z = a ∨ z = b}]
(18′′) ¬[{Fm ∨ Gm} ⊃ {m = a ∨ m = b}]
(19′′) {Fm ∨ Gm}
(20′′) ¬{m = a ∨ m = b}
(21′′) ¬m = a
(22) ¬m = b

(23) Fm Gm
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So far, in fact, this tree has almost written itself. We’ve applied the obvious
building moves at each step. But now, checking back, we note that we haven’t
yet made use of the two universal quantifications at (10) and (12). Instantiating
(10), we can quickly close off the left of the two remaining branches:

(24) (Fm ⊃ m = a)

(25) ¬Fm m = a
✼ ✼

We finish by instantiating (12):

(24′) (Gm ⊃ m = b)

(25′) ¬Gm m = b
✼ ✼

Phew! So the arithmetic inference O indeed turns out to be a piece of pure logic. 
And that is probably quite enough by way of examples of (closed) QL= trees!

As for open trees, the remarks about QL open trees in §29.3 carry over with
only minor changes: to read off countermodels from finished trees with open
branches, we just must make sure that whenever we have a wff of the form
m = n on the open branch, the names involved are given the same object as q-
value. But we won’t delay over this. 

35.5 Soundness and completeness again
Finally, we should add for the record that there is the predictable Basic Result
about QL= trees too. Our collection of rules is sound and complete, so that a
closed QL= tree correctly indicates a q-valid argument, and there is a closed QL=

tree corresponding to every q-valid argument involving identity. 
To show this, we essentially need to re-run the arguments of Chapter 30. But

we do need a few new tricks to handle identity, which make things just a bit
more complicated. We’ll cut ourselves some slack and won’t give the details
here.

35.6 Summary
• We have introduced two additional rules for quantifier tree-building, to

govern trees with identity, namely a version of Leibniz’s Law for extending
trees, and a new rule for closing a branch when it contains an absurdity of
the form ¬n = n.

• These two additional rules allow us to warrant valid QL= inferences by the
tree method, including inferences where Russell’s Theory of Descriptions is
used to render propositions, and inferences using numerical quantifiers.

• Our rules for QL= trees give us not only a sound but also a complete proof-
system for establishing q-validity.
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Exercises 35

A Use QL= trees to show the following inferences are valid:

1. Jack is Fingers. Fingers is never caught. Whoever is never caught
escapes justice. So Jack escapes justice.

2. There is a wise philosopher. There is a philosopher who isn’t wise.
So there are at least two philosophers.

3. Whoever stole the goods, knew the safe combination. Someone
stole the goods, and only Jack knew the safe combination. Hence
Jack stole the goods.

4. For every number, there’s a larger one. No number is larger than
itself. So for every number, there’s a distinct number which is
larger than it.

5. No one who isn’t Bryn loves Angharad. At least one person loves
Angharad. So Bryn loves Angharad.

6. Exactly one person admires Frank. All and only those who admire
Frank love him. Hence exactly one person loves Frank.

7. The present King of France is bald. Bald men are sexy. Hence
whoever is a present King of France is sexy.

8. Angharad loves only Bryn and Caradoc, who are different people.
So Angharad loves exactly two people.

9. Juliet kisses exactly two philosophers. Hence there is more than
one philosopher.

B Show that the following wffs are q-logical truths

1. �x�y(x = y ⊃ (Fx ⊃ Fy))
2. �y�z(y = z ⊃ (�x(Lxy ∧ Fy) ⊃ �x(Lxz ∧ Fz)))

Thinking about the structure of those proofs, conclude that each way of
filling out the following schema from §33.1 does indeed yield a q-logical
truth:

(LS) �v�w(v = w ⊃ (C(…v…v…) ⊃ C(…w…w…)))

C Returning to the labelled wffs and inferences earlier in this chapter, show
that

1. G q-entails F.
2. L is q-valid.
3. M is q-valid.

Finally, confirm that the two Russellian ways of translating The F is G, via
the schemas (R) and (R′) of §34.1, are indeed equivalent, by showing

4. ‘�x�y((Fy � y = x) ∧ Gx)’ q-entails ‘�x((Fx ∧ �y(Fy⊃ y = x)) ∧ Gx)’.
5. ‘�x((Fx ∧ �y(Fy⊃ y = x)) ∧ Gx)’ q-entails ‘�x�y((Fy � y = x) ∧ Gx)’.



One of the first quantificational formal languages that you are likely to meet if
you go on to slightly more advanced work on logic is the language of arithmetic.
And this – as you would expect – has symbols for e.g. the addition and multiplica-
tion functions. So it would be odd to leave our introductory exploration of quan-
tificational logic without briefly saying something about how to extend the
language QL= to include such expressions for functions. Our discussion will also
give us another angle on the theory of descriptions.

36.1 Functions re-introduced
We’ve already touched on the basic idea of a function in §11.2. A function maps
an object or objects to some unique thing. For example, ‘the age in years (at Jan-
uary 1, 2009) of x’ expresses a function defined over living people, correlating
each person with a single number. And ‘the product of x and y’ expresses a func-
tion defined over numbers, correlating two numbers with another number.

Let’s quickly review an assortment of elementary points about functions, and
fix nomenclature and informal notation.

• We call the input(s) to a function – the object(s) to which the function is
applied – the argument(s) of the function. The unique output of the function
for given argument(s) is the value of the function. For example, the number
35 is the value of the function the age in years (at January 1, 2009) for the
argument Gwyneth. The number 35 is also the value of the product func-
tion for the arguments 5 and 7. 

• The value of a function can be a quite different sort of entity from the argu-
ment: 35 is a number, Gwyneth is a woman. But of course the value can
equally well be the same sort of thing as the argument(s): the product func-
tion maps numbers to numbers. 

• A function can have more than one argument. For example, the arithmeti-
cal addition and multiplication functions each take two arguments. Or
consider the family of truth-functions. The material conditional, for exam-
ple, maps two truth-values (those of its antecedent and consequent) to a

36

Functions
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truth-value; the trumped-up $ truth-function of §11.7 takes three truth-
values as arguments; etc.

• Mathematicians notationally represent functions in various ways. For
instance, the square root function is expressed by the special prefixed sym-
bol in ‘√9’; the product function is usually expressed by the ‘infix’ multipli-
cation symbol, i.e. the symbol placed in the middle of ‘5 × 7’; and the
square function is indicated by the ‘postfix’ superscript in ‘92’. But the
generic way of representing functions is by symbolism like ‘f( )’ or ‘g( , )’
etc., with one or more slots waiting to be filled in by designators for the
arguments. Suppose that ‘f( )’ expresses the function that maps a number to
its square. Then ‘f(2)’ is a complex designator denoting the number 4, ‘f(7)’
denotes 49, and so on. Likewise, if ‘g( , )’ expresses the product function,
then ‘g(5, 7)’ denotes the number 35.

• When an argument and value are objects of the same kind, we can apply
that function again to the results of previous applications. Thus ‘f(f(2))’
denotes the square of f(2), i.e 16. Similarly, ‘g(f(2), f(3))’ denotes 36.

So far, so elementary! Now for two further points that will need more careful
explanation. First, 

• We must distinguish the sense or interpretation of a function expression
from its extension; the latter is what fixes the truth-value of sentences
involving the function expression.

Compare our distinction between the sense and extension of predicates (§30.1).
The sense is what is grasped by someone who understands the predicate; but it is
the extension which fixes the truth-values of sentences involving the predicates
(if we forget about intensional contexts). Similarly here: the sense of a function
sign is what you have to grasp in order to count as understanding the expres-
sion. We can typically think of this as a rule or procedure for correlating objects
with other objects. For example, to grasp the sense of ‘square of ( )’, you need to
understand the rule that we arrive at the value of the function for argument n by
multiplying n by itself. The rule determines a set of pairings of arguments and
values, thus {〈0, 0〉, 〈1, 1〉, 〈2, 4〉, 〈3, 9〉, 〈4, 16〉, …}. This set of pairs is the exten-
sion of the function.

Just as two predicate expressions can have different senses but the same exten-
sion, so too for function expressions. Here’s a very simple arithmetical example.
Consider ‘(x + 1)2’ and ‘x2 + 2x + 1’. These expressions have different senses, for
they indicate different calculation procedures for associating values with argu-
ments. However, the resulting argument-to-variable pairings are the same. 

We needn’t argue about whether the word ‘function’ is ordinarily used to talk
of a mapping procedure or to talk of the resulting pairings of arguments and
values. What matters is that we note the relevance of the sense/extension distinc-
tion here. The extension of a function is what fixes truth-values. For example,
‘f(m) = n’ is true if the pair 〈m, n〉 is in the extension of ‘f ’; ‘For all x, f(x) > x’ is
true if for any pair 〈m, n〉 in the extension of ‘f ’, n > m. And so on.
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Finally, note that even when a rule for processing an argument is well-defined
across some domain, it may not always deliver a value. Take for example the
eldest-son-of function. The rule for getting a value can be applied to any adult
human: we look to see whether he or she has sons, and if so pick out the eldest.
But this procedure may well deliver a null return. Compare the square-of func-
tion: take any integer as argument and this function always delivers a value. We
therefore need to note the following distinction:

• Some functions are total functions, i.e. have a value for all arguments from
the relevant domain. Others are strictly partial functions, which have no
value for certain arguments. 

36.2 Adding functions to QL=

It is syntactically pretty straightforward to add function expressions to QL=.
And it is semantically unproblematic too, so long as we restrict ourselves to total
functions defined over the whole domain, with values in that domain (the real
significance of this restriction will become clear in §36.4). An outline sketch of
the resulting language QLf will suffice. 

So, first we’ll want to add to QL=’s vocabulary some function expressions
taking various numbers of arguments. We can start off with ‘naked’ lower case
letters like ‘f’, ‘g’, ‘h’, …. (And then, if we want to ensure we don’t run out of pos-
sible function expressions, we can again use superscripts and subscripts, so ‘f j

k’ is
the kth j-argument function symbol.) 

We will next need to complicate our definition of a term (compare §26.3).

(1) An individual constant or individual variable is a term.
(2) If f is a function symbol taking one argument and t is a term, then f(t) is a

term. More generally, an n-argument function symbol followed by a left-
hand bracket, following by n terms (separated by commas), followed by a
right-hand bracket, is also a term.

(3) Nothing else is a term.

This allows expressions like the following to count as terms:

f(m), f(y), g(m, n), g(x, f(m)), g(f(y), f(m)), g(g(m, n), f(m)), …

If a term doesn’t include any variables, it is a closed term (compare the idea of a
closed wff, §26.4).

The syntactic rules for building up wffs can stay as before, except that ‘atomic
wff’ is now perhaps something of a misnomer for the basic building block wff
consisting of an n-place predicate followed by n terms, given that the terms can
themselves be quite complex.

By the way, it is worth commenting that the use of bracketing and commas
here in our notation for functions is strictly speaking redundant. However, it is
absolutely standard (and you can easily see why: bracket-free expressions like
‘ggmnfm’ are horribly unreadable). 

Now for the semantics. Start with the simplest case, a one-argument function.
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A q-valuation will assign this function a set of ordered pairs of objects (i.e. the
pairs of argument and value), where these objects are both from the domain
(they need to be among the things that count as ‘everything’). This set of pairs
must have the following two features:

i. For each object m in the domain of discourse, there is some pair 〈m, o〉 in
the extension, i.e. a pair whose first member is m.

ii. It contains no distinct pairs 〈m, o〉 and 〈m, o′〉, where o differs from o′.

(i) must hold given we are currently restricting our attention to total functions.
(ii) must hold because a function relates an object as argument to a unique object
as value. 

Similarly for a two-argument function. A q-valuation will assign this sort of
function a set of ordered triples of objects from the domain. This set must have
the following two features:

i′. For each pair of objects m, n in the domain of discourse – which serve as
arguments to the function – there is some triple 〈m, n, o〉 in the extension.

ii′. It contains no distinct pairs 〈m, n, o〉 and 〈m, n, o′〉, where o differs from o′.

The generalization to cover functions with n arguments is straightforward. 
The next stage in setting up the semantics is to give rules for evaluating terms

including function expressions. The basic idea is very simple. Suppose a q-valua-
tion already assigns ‘m’ the object m as reference. And suppose that on the same
q-valuation, the pair 〈m, o〉 is in the extension of the one-place ‘f’ (intuitively, the
function maps m to o). Then the q-value of the term ‘f(m)’ is of course o.

That idea generalizes in the obvious way to case where ‘m’ is replaced with
any term t. Suppose a q-valuation assigns t the object n as reference, and 〈n, o〉 is
in the extension of ‘f’. Then again ‘f(t)’ is o. And the idea generalizes too to the
case of many-place functions. For example, the q-value of ‘g(m, n)’ is the unique
o such that the triple formed by taking the references of ‘m’ and ‘n’ followed by o
is in the extension of ‘g’.

And because we are only considering total functions defined everywhere in the
domain and which have values in the domain, it will always make sense to feed
in the value of one function as an argument to another function. So those iter-
ated functional expressions like ‘g(f(n),f(m))’ will always have a q-value.

Which about wraps things up. We have introduced a new kind of term – one
involving a function-expression – and indicated how to work out its q-value, i.e.
its reference, on a q-valuation. The old rules for working out the values of basic
wffs (predicates followed by the right number of terms) now kick in, followed by
the rules for evaluating more complex wffs just as before. 

Finally, to get a proof-system for arguments couched in QLf we just use the
same tree rules as before, emended to allow us to intantiate universal quantifiers
with closed functional terms. The idea is that if e.g. ‘�xGx’ is true, then so must
be ‘Gf(m)’, ‘Gf(f(m))’, ‘Gg(m, n)’, etc. since all those functional terms pick out
objects in the domain.



36.3 Functions and functional relations   343

36.3 Functions and functional relations
Suppose that the two-place relation R is such that every object in the domain is
R to one and only one thing. In that case, the extension of R is a set of pairs sat-
isfying the conditions (i) and (ii) in the last section. Call this kind of two-place
relation functional. Then a one-place function f and a two-place functional
relation R can have identical extensions, i.e. a certain set of ordered pairs satisfy-
ing our two conditions. In such a case, we’ll say that f corresponds to R. (Simi-
larly, a two-argument function can correspond to a three-place functional
relation, etc.: we won’t labour to spell this out.)

A very simple example. Take the domain to be the integers. Then consider the
next number (or successor) function and the functional relation is immediately
followed by (for short, precedes). The function and the relation have exactly the
same extension, i.e. the set of pairs {〈0, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 4〉, …}. The successor
function therefore corresponds to the relation precedes.

Now, the successor of 3 is, of course, the number such that 3 precedes it. And
that observation generalizes. Suppose that the one-argument function f corre-
sponds to the two-place functional relation R. Then f(n) is the object x such that
n is R to x.

That’s an obvious point, but it has an important moral. It shows that instead
of using a function term like ‘f(n)’ to refer to some object, we could use a definite
description applied to a corresponding relation expression ‘R’ to get ‘the x such
that n is R to x’ and still be talking of just the same thing.

This last point carries over to our formal languages. Everything you can do in
the extended language QLf with symbols for total functions you can in principle
do in the original unextended QL= without functions. Just use functional relations
plus Russell’s Theory of Descriptions! 

To illustrate this, let’s continue with the same basic example. So suppose ‘f’ in
QLf expresses the successor function, let ‘n’ denote zero, and let ‘G’ mean odd.
Then, for example, ‘f(n)’ denotes the successor of zero, i.e. the number one. And
we can say that this object is odd thus:

Gf(n)

But suppose QL= has the two-place predicate ‘L’ meaning precedes. Then we can
say the same in QL= by translating ‘The number such that zero precedes it is
odd’. Applying the familiar Russellian schema, we’ll get

�x((Lnx ∧ �y(Lny ⊃ y = x)) ∧ Gx)

Likewise, have the following mappings from QLf wffs to QL= equivalents:

�zGf(z) �  �z�x((Lzx ∧ �y(Lzy ⊃ y = x)) ∧ Gx)
f(n)= m �  �x((Lnx ∧ �y(Lny ⊃ y = x)) ∧ x = m)
�z(Gz ⊃ f(z)= m) �  �z(Gz ⊃ �x((Lzx ∧ �y(Lzy ⊃ y = x)) ∧ x = m))

and so on and so forth. 
Now, it is already clear that there is a real gain in clarity in having the function

symbolism available. The gain is very substantial when there’s more than one
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functional symbol to be translated away at the same time. Take for example the
simple claim that addition in arithmetic is symmetric, i.e. for all x and y, x + y =
y + x. This goes into standard QLf simply enough as something like

�x�y(h(x, y) =  h(y, x))

if we use ‘h’ for the two-argument sum function. Or we may simply allow our-
selves to borrow the familiar infix arithmetical function symbols in an extension
of QL= so we can write

�x�y(x + y =  y + x)

But suppose we try to manage instead in unaugmented QL=, using the three-
place sum relation ‘S’, where ‘Smno’ means m + n = o. Then to express the sym-
metry of addition we need, informally,

�x�y(the v1 such that Sxyv1 =  the v2 such that Syxv2)

Getting rid of the two descriptions now introduces another four quantifiers:

�x�y�v1{(Sxyv1 ∧ �z(Sxyz ⊃ z = v1)) ∧ 
�v2[(Syxv2 ∧ �z(Syxz ⊃ z = v2)) ∧ v2 = v1]}

which is a lot less perspicuous! 

36.4 Partial functions and free logic
In the light of what we’ve just said, the question whether to expand QL= to QLf

really comes down to the question of how important it is for us to have a logical
formalism which can deal briskly and perspicuously with total functions (recall:
QLf only deals with total functions). It is a trade-off between economy of
resources and ease of manipulation.

But now it is worth stressing again that many functions are strictly partial.
They abound in mathematics: to take the very simplest case, the division func-
tion doesn’t deliver a value everywhere (there is no output when you divide a
number by zero).

You might wonder whether partial functions are much of an issue. To be sure,
some definitions only characterize partial functions, like the definition of divi-
sion. However, can’t we just (as it were) fill up the gaps in a partial function by
arbitrary stipulation? For example, we could define the total division* function,
where m divided* by n is the same as m divided by n when n > 0, and is equal to
(say) 0 when n is 0. And we could stipulate that the eldest son* function has the
same value as the eldest son function when that has a value but outputs (say) the
number 0 as a default in other cases. So, when we want to be logically tidy, can’t
we pretend all our functions are ‘completed’ in this sort of way?

Unfortunately, wishing away partial functions doesn’t work. It is, for example,
a fairly elementary result in the theory of computation that you can have a par-
tial function f which is computable – i.e. there is a computer program that works
out the value of f for every argument for which it is defined – but f’s completion-
by-stipulation yields a total function f* which is not computable by any possible
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program. Moral: a general theory of functions has to take partial functions
seriously. In short, if we want to treat functions in a logical system, the natural
aim will be to cover all functions, total and merely partial.

So suppose now, to return to an earlier example, that ‘s( )’ expresses the par-
tial eldest-son-of function. Suppose too that ‘m’ denotes George Bush Snr., ‘n’
denotes Hillary Clinton, and ‘F’ means is male. We will take the domain to be
people. Then ‘s(m)’ is unproblematic: it is a term denoting George W. Bush, and
‘Fs(m)’ straightforwardly evaluates as true.

What about ‘s(n)’? Hillary has no son, so this denotes no one, and ‘s(n)’ has
no q-value. So what should we say about the value of ‘Fs(n)’? A wff consisting of
a predicate followed by a term is only true if the q-value of the term is in the
extension of the predicate. So such a wff is certainly not true if the term lacks a
q-value. Does that mean (1) that ‘Fs(n)’ is false? Or does it mean (2) that it lacks
a truth-value?

Either option is technically workable, and we get two versions of free logic –
i.e. a logic which is free from the assumption that all closed terms (terms without
free variables) denote. But option (2) is arguably more natural. For if we have no
general beef against the idea of partial functions, then it is pretty unclear why we
shouldn’t allow partial evaluation functions too, and hence allow some wffs to
come out neither true nor false. However, allowing such truth-value gaps will
force major revisions in the very fundamentals of our formal logic. For example,
even instances of (A ∨ ¬A) needn’t always be true, at least if we keep the
traditional truth-tables: replace A with a wff which is neither true nor false and
the disjunction will lack a truth-value too. 

Option (1) is in some ways less radical. On this line, all wffs remain either true
or false. But we will still have to revise our logic. For a start, in our example, we
could have ‘�xFx’ true but ‘Fs(n)’ is false. So we now can’t always instantiate
universal quantifications with functional terms. 

So in fact either version of free logic we have mentioned will be revisionary of
the logic of QLf. Moreover, once we allow non-denoting functional terms, it is
difficult to see why we shouldn’t allow non-denoting names as well, a further
departure into a thoroughly free logic. 

The situation in sum is this: QLf is an extension of QL=, which gives us a neat,
brisk representation of total functions defined over a domain, more manageable
than dealing with functions via definite descriptions applied to functional rela-
tions. However, the restriction to total functions is rather unnatural (though it
enables us to preserve ‘classical’, two-valued logic). Going any further, and tak-
ing partial functions seriously, requires significant innovations. 

But we can’t explore these matters any further here, except to conclude by
revisiting the issue of …

36.5 Definite descriptions again
Russell, we noted, held that his Theory of Descriptions in some sense revealed
the true logical form of our everyday sentences involving definite descriptions. It
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is far from clear what the cash value of such a claim is. Still, we are now in a
position to make some pertinent comments.

Recall the very close connection between functions and descriptions noted in
§36.3. We saw that the successor function, for example, can be defined by apply-
ing a definite description operator (a ‘the’ operator) to the predecessor relation.
Or consider Russell’s own paradigm example ‘the (present) King of France’ again.
This invites treatment as a functional term, denoting the value of the the king of
function for the argument France. And ‘the king of …’ can, in turn, be thought
of as equivalent to ‘the x such that x is king of …’ – i.e. as defined in terms of a
‘the’ operator applied to a two-place functional relation ‘… is king of …’.

Suppose that we are dealing with a language which has expressions for both
functions and functional relations. Then it is very natural to add a ‘the’ operator
for making functions out of functional relations. In §36.3, we were talking about
how we might do without functions by using functional relations instead; now
we are considering how to move between relations and functions when you do
have both in the language. 

Let’s use the symbol ‘

 

ι’ for our the operator – that’s a Greek letter iota, which
is traditional for a description operator, following Russell (though we certainly
don’t want to get sidetracked here into a discussion of the nuances of various
uses of the iota symbol in the literature). The basic idea, therefore, will be that
the

 

ι-operator applied to an n + 1 place functional predicate R yields the corre-
sponding function of n arguments. And the natural way of implementing the
idea is to make ‘

 

ι’ a variable-binding operator akin to a quantifier. In other words:
we use ‘

 

ι’ with the variable ‘x’ or ‘y’ or …, and this ties it to a slot in R with the
same variable in it. 

For example, take the two place functional relation ‘L’. Then

 

ιyLxy

means the thing y such that x has relation L to y. ‘

 

ιyLxy’ is therefore a one-place
functional expression that works like ‘f(x)’ (it lacks the brackets, but then the
brackets we usually use with function expressions are only there to promote
readability). If we replace the free variable with a constant as in 

 

ιyLmy

we get a term that works like ‘f(m)’.
Four observations. (1) If we are still working in the context of QLf, then 

 

�-
operators have to be applied with care to make sure that the resulting functions
indeed exist as total functions. But if we suppose now that we are working in the
context of a free logic which allows partial functions, then – if you will excuse
the pun – we can be much more free in the use of our new operator.

(2) We said that applying the 

 

ι-operator to an n+1 place relation yields an n-
place function. Let’s allow the case where n = 0. So applying the same 

 

ι-operator
to a one place predicate yields a term with zero slots left to be filled up – ‘

 
ιxFx’

just serves to designate the x which is F. So, the  ι-operator is also a way of form-
ing definite description terms out of monadic predicates.
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(3) Since ‘

 

ιxFx’ is like a closed term, ‘G

 

ιxFx’ is a sentence. And in some appro-
priate logical systems for a description operator – including some versions of
free logic – we will be able to show that

(F) G

 

ιxFx

(i.e. the thing which is F is G) is true in a valuation if and only if 

(R)

 

�x(Fx

 

∧ (

 

�y(Fy

 

⊃ y

 

= x)

 

∧

 

 Gx))

is also true. 
(4) That shows that, even if Russell is right that the rendition (R) has the same

truth-conditions as ‘The F is G’, it doesn’t mean that he is right that descriptions
are fundamentally some kind of quantifier. It could be that the description-
former ‘the’ in natural language often works like the ‘

 

ι’-operator, i.e. not as a
quantifier but as a function-forming operator on relations. In other words, per-
haps (R) has the same truth-conditions as ‘The F is G’ as a consequence of
descriptions working on the functional model, rather than because (R) itself
reflects the correct story about the ‘logical form’ of sentences with descriptions. 

However, we can’t pursue this suggestion any further here. The issue of the
proper treatment of definite descriptions remains contentious a century after
Russell first proposed his treatment. Which is a salutary closing reminder that
issues in logic are not always as cut-and-dried as text books – like this one! – can
make them seem.

36.6 Summary
• We could also extend QL= to include expressions for functions. The sim-

plest extension, QLf, only allows expressions for total functions (i.e. func-
tions that have a value for all arguments in the domain). 

• The logic of QLf is not very different to that of QL=, and it allows a much
more economic treatment of functions compared with using functional
relations and the theory of descriptions in QL=.

• However, QLf is arguably an unstable compromise: if we are going to treat
functions, shouldn’t we also treat partial functions (i.e. functions that do
not deliver a value for all arguments in the domain)? 

• To cope with partial functions, and hence the use of terms which lack
reference, will mean adopting some kind of free logic, which will have
significantly different logical laws from those that govern QL=.

• In a language which has functions, we could introduce a ι-operator (read
‘the’) that takes us from an n + 1-place predicate to a corresponding n-place
function. Arguably, the vernacular description-forming operator ‘the’
works similarly.



These notes on further reading are divided into two parts. The first section lists
references that are directly tied to points arising in the body of the book; the sec-
ond suggests some text books for parallel and more advanced reading.

Matters arising
On the nature of propositions (§2.5), see 

A. C. Grayling, An Introduction to Philosophical Logic (Blackwell, 3rd edn.
1997), Ch. 2.

Quine-quotes (§10.3) are introduced in

W. V. O. Quine, Mathematical Logic (Harper and Row, 2nd edn. 1951), §6;

they are also well explained e.g. by 

Graeme Forbes, Modern Logic (Oxford U.P., 1994), Ch. 2, §6. 

Real enthusiasts might be amused by

George Boolos, ‘Quotational ambiguity’, in his Logic, Logic, and Logic
(Harvard UP, 1988).

On the ideas of necessity, analyticity and the a priori (§12.5), see

A. C. Grayling, An Introduction to Philosophical Logic, Ch. 3.

On the troublesome question of the meaning of ‘if’ (Chapters 14, 15), see

Frank Jackson, ed., Conditionals (Oxford UP, 1991).
Frank Jackson, Conditionals (Blackwell, 1987).

The first of these books is a reader, collecting together a number of key papers
on the interpretation of conditionals (read V. Dudman’s concluding contribution
if you aren’t yet persuaded of the complexities of the behaviour of conditionals).
The reader reprints a paper by the Jackson himself, which proposes his ‘robust
material conditional’ story about the meaning of indicative ‘ifs’ (§15.4). This is
developed in his own extremely readable short book. Our example ‘If kangaroos
had no tails, they would topple over’ (§15.1) is borrowed from the opening

Further reading
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section of a modern classic,

David Lewis, Counterfactuals (Blackwell, 1973).

We said in §20.3 that tree proofs can sometimes be radically shortened by
adopting the (evidently sound) rule that at any point you can add an instance of
the law of excluded middle, i.e. a wff of the form (C ∨ ¬C). For discussion, see

George Boolos, ‘Don’t eliminate cut’, in his Logic, Logic, and Logic.

For further discussion of the motivation for the quantifier-variable notation
for generality (§21.4), see another modern classic,

Michael Dummett, Frege: Philosophy of Language (Duckworth, 2nd edn.
1981), Ch. 2.

We mentioned in passing (§23.4) that with a bit of cunning we can do without
variables (while retaining the key idea that quantifiers are operators that are
applied to predicates, and are quite different from names). For more on this, see

W. V. O. Quine, ‘Variables explained away’, in his Selected Logic Papers
(Harvard UP, 1995).

On Frege’s claim that names have sense as well as reference (§31.1), see the
much-reprinted

Gottlob Frege, ‘On sense and reference’ – or, as it is called in his Collected
Papers (Blackwell, 1984), ‘On sense and meaning’.

For a lively challenge to the conventional wisdom about how we can substitute
co-referential names in ‘simple’ contexts, see

Jennifer M. Saul, ‘Substitution and simple sentences’, Analysis 57 (1997), pp.
102–108.

For Russell’s Theory of Descriptions (§34.1), see the essays in

Gary Ostertag, ed., Definite Descriptions (MIT Press, 1998)

especially Chs. 3 (Russell’s own statement), 8 and 11. And for a little on free
logic (§34.4), see

Graham Priest, An Introduction to Non-Classical Logic (Cambridge UP, 2nd
edn. 2008), Ch. 13.

Other texts
A Parallel reading For a classic text which covers similar ground to this
present book, see

Richard Jeffrey, Formal Logic: Its Scope and Limits (McGraw-Hill, 3rd edn.
1990).

Another much used student text (which also concentrates on trees but goes
rather more slowly than Jeffrey) is

Wilfrid Hodges, Logic (Penguin, 2nd edn., 2001).
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B Some introductory texts that range more widely Three more good texts (at
about the same level of difficulty as this book) which cover natural deduction
proofs as well as trees are

Merrie Bergmann, James Moor and Jack Nelson, The Logic Book (McGraw-
Hill, 3rd edn. 1998).

Graeme Forbes, Modern Logic (Oxford UP, 1994)

Paul Teller, A Modern Formal Logic Primer (Prentice Hall, 1989).

Teller’s text is in two volumes but don’t be put off by that: it is in fact quite
short, and has a particularly approachable, relaxed style. The bad news is that it
is out of print; the good news is that an electronic version is freely available at
the book’s website, http://tellerprimer.ucdavis.edu.

But the best introduction to natural deduction is probably the elegant and
sophisticated

 Neil Tennant, Natural Logic (Edinburgh UP, 2nd edn. 1990).

While Teller, for example, presents a linear natural deduction system with
indented subproofs, Tennant goes straight for downwards-joining tree deduc-
tions (see our §20.1).

C Going further in first-order logic Two good places to start are

David Bostock, Intermediate Logic (Oxford UP, 1997)

Ian Chiswell and Wilfrid Hodges, Mathematical Logic (Oxford UP, 2007).

Despite their titles, neither book goes a great deal further than this one. But Bos-
tock is very good on the motivations for varying styles of logical system, on the
relations between them, and on explaining some key proof ideas. Chiswell and
Hodges is also very clear and gives an excellent basis for more advanced work.

A classic text that has to be mentioned here is the wonderful

Raymond Smullyan, First-Order Logic (Springer-Verlag, 1968: Dover, 1995).

But this isn’t easy, as it packs a great deal into just over 150 pages; but at least
read the first third to see where all our work on trees in this book ultimately
comes from. Another text that is elegantly done and, like Smullyan, pushes well
beyond the bounds of this book is

Dirk van Dalen, Logic and Structure (Springer-Verlag, 4th edn. 2004).

These two books should particularly appeal to the mathematically minded.

D Extending classical logic One or twice, we’ve mentioned modal logic, i.e.
the logic of necessity and possibility. Three recent texts worth looking at (the
third is based very much on trees) are

J. C. Beall and Bas C. van Fraassen, Possibilities and Paradox (Oxford UP,
2003).
Rod Girle, Modal Logics and Philosophy (Acumen, 2000).
Graham Priest, An Introduction to Non-Classical Logic, Chs 2, 3.

http://tellerprimer.ucdavis.edu
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Another standard text is

Brian Chellas, Modal Logic: An Introduction (Cambridge UP, 1980).

The formal and philosophical aspects of second-order logic (where we quantify
over properties as well as things) are discussed in the terrific

Stewart Shapiro, Foundations without Foundationalism (Clarendon Press,
1991).

And for much, much more, see the (mostly excellent) survey articles in the four
volumes of the somewhat mistitled

D. Gabbay and F. Guenthner, eds., A Handbook of Philosophical Logic
(D. Reidel. 1983–89).

E Philosophical logic Returning now from more advanced technicalities to
philosophical commentary on the sort of formal logic covered in this book, the
place to start has to be

Mark Sainsbury, Logical Forms (Blackwell, 2nd edn. 2000).

Each chapter ends with an extraordinarily helpful guide through the complica-
tions of the relevant literature, and we need not repeat those guides here. 



Some standard logic symbols

∧, 59
∨, 59
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∴, 63, 73, 101
✼, 63, 149
&, 70
∼, 70
⊃, 70, 127–128
→, 70, 135
«…», 86
↓, 98
↑, 99
|, 99
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g, 190
�, 200, 204
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=, 304, 309
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Some other symbols special to this book

⇒, 75
⊕, 95
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�-instantation rule, 230, 279–282
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alphabet
of PL, 63
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of QL, 245
of QL=, 309

analytic vs. synthetic, 105
antecedent, 126
argument, 1

by cases, 129
deductive, 4
inductive, 4
multi-step, 37, 47–49
reductio, 39–40
schema, 6
sound, 14
valid, 13–14

Aristotle, 28, 32–33, 58, 101, 216
atomic wff

of PL, 60, 63–64
of PLC, 133
of QL, 202, 245
of QL=, 309

‘bad line’, 111
Basic Result

for PL trees, 160, 179–182
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for QL trees, 286
for QL= trees, 337
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Bergmann, M., 350
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material, 132
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Bostock, D., 350
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Carroll, L., 8, 34, 36, 37
Chellas, B., 350
Chiswell, I., 350
classical propositional logic, 124
classical validity, see validity
closed

path, 158
tree, 160, 330
wff, 248

completeness, 182, 191, 280, 287–291
conclusion, 2, 7, 15
conditional

counterfactual, 138
‘Dutchman’, 142–143
material, 128
Philonian, 128
possible-world, 137
subjunctive, 138
truth-functional, 126–128

conjunction, 55
basic, 95–96

connective, 55, 203, 207
binary, 64
main, 67
truth-functional, 88–90

consequent, 126
consistency

logical, 10
syntactic, 183, 288

constant, 202, 245, 251
construction tree, 66–67, 77, 246
contingent truth, 104
contradiction, 40, 101–102
counterexample, 31, 118

technique, 31–32
countermodel, 263, 267–269

De Morgan’s Laws, 100
deductive argument, 4

one-step, 13–14
multi-step, 47–49
valid, 4

definite description, 316
Russell’s Theory, 317, 331–335, 343, 

345–346
scope, 319–320

designator, 306, 316
disjunction

exclusive vs. inclusive, 56, 95
disjunctive normal form, 97–8

disjunctive syllogism, 149
domain of discourse, 205, 251

empty, 251, 280
Dudman, V., 348
Dummett, M., 349

�-instantation rule, 236
elimination rule, 188
entailment

logical, 4
tautological, 108
see q-entailment

enthymeme, 39
equivalence

class, 305
relation, 304
truth-functional, 94, 120, 134–135
see q-equivalence

excluded middle, 101
existence statements, 322–324
existential import, 214
existential quantifier, 204
expressive adequacy, 97
extension of predicate, 252, 296

vs. meaning, 297
extensional context, 298
extremal clause, 64

fallacy
affirming the consequent, 130
denying the antecedent, 130
of irrelevance, 46
quantifier-shift, 33

falsum, 144
first-order vs. second-order, 311, 350
Forbes, G., 348, 349
form

of inference, 6, 19–27
logical, 25–27, 103–104, 215–217, 

318–319, 321
and validity, 26, 117, 266, 295

formal language, 58
free logic, 323, 344–345
free variable, 244, 248, 254
Frege, G., 58, 297, 300, 349
function, 89, 339–346

argument, 339
extension, 340
partial, 341, 344–345
vs. relation, 342
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total, 341
value, 89, 339
see truth-function

Gabbay, D., 351
Girle, R., 350
Gödel, K., 270
Grayling, A., 348
Guenthner, F., 351

Hodges, W., 349, 350
hypothetico-deductive model, 11–12

iff, 131
implication

logical vs. material, 134
identity

of indiscernibles, 306
numerical, 303
qualitative, 303
see Leibniz’s Law

indiscernibility of identicals, 306
individual

constant, 202, 245, 251
variable, 200, 245

inductive argument, 4, 45
inference, 2

pattern, see form of inference
to the best explanation, 10–11
valid, 4, 13

infinite
countermodel, 268–269, 284
tree, 239–240, 291–292
see König’s lemma

informal logic, 34, 52
intensional

context, 298
vs. intentional, 301

interpretation
of PL wffs, 72–73
of QL wffs, 203–207
vs. valuation, 75, 250–251, 296–297

introduction rule, 188
intuitionistic logic, 164
invalidity principle, 13

Jackson, F., 141, 348
Jeffrey, R., 177, 349

König’s lemma, 291

language
formal, 58
object, 83
see metalanguage

law,
de Morgan’s, 100
excluded middle, 101
non-contradiction, 101
see Leibniz’s Law

Leibniz, G., 306
Leibniz’s Law, 306, 310, 325–326
Lewis, D., 137, 349
logical form, see form
logically consistent, 10
logically possible, 10

main connective, 67
main logical operator, 247
material

biconditional, 132
conditional, 128, 137–143
implication, 134

mechanical technique, 5, 42, 64, 65, 90, 
101, 108, 115, 124, 240, 269–270

metalanguage, 83
metalogical results, 95, 119, 134, 179–

184, 259–260, 286–293
modal

context, 301–302
logic, 197, 217, 350
operator, 197, 320

model, 262
modus ponens, 126
modus tollens, 126
Moor, J., 350

name, 199, 202,
empty, 323
scopeless, 199
see constant

nameless things, 207
natural deduction, 37, 187–188
necessary

condition, 132
truth, 104–106

negation, 57
Nelson, J., 350
node (of tree), 157

object language, 83
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‘only if’, 131
open

path, 158
tree, 160, 240, 282–284
wff, 248

Ostertag, G., 349

path (on tree), 157
closed vs. open, 158
satisfiable, 179, 286

Philo, 128
PL,

design brief, 59
rules (for trees), 159
semantics, 72–76
syntax, 63–65
tree, 151–170

PLC, 132–133
rules (for trees), 172
tree, 171–176

PLF, 144
Plato, 38
possibility, 9–10

see necessary truth
possible worlds, 12, 104, 137, 302
predicate, 18, 202, 245

extension of, 252
logic, 192

premiss, 2, 7, 15
suppressed, 39

Priest, G., 349, 350
proposition, 15–16

atomic, 60
propositional logic, 124
proof, 37

annotated, 38, 65
downward-joining tree, 66, 185
downward-splitting tree, 66, 185–187

q-entailment, 262
q-equivalence, 313
q-logical truth, 263, 322–323
q-validity, 193, 250–251, 262, 266–267
q-valuation, 250–253
q-value,

of constant, 251
of predicate, 252

QL
atomic wff, 202
individual constant, 202

individual variable, 204
predicate, 202
quantifier, 204
semantics
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