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CHAPTER 1

Introduction
This book started after teaching an intensive course on algorithms to working 

programmers in Kyiv, in spring 2016. It took more than 3 years to complete, and, 

meanwhile, I also did three iterations of the course. Its aim is to systematically explain 

how to write efficient programs and, also, the approaches and tools for determining why 

the program isn’t efficient enough. In the process, it will teach you some Lisp and show 

in action the technics of algorithmic development. And, even if you won’t program in 

Lisp afterward, you’ll still be able to utilize the same approaches and tools or be inclined 

to ask why they aren’t available in your language of choice from its authors. :)

 Why Algorithms Matter
In our industry, currently, there seems to prevail a certain misunderstanding of the 

importance of algorithms for the working programmer. There’s often a disconnect between 

the algorithmic questions posed at the job interviews and the everyday essence of the 

same job. That’s why opinions are voiced that you, actually, don’t have to know CS to be 

successful in the software developer’s job. That’s true. You don’t, but you’d better do if 

you want to be in the notorious top 10% programmers. For several reasons. One is that, 

actually, you can find room for algorithms almost at every corner of your work—provided 

you are aware of their existence. To put it simply, the fact that you don’t know a more 

efficient or elegant solution to a particular programming problem doesn’t make your code 

less crappy. The current trend in software development is that, although the hardware 

becomes more performant, the software becomes slower faster. There are two reasons for 

that, in my humble opinion:

 1. Most of the application programmers don’t know the inner 

workings of the underlying platforms. And the number of platform 

layers keeps increasing.

https://doi.org/10.1007/978-1-4842-6428-7_1#DOI
http://nathanmarz.com/blog/the-limited-value-of-a-computer-science-education.html
https://news.ycombinator.com/item?id=9695102
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 2. Most of the programmers also don’t know enough algorithms 

and algorithmic development technics to squeeze the most from 

their code. And often this means a loss of one or more orders of 

magnitude of performance.

In the book, I’ll address, primarily, the second issue but will also try to touch on the 

first whenever possible.

Besides, learning the art of solving difficult algorithmic problems trains the brain and 

makes it more apt to solving various other problems, in the course of your day-to-day 

work.

Finally, you will be speaking the same lingua franca as other advanced 

programmers—the tongue that transcends the mundane differences of particular 

programming languages. And you’ll gain a more detached view of those differences, 

freeing your mind from the dictate of a particular set of choices exhibiting in any one of 

them.

One of the reasons for this gap of understanding of the value of algorithms, probably, 

originates from how they are usually presented in the computer science curriculum. 

First, it is often done in a rather theoretical or “mathematical” way with rigorous proofs 

and lack of connection to the real world. Second, the audience is usually freshmen or 

sophomores who don’t have a lot of practical programming experience and thus can’t 

appreciate and relate how this knowledge may be applied to their own programming 

challenges (because they didn’t have those yet)—rather, most of them are still at the level 

of struggling to learn well their first programming language and, in their understanding 

of computing, are very much tied to its choices and idiosyncrasies.

In this book, the emphasis is made on the demonstration of the use of the described 

data structures and algorithms in various areas of computer programming. Moreover, 

I anticipate that the self-selected audience will comprise programmers with some 

experience in the field. This makes a significant difference in the set of topics that are 

relevant and how they can be conveyed. Another thing that helps a lot is when the 

programmer has a good command of more than one programming language, especially 

if the languages are from different paradigms: static and dynamic, object-oriented and 

functional. These factors allow bridging the gap between “theoretical” algorithms and 

practical coding, making the topic accessible, interesting, and inspiring.

Chapter 1  IntroduCtIon
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This is one answer to a possible question: Why write another book on algorithms? 

Indeed, there are several good textbooks and online courses on the topic, of which I’d 

recommend the most Steven Skiena’s The Algorithm Design Manual. Yet, as I said, this 

book is not at all academic in presentation of the material, which is a norm for other 

textbooks. Except for simple arithmetic, it contains almost no “math” or proofs. And, 

although proper attention is devoted to algorithmic complexity, it doesn’t deal with 

theories of complexity or computation and similar scientific topics. Besides, all the 

algorithms and data structures come with some example practical use cases. Last, but 

not least, there’s no book on algorithms in Lisp, and, in my opinion, it’s a great topic 

to introduce the language. The next chapter will provide a crash course to grasp the 

basic ideas, and then we’ll discuss various Lisp programming approaches alongside the 

algorithms they will be used to implement.

This is an introductory book, not a bible of algorithms. It will draw a comprehensive 

picture and cover all topics necessary for further advancement of your algorithm 

knowledge. However, it won’t go too deep into the advanced topics, such as persistent 

or probabilistic data structures and advanced tree, graph, and optimization algorithms, 

as well as algorithms for particular fields, such as machine learning, cryptography, or 

computational geometry. All of those fields require (and usually have) separate books of 

their own.

 A Few Words About Lisp
For a long time, I’d been contemplating writing an introductory book on Lisp, but 

something didn’t add up. I couldn’t see the coherent picture, in my mind. And then I 

got a chance to teach algorithms with Lisp. From my point of view, it’s a perfect fit for 

demonstrating data structures and algorithms (with a caveat that students should be 

willing to learn it), while discussing the practical aspects of those algorithms allows to 

explain the language naturally. At the same time, this topic requires almost no endeavor 

into the adjacent areas of programming, such as architecture and program design, 

integration with other systems, user interface, and use of advanced language features, 

such as types or macros. And that is great because those topics are overkill for an 

introductory text and they are also addressed nicely and in great detail elsewhere (see 

Practical Common Lisp and ANSI Common Lisp).

Chapter 1  IntroduCtIon
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Why Lisp is great for algorithmic programs? One reason is that the language was 

created with such use case in mind. It has support for all the proper basic data structures, 

such as arrays, hash-tables, linked lists, strings, and tuples. It also has a numeric tower, 

which means no overflow errors and, so, a much saner math. Next, it’s created for the 

interactive development style, so the experimentation cycle is very short, there’s no 

compile-wait-run-revise red tape, and there are no unnecessary constraints, like the 

need for additional annotations (a.k.a. types), prohibition of variable mutation, or other 

stuff like that. You just write a function in the REPL (Read-Eval-Print Loop), run it, and 

see the results. In my experience, Lisp programs look almost like pseudocode. Compared 

to other languages, they may be slightly more verbose at times but are much more clear, 

simple, and directly compatible with the algorithm’s logical representation.

But why not choose a popular programming language? The short answer is that it 

wouldn’t have been optimal. There are four potential mainstream languages that could 

be considered for this book: C++, Java, Python, and JavaScript (JS). (Surely, there’s 

already enough material on algorithms that use them.) The first two are statically typed, 

which is, in itself, a big obstacle to using them as teaching languages. Java is also too 

verbose, while C++ too low level. These qualities don’t prevent them from being used 

in the majority of production algorithm code, in the wild, and you’ll, probably, end 

up dealing with such code sooner than later if not already. Besides, their standard 

libraries provide great examples of practical algorithm implementation. But I believe 

that gaining good conceptual understanding will allow to easily adapt to one of these 

languages if necessary, while learning them in parallel with diving into algorithms 

creates unnecessary complexity. Python and JS are, in many ways, the opposite choices: 

they are dynamic and provide some level of an interactive experience (albeit inferior 

compared to Lisp), but those languages are in many ways anti-algorithmic. Trying to be 

simple and accessible, they hide too much from the programmer and don’t give enough 

control of the concrete data. Teaching algorithms, using their standard libraries, seems 

like cheating to me as their basic data structures often are not what they claim to be. Lisp 

is in the middle: it is both highly interactive and gives enough control of the environment 

while not being too verbose and demanding. And the price to pay—the unfamiliar 

syntax—is really small, in my humble opinion.

Chapter 1  IntroduCtIon
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Mostly, this book will be dedicated to showing Lisp code and explaining it. Yet, all 

such code snippets will fall into two quite different categories:

• One kind will represent complete code blocks (with occasional 

small omissions left as exercises for you) that could be run in the 

Lisp environment, accompanied with the examples of its invocation. 

These code blocks are accessible in a dedicated GitHub repository.

• The other kind is represented by sketches used to explain how the 

presented algorithms will be built into larger systems (usually, you’ll 

see these sketches in the “in action” section of each chapter). Such 

sketches will not be runnable as they may require a lot of supporting 

code and/or infrastructure and should be treated only as an outline.

Chapter 1  IntroduCtIon
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CHAPTER 2

Algorithmic Complexity
Complexity is a point that will be mentioned literally on every page of this book; the 

discussion of any algorithm or data structure can’t avoid this topic. After correctness, 

it is the second most important quality of every algorithm. Moreover, often correctness 

alone doesn’t matter if complexity is neglected, while the opposite is possible: to 

compromise correctness somewhat in order to get significantly better complexity. By 

and large, algorithm theory differs from other subjects of CS in that it concerns not about 

presenting a working (correct) way to solve some problem but about finding an efficient 

way to do it, where efficiency is understood as the minimal (or admissible) number of 

operations performed and occupied memory space.

In principle, the complexity of an algorithm is the dependence of the number of 

operations that will be performed on the size of the input. It is crucial to the computer 

system’s scalability: it may be easy to solve the programming problem for a particular set 

of inputs, but how will the solution behave if the input is doubled or increased tenfold or 

millionfold? This is not a theoretical question, and an analysis of any general-purpose 

algorithm should have a clear answer to it.

Complexity is a substantial research topic: a whole separate branch of CS—

complexity theory—exists to study it. Yet, throughout the book, we’ll try to utilize the 

end results of such research without delving deep into rigorous proofs or complex 

math, especially since, in most of the cases, measuring complexity is a matter of simple 

counting. Let’s look at the following illustrative example:

(defun mat-max (mat)

  (let (max)

    (dotimes (i (array-dimension mat 0))

      (dotimes (j (array-dimension mat 1))

        (when (or (null max)

                  (> (aref mat i j) max))

          (setf max (aref mat i j)))))

    max))

https://doi.org/10.1007/978-1-4842-6428-7_2#DOI
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This function finds the maximum element of a two-dimensional array (matrix):

CL-USER> (mat-max #2A((1 2 3) (4 5 6)))

6

What’s its complexity? To answer, we can just count the number of operations 

performed: at each iteration of the inner loop, there are two comparisons involving 

one array access, and, sometimes, if the planets align, we perform another access for 

assignment. The inner loop is executed (array-dimension mat 1) times (let’s call it m 

where m=3) and the outer one (array-dimension mat 0) (n=2, in the example). If we 

sum this all up, we’ll get n * m * 4 as an upper limit, for the worst case when each 

sequent array element is larger than the previous. As a rule of thumb, each loop adds 

multiplication to the formula, and each sequential block adds a plus sign.

In this calculation, there are two variables (array dimensions n and m) and one 

constant (the number of operations performed for each array element). There exists 

a special notation—Big-O—used to simplify the representation of end results of such 

complexity arithmetic. In it, all constants are reduced to 1, and thus m * 1 becomes just 

m, and also since we don’t care about individual array dimension differences, we can 

just put n * n instead of n * m. With such simplification, we can write down the final 

complexity result for this function: O(nˆ2). In other words, our algorithm has quadratic 

complexity (which happens to be a variant of a broader class called “polynomial 

complexity”) in array dimensions. It means that by increasing the dimensions of our 

matrix ten times, we’ll increase the number of operations of the algorithm 100 times. 

In this case, however, it may be more natural to be concerned with the dependence of 

the number of operations on the number of elements of the matrix, not its dimensions. 

We can observe that nˆ2 is the actual number of elements, so it can also be written as 

just n—if by n we mean the number of elements and then the complexity is linear in the 

number of elements (O(n)). As you see, it is crucial to understand what n we are talking 

about!

There are just a few more things to know about Big-O complexity before we can start 

using it to analyze our algorithms:

 1. There are six major complexity classes of algorithms:

• Constant-time (O(1))

• Sublinear (usually, logarithmic—O(log n))

• Linear (O(n)) and superlinear (O(n * log n))
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• Higher-order polynomial (O(nˆc), where c is some constant 

greater than 1)

• Exponential (O(cˆn), where c is usually 2 but, at least, greater 

than 1)

• Just plain lunatic complex (O(n!) and so forth)—I call them 

O(mg), jokingly

Each class is a step-function change in performance, especially, at 

scale. We’ll talk about each one of them as we’ll be discussing the 

particular examples of algorithms falling into it.

 2. Worst-case vs. average-case behavior. In this example, we saw 

that there may be two counts of operations: for the average case, 

we can assume that approximately half of the iterations will 

require assignment (which results in 3,5 operations in each inner 

loop), and, for the worst case, the number will be exactly 4. As 

Big-O reduces all numbers to 1, for this example, the difference 

is irrelevant, but there may be others, for which it is much more 

drastic and can’t be discarded. Usually, for such algorithms, both 

complexities should be mentioned (alongside ways to avoid 

worst-case scenarios): a good example is quicksort algorithm 

described in Chapter 5.

 3. We have also seen the so-called “constant factors hidden by the 

Big-O notation.” That is, from the point of view of algorithmic 

complexity, it doesn’t matter if we need to perform 3 operations in 

the inner loop or 30. Yet, it is quite important in practice, and we’ll 

also discuss it when examining binary search. Even more, some 

algorithms with better theoretical complexity may be worse in 

many practical applications due to these hidden factors (e.g., until 

the dataset reaches a certain size).

 4. Finally, besides execution time complexity, there’s also space 

complexity, which instead of the number of operations measures 

the amount of storage space used proportional to the size of the 

input. In general, similar approaches are applied to its estimation.
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CHAPTER 3

A Crash Course in Lisp
The introductory post for this book, unexpectedly, received quite a lot of attention, 

which is nice since it prompted some questions, and one of them I planned to address in 

this chapter.

I expect that there will be two main audiences for this book:

• People who’d like to advance in algorithms and writing efficient 

programs—the major group

• Lispers, either accomplished or aspiring, who also happen to be 

interested in algorithms

This chapter is intended primarily for the first group. After reading it, the rest of the 

Lisp code from the book should become understandable to you. Besides, you’ll know the 

basics to run Lisp and experiment with it if you will so desire.

As for the lispers, you might be interested to glance over this part just to understand 

my approach to utilizing the language throughout the book.

 The Core of Lisp
To effortlessly understand Lisp, you’ll have to forget, for a moment, any concepts of how 

programming languages should work that you might have acquired from your prior 

experience in coding. Lisp is simpler; and when people bring their Java, C, or Python 

approaches to programming with it, first of all, the results are suboptimal in terms 

of code quality (simplicity, clarity, and beauty), and, what’s more important, there’s 

much less satisfaction from the process, not to mention very few insights and little new 

knowledge gained.

https://doi.org/10.1007/978-1-4842-6428-7_3#DOI
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It is much easier to explain Lisp if we begin from a blank slate. In essence, all there is 

to it is just an evaluation rule: Lisp programs consist of forms that are evaluated by the 

compiler. There are 3 + 2 ways how that can happen:

• Self-evaluation: All literal constants (like 1, "hello", etc.) are 

evaluated to themselves. These literal objects can be either built-in 

primitive types (1) or data structures ("hello").

• Symbol evaluation: Separate symbols are evaluated as names of 

variables, functions, types, or classes depending on the context. The 

default is variable evaluation, that is, if we encounter a symbol foo, 

the compiler will substitute in its place the current value associated 

with this variable (more on this a little bit later).

• Expression evaluation: Compound expressions are formed by 

grouping symbols and literal objects with parentheses. The form 

(oper 1 foo) is considered a “functional” expression: the operator 

name is situated in the first position (head) and its arguments, if any, 

in the subsequent positions (rest).

There are three ways to evaluate a Lisp compound expression:

• There are 25 special operators that are defined in lower-level code 

and may be considered something like axioms of the language: 

they are predefined, always present, and immutable. Those are the 

building blocks, on top of which all else is constructed, and they 

include the sequential block operator, the conditional expression if, 

and the unconditional jump go, to name a few. If oper is the name of 

a special operator, the low-level code for this operator that deals with 

the arguments in its own unique way is executed.

• There’s also ordinary function evaluation: if oper is a function name, 

first, all the arguments are evaluated with the same evaluation rule, 

and then the function is called with the obtained values.
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• Finally, there’s macro evaluation. Macros provide a way to change the 

evaluation rule for a particular form. If oper names a macro, its code 

is substituted instead of our expression and then evaluated. Macros 

are a major topic in Lisp, and they are used to build a large part of the 

language as well as provide an accessible way, for the users, to extend 

it. However, they are orthogonal to the subject of this book and won’t 

be discussed in further detail here. You can delve deeper into macros 

in such books as On Lisp or Let Over Lambda.

It’s important to note that, in Lisp, there’s no distinction between statements and 

expressions, no special keywords, no operator precedence rules, and other similar 

arbitrary stuff you can stumble upon in other languages. Everything is uniform; 

everything is an expression in a sense that it will be evaluated and return some value.

 A Code Example
To sum up, let’s consider an example of the evaluation of a Lisp form. The following one 

implements the famous binary search algorithm (that we’ll discuss in more detail in one 

of the following chapters):

(when (> (length vec) 0)

  (let ((beg 0)

        (end (length vec)))

    (do ()

        ((= beg end))

      (let ((mid (floor (+ beg end) 2)))

        (if (> (aref vec mid) val)

            (setf end mid)

            (setf beg (1+ mid)))))

    (values beg

            (aref vec beg)

            (= (aref vec beg) val))))

Chapter 3  a Crash Course in Lisp
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It is a compound form. In it, the so-called top-level form is when, which is a macro for 

a one-clause conditional expression: an if with only the true branch. First, it evaluates 

the expression (> (length vec) 0), which is an ordinary function for a logical operator 

> applied to two args: the result of obtaining the length of the contents of the variable 

vec and a constant 0. If the evaluation returns true, that is, the length of vec is greater 

than 0, the rest of the form is evaluated in the same manner. The result of the evaluation, 

if nothing exceptional happens, is either false (which is called nil, in Lisp) or three 

values returned from the last form (values ...). In the following, we’ll talk about other 

operators shown here.

But first I need to say a few words about RUTILS. It is a third-party library developed 

by me that provides a number of extensions to the standard Lisp syntax and its basic 

operators. The reason for its existence is that the Lisp standard is not going to change 

ever, and, as everything in this world, it has its flaws. Besides, our understanding of what 

constitutes elegant and efficient code evolves over time. The great advantage of the Lisp 

standard, however, which counteracts the issue of its immutability, is that its authors had 

put into it multiple ways to modify and evolve the language at almost all levels starting 

from even the basic syntax. And this addresses our ultimate need, after all: we’re not 

so interested in changing the standard as in changing the language. So RUTILS is one of 

the ways of evolving Lisp; and its purpose is to make programming in it more accessible 

without compromising the core principles of the language. So I will utilize a number 

of RUTILS features throughout this book, explaining them as needed. Surely, using a 

particular third-party extension is a question of preference and taste, and it might not 

be approved by some of the Lisp old-times, but no worries: in your code, you’ll be able 

to easily swap them for your favorite alternatives. Yet, completely rejecting this option is 

puristic and impractical.

 The REPL
Lisp programs are supposed to be run not only in a one-off fashion of simple scripts but also 

as live systems that operate over long periods of time experiencing change not only of their 

data but also code. This general way of interaction with a program is called Read-Eval-Print 

Loop (REPL), which literally means that the Lisp compiler reads a form, evaluates it with the 

aforementioned rule, prints the results back to the user, and loops over.

Chapter 3  a Crash Course in Lisp
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REPL is the default way to interact with a Lisp program, and it is very similar to 

the Unix shell. When you run your Lisp (e.g., by entering sbcl at the shell), you’ll drop 

into the REPL. We’ll precede all REPL-based code interactions in the book with a REPL 

prompt (CL-USER> or similar). Here’s an example one:

CL-USER> (print "Hello world")

"Hello world"

"Hello world"

A curious reader may be asking why "Hello world" is printed twice. It’s a proof 

that everything is an expression in Lisp. :) The print “statement,” unlike in most other 

languages, not only prints its argument to the console (or other output streams) but also 

returns it as is. This comes very handy when debugging, as you can wrap almost any 

form in a print not changing the flow of the program.

Obviously, if the interaction is not necessary, just the read-eval part may remain. But, 

what’s more important, Lisp provides a way to customize every stage of the process:

• At the read stage, special syntax (“syntax sugar”) may be introduced 

via a mechanism called reader macros.

• Ordinary macros are a way to customize the eval stage.

• The print stage is conceptually the simplest one, and there’s also 

a standard way to customize object printing via the Common Lisp 

Object System’s (CLOS) print-object function.

• The loop stage can be replaced by any desired program logic.

 Basic Expressions
The structural programming paradigm states that all programs can be expressed in terms 

of three basic constructs: sequential execution, branching, and looping. Let’s see how 

these operators are expressed in Lisp.
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 Sequential Execution
The simplest program flow is sequential execution. In all imperative languages, it is what 

is assumed to happen if you put several forms in a row and evaluate the resulting code 

block, like this:

CL-USER> (print "hello") (+ 2 2)

"hello"

4

The value returned by the last expression is returned as the value of the whole 

sequence.

Here, the REPL interaction forms an implicit unit of sequential code. However, there 

are many cases when we need to explicitly delimit such units. This can be done with the 

block operator:

CL-USER> (block test

           (print "hello")

           (+ 2 2))

"hello"

4

Such block has a name (in this example, test). This allows to prematurely end its 

execution by using an operator return-from:

CL-USER> (block test

           (return-from test 0)

           (print "hello")

           (+ 2 2))

0

A shorthand return is used to exit from blocks with a nil name (which are implicit 

in most of the looping constructs we’ll see further):

CL-USER> (block nil

           (return 0)

           (print "hello")

           (+ 2 2))

0
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Finally, if we don’t even plan to ever prematurely return from a block, we can use the 

progn operator that doesn’t require a name:

CL-USER> (progn

           (print "hello")

           (+ 2 2))

"hello"

4

 Branching
Conditional expressions calculate the value of their first form and, depending on it, 

execute one of several alternative code paths. The basic conditional expression is if:

CL-USER> (if nil

             (print "hello")

             (print "world"))

"world"

"world"

As we’ve seen, nil is used to represent logical falsity, in Lisp. All other values are 

considered logically true, including the symbol t which directly has the meaning of 

truth.

And when we need to do several things at once, in one of the conditional branches, 

it’s one of the cases when we need to use progn or block:

CL-USER> (if (+ 2 2)

             (progn (print "hello")

                    4)

             (print "world"))

"hello"

4

However, often we don’t need both branches of the expressions, that is, we don’t care 

what will happen if our condition doesn’t hold (or holds). This is such a common case 

that there are special expressions for it in Lisp—when and unless:

CL-USER> (when (+ 2 2)
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           (print "hello")

           4)

"world"

4

CL-USER> (unless (+ 2 2)

           (print "hello")

           4)

NIL

As you see, it’s also handy because you don’t have to explicitly wrap the sequential 

forms in a progn.

One other standard conditional expression is cond, which is used when we want to 

evaluate several conditions in a row:

CL-USER> (cond

           ((typep 4 'string)

            (print "hello"))

           ((> 4 2)

            (print "world")

            nil)

           (t

            (print "can't get here")))

"world"

NIL

The t case is a catch-all that will trigger if none of the previous conditions worked (as 

its condition is always true). The preceding code is equivalent to the following:

(if (typep 4 'string)

    (print "hello")

    (if (> 4 2)

        (progn

          (print "world")

          nil)

        (print "can't get here")))
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There are many more conditional expressions in Lisp, and it’s very easy to define 

your own with macros (it’s actually how when, unless, and cond are defined), and when 

there arises a need to use a special one, we’ll discuss its implementation.

 Looping
Like with branching, Lisp has a rich set of looping constructs, and it’s also easy to define 

new ones when necessary. This approach is different from the mainstream languages 

that usually have a small number of such statements and, sometimes, provide an 

extension mechanism via polymorphism. And it’s even considered to be a virtue justified 

by the idea that it’s less confusing for the beginners. It makes sense to a degree. Still, in 

Lisp, both generic and custom approaches manage to coexist and complement each 

other. Yet, the tradition of defining custom control constructs is very strong. Why? One 

justification for this is the parallel to human languages: indeed, when and unless, as well 

as dotimes and loop, are either directly words from the human language or derived from 

natural language expressions. Our mother tongues are not so primitive and dry. The 

other reason is because you can. That is, it’s so much easier to define custom syntactic 

extensions in Lisp than in other languages that sometimes it’s just impossible to resist. :) 

And in many use cases, they make the code much simpler and clearer.

Anyway, for a complete beginner, actually, you have to know the same number of 

iteration constructs as in any other language. The simplest one is dotimes that iterates 

the counter variable a given number of times (from 0 to (- times 1)) and executes the 

body on each iteration. It is analogous to for (int i = 0; i < times; i++) loops 

found in C-like languages:

CL-USER> (dotimes (i 3)

           (print i))

0

1

2

NIL

The return value is nil by default, although it may be specified in the loop header.
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The most versatile (and low-level) looping construct, on the other hand, is do:

CL-USER> (do ((i 0 (1+ i))

              (prompt (read-line) (read-line)))

             ((> i 1) i)

           (print (pair i prompt))

           (terpri))

foo

(0 "foo")

bar

(1 "bar")

2

do iterates a number of variables (zero or more) that are defined in the first part 

(here, i and prompt) until the termination condition in the second part is satisfied (here, 

(> i 1)) and, as with dotimes (and other do-style macros), executes its body—the rest 

of the forms (here, print and terpri, which is a shorthand for printing a newline). read- 

line reads from standard input until newline is encountered, and 1+ returns the current 

value of i increased by 1.

All do-style macros (and there’s quite a number of them, both built-in and provided 

from external libraries: dolist, dotree, do-register-groups, dolines, etc.) have an 

optional return value. In do, it follows the termination condition—here, just return the 

final value of i.

Besides do-style iteration, there’s also a substantially different beast in CL 

ecosystem—the infamous loop macro. It is very versatile, although somewhat unlispy 

in terms of syntax and with a few surprising behaviors. But elaborating on it is beyond 

the scope of this book, especially since there’s an excellent introduction to loop in Peter 

Seibel’s LOOP for Black Belts.

Many languages provide a generic looping construct that is able to iterate an 

arbitrary sequence, a generator, and other similar-behaving things—usually, some 

variant of foreach. We’ll return to such constructs after speaking about sequences in 

more detail.
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And there’s also an alternative iteration philosophy: the functional one, which is 

based on higher-order functions (map, reduce, and similar)—we’ll cover it in more detail 

in the following chapters also.

 Procedures and Variables
We have covered the three pillars of structural programming, but one essential, in fact, 

the most essential, construct still remains—variables and procedures.

What if I told you that you can perform the same computation many times, but 

changing some parameters… OK, OK, pathetic joke. So procedures are the simplest way 

to reuse computations, and procedures accept arguments, which allows to pass values 

into their bodies. A procedure, in Lisp, is called lambda. You can define one like this: 

(lambda (x y) (+ x y)). When used, such procedure—also often called a function, 

although it’s quite different from what we consider a mathematical function, and, in this 

case, called an anonymous function as it doesn’t have any name—will produce the sum 

of its inputs:

CL-USER> ((lambda (x y) (+ x y)) 2 2)

4

It is quite cumbersome to refer to procedures by their full code signature, and an 

obvious solution is to assign names to them. A common way to do that in Lisp is via the 

defun macro:

CL-USER> (defun add2 (x y) (+ x y))

ADD2

CL-USER> (add2 2 2)

4

The arguments of a procedure are examples of variables. Variables are used to name 

memory cells whose contents are used more than once and may be changed in the 

process. They serve different purposes:

• To pass data into procedures

• As temporary placeholders for some varying data in code blocks (like 

loop counters)

• As a way to store computation results for further reuse
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• To define program configuration parameters (like the OS 

environment variables, which can also be thought of as arguments to 

the main function of our program)

• To refer to global objects that should be accessible from anywhere in 

the program (like the *standard-output* stream)

• And more

Can we live without variables? Theoretically, well, maybe. At least, there’s the so- 

called point-free style of programming that strongly discourages the use of variables. 

But, as they say, don’t try this at home (at least, until you know perfectly well what you’re 

doing :) Can we replace variables with constants or single-assignment variables, that 

is, variables that can’t change over time? Such approach is promoted by the so-called 

purely functional languages. To a certain degree, yes. But, from the point of view of 

algorithm development, it makes life a lot harder by complicating many optimizations if 

not totally outruling them.

So how to define variables in Lisp? You’ve already seen some of the variants: 

procedural arguments and let bindings. Such variables are called local or lexical, in 

Lisp parlance. That’s because they are only accessible locally throughout the execution 

of the code block, in which they are defined. let is a general way to introduce such local 

variables, which is lambda in disguise (a thin layer of syntax sugar over it):

CL-USER> (let ((x 2))

           (+ x x))

4

CL-USER> ((lambda (x) (+ x x))

          2)

4

While with lambda you can create a procedure in one place, possibly assign it to a 

variable (that’s what, in essence, defun does), and then apply many times in various 

places, with let you define a procedure and immediately call it, leaving no way to 

store it and reapply again afterward. That’s even more anonymous than an anonymous 

function! Also, it requires no overhead, from the compiler. But the mechanism is the 

same.

Creating variables via let is called binding, because they are immediately assigned 

(bound with) values. It is possible to bind several variables at once:
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CL-USER> (let ((x 2)

               (y 2))

           (+ x y))

4

However, we often want to define a row of variables with next ones using the 

previous ones’ values. It is cumbersome to do with let, because you need nesting (as 

procedural arguments are assigned independently):

(let ((len (length list)))

  (let ((mid (floor len 2)))

    (let ((left-part (subseq list 0 mid))

          (right-part (subseq list mid)))

      ...)))

To simplify this use case, there’s let*:

(let* ((len (length list))

       (mid (floor len 2))

       (left-part (subseq list 0 mid))

       (right-part (subseq list mid)))

  ...)

However, there are many other ways to define variables: bind multiple values 

at once; perform the so-called “destructuring” binding when the contents of a data 

structure (usually, a list) are assigned to several variables, first element to the first 

variable, second to the second, and so on; access the slots of a certain structure, and so 

on. For such use cases, there’s with binding from RUTILS, which works like let* with 

extra powers. Here’s a very simple example:

(with ((len (length list))

       (mid rem (floor len 2))

       ;; this group produces a list of 2 sublists that are bound

       ;; to left-part and right-part

       ;; NB. The ';' character starts a comment here

       ((left-part right-part) (group mid list)))

 ...
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In the code throughout this book, you’ll only see these two binding constructs: let 

for trivial and parallel bindings and with for all the rest.

As we said, variables may not only be defined, or they’d be called “constants” 

instead, but also modified. To alter the variable’s value, we’ll use the setf operator:

CL-USER> (let ((x 2))

           (print (+ x x))

           (setf x 4)

           (+ x x))

4

8

Modification, generally, is a dangerous construct as it can create unexpected action- 

at- a-distance effects, when changing the value of a variable in one place of the code 

affects the execution of a different part that uses the same variable. This, however, can’t 

happen with lexical variables: each let creates its own scope that shields the previous 

values from modification (just as passing arguments to a procedure call and modifying 

them within the call doesn’t alter those values, in the calling code):

CL-USER> (let ((x 2))

           (print (+ x x))

           (let ((x 4))

             (print (+ x x)))

           (print (+ x x)))

4

8

4

Obviously, when you have two lets in different places using the same variable name, 

they don’t affect each other, and these two variables are, actually, totally distinct.

Yet, sometimes it is useful to modify a variable in one place and see the effect in 

another. The variables, which have such behavior, are called global or dynamic (and also 

special, in Lisp jargon). They have several important purposes. One of them is defining 

important configuration parameters that need to be accessible anywhere. The other 

is referencing general-purpose singleton objects like the standard streams or the state 

of the random number generator. Yet another is pointing to some context that can be 

altered in certain places subject to the needs of a particular procedure (for instance, 
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the *package* global variable determines in what package we operate—CL-USER in all 

previous examples). More advanced uses for global variables also exist. The common 

way to define a global variable is with defparameter, which specifies its initial value:

(defparameter *connection* nil

   "A default connection object.") ; this is a docstring describing the 

variable

Global variables, in Lisp, usually have so-called “earmuffs” around their names 

to remind the user of what they are dealing with. Due to their action-at-a-distance 

feature, it is not the safest programming language feature, and even a “global variables 

considered harmful” mantra exists. Lisp is, however, not one of those squeamish 

languages, and it finds many uses for special variables. By the way, they are called 

“special” due to a special feature, which greatly broadens the possibilities for their 

sane usage: if bound in let, they act as lexical variables, that is, the previous value is 

preserved and restored upon leaving the body of a let:

CL-USER> (defparameter *temp* 1)

*TEMP*

CL-USER> (print *temp*)

1

CL-USER> (progn

           (let ((*temp* 2))

             (print *temp*)

             (setf *temp* 4)

             (print *temp*))

           *temp*)

2

4

1

Procedures in Lisp are first-class objects. This means the one you can assign to a 

variable as well as inspect and redefine at runtime and, consequently, do many other 

useful things with. The funcall operator1 will call a procedure passed to it as an argument:

1 RUTILS provides an abbreviation of the standard funcall to simply call. It was surely fun to be 
able to call a function from a variable back in the 1960s, but now it has become so much more 
common that there’s no need for the prefix. ;)
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CL-USER> (funcall 'add2 2 2)

4

CL-USER> (let ((add2 (lambda (x y) (+ x y))))

           (funcall add2 2 2))

4

In fact, defining a function with defun also creates a global variable, although in the 

function namespace. Functions, types, classes—all of these objects are usually defined as 

global. However, for functions, there’s a way to define them locally with flet:

CL-USER> (foo 1)

;; ERROR: The function CL-USER::FOO is undefined.

CL-USER> (flet ((foo (x) (1+ x)))

           (foo 1))

2

CL-USER> (foo 1)

;; ERROR: The function CL-USER::FOO is undefined.

 Comments
Finally, there’s one more syntax we need to know: how to put comments in the code. 

Only losers don’t comment their code, and comments will be used extensively, 

throughout this book, to explain some parts of the code examples inside of them. 

Comments, in Lisp, start with a ; character and end at the end of a line. So the 

following snippet is a comment: ; this is a comment. There’s also a common style 

of commenting, when short comments that follow the current line of code start with 

a single ;, longer comments for a certain code block precede it, occupy the whole line 

or a number of lines, and start with ;;, and comments for a code section that include 

several Lisp top-level forms (global definitions) start with ;;; and also occupy whole 

lines. Besides, each global definition can have a special comment-like string, called the 

“docstring,” that is intended to describe its purpose and usage and that can be queried 

programmatically. To put it all together, this is how different comments may look like:

;;; Some code section

(defun this ()

  "This has a curious docstring."
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  ...)

(defun that ()

  ...

  ;; this is an interesting block don't you find?

  (block interesting

    (print "hello")))  ; it prints hello

 Getting Started
I strongly encourage you to play around with the code presented in the following 

chapters of the book. Try to improve it, find issues with it, and come up with fixes 

and measure and trace everything. This will not only help you master some Lisp but 

also understand much deeper the descriptions of the discussed algorithms and data 

structures, their pitfalls, and corner cases. Doing that is, in fact, quite easy. All you need 

is install some Lisp (preferably, SBCL or CCL) and a couple of add-ons.

As I said in the preceding text, the usual way to work with Lisp is interacting with 

its REPL. Running the REPL is fairly straightforward. On my Linux Mint, I’d run the 

following commands:

$ apt-get install sbcl rlwrap

...

$ rlwrap sbcl

...

*  (print "hello world")

"hello world"

"hello world"

*

* is the raw Lisp prompt. It’s, basically, the same as the CL-USER> prompt you’ll see 

in SLIME, but less powerful in terms of code completion, debugging, and so on. You can 

also run a Lisp script file: sbcl --script hello.lisp. If it contains just a single (print 

"hello world") line, we’ll see the “hello world” phrase printed to the console.

This is a working but not the most convenient setup. A much more advanced 

environment is SLIME that works inside Emacs (a similar project for vim is called 
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SLIMV). There exist a number of other solutions: some Lisp implementations provide an 

IDE, and some IDEs and editors provide integration.

In our experiments, we’ll often rely on third-party additions to the language. All of 

them will be prefixed with a package qualifier to clearly distinguish those extensions 

from the standard Lisp constructs. Most often you’ll see RUTILS operators bearing a 

prefix rtl. This will make the code look a bit heavier than it should (as usually such 

utility functions are imported and used on par with the standard ones). In the first 

edition of the book, all the REPL interactions were shown in the context of the RTL-USER 

package that is, basically, CL-USER + RUTILS, removing the necessity for using the rtl 

prefix. However, to make the code examples more in line with vanilla Common Lisp, we 

decided to fall back to the default way of basing the code in the package CL-USER and not 

importing any libraries, instead referring to their symbols by the fully qualified name.

To access RUTILS and other third-party libraries that will be mentioned throughout 

the book, you’ll first need to load them using Quicklisp—a Lisp extensions manager 

similar to Debian apt or Python pip. Here is what you’ll have to do after starting the 

REPL to be able to run most of the code examples from the following chapters:

* (ql:quickload :rutils)

* (named-readtables:in-readtable  rtl:rutils-readtable)

Well, that’s enough Lisp you’ll need to know to start. We’ll get acquainted with other 

Lisp concepts as they will become needed for the next chapters of this book. Yet, you’re 

all set to read and write Lisp programs. They may seem unfamiliar at first, but as you 

overcome the initial bump and get used to their parenthesized prefix surface syntax,  

I promise that you’ll be able to recognize and appreciate their clarity and conciseness.

So, as they say in Lisp land, happy hacking!
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CHAPTER 4

Data Structures
The next several chapters will be describing the basic data structures that every 

programming language provides, their usage, and the most important algorithms 

relevant to them. And we’ll start with the notion of a data structure and tuples or structs 

that are the most primitive and essential ones.

 Data Structures vs. Algorithms
Let’s start with a somewhat abstract question: What’s more important, algorithms or data 

structures?

From one point of view, algorithms are the essence of many programs, while data 

structures may seem secondary. Besides, although a majority of algorithms rely on 

certain features of particular data structures, not all do. Good examples of the data 

structure–relying algorithms are heapsort, search using BSTs, and Union-Find. And of 

the other type are the sieve of Eratosthenes and consistent hashing.

At the same time, some seasoned developers state that when the right data structure 

is found, the algorithm will almost write itself. Linus Torvalds, the creator of Linux, is 

quoted saying

Bad programmers worry about the code. Good programmers worry 

about data structures and their relationships.

https://doi.org/10.1007/978-1-4842-6428-7_4#DOI
http://programmers.stackexchange.com/questions/163185/torvalds-quote-about-good-programmer
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A somewhat less poignant version of the same idea is formulated in The Art of Unix 

Programming by Eric S. Raymond as the “Rule of Representation”:

Fold knowledge into data so program logic can be stupid and robust.

Even the simplest procedural logic is hard for humans to verify, but quite 
complex data structures are fairly easy to model and reason about. To see 
this, compare the expressiveness and explanatory power of a diagram  
of (say) a fifty-node pointer tree with a flowchart of a fifty-line program.  
Or, compare an array initializer expressing a conversion table with an 
equivalent switch statement. The difference in transparency and clarity is 
dramatic.

Data is more tractable than program logic. It follows that where you see a 
choice between complexity in data structures and complexity in code, 
choose the former. More: in evolving a design, you should actively seek ways 
to shift complexity from code to data.

Data structures are more static than algorithms. Surely, most of them allow change 

of their contents over time, but there are certain invariants that always hold. This allows 

reasoning by simple induction: consider only two (or at least a small number of) cases, 

the base one(s) and the general. In other words, data structures remove, in the main, the 

notion of time from consideration, and change over time is one of the major causes of 

program complexity. In other words, data structures are declarative, while most of the 

algorithms are imperative. The advantage of the declarative approach is that you don’t 

have to imagine (trace) the flow of time through it.

So this book, like most other books on the subject, is organized around data 

structures. The majority of the chapters present a particular structure and its properties 

and interface and explain the algorithms associated with it, showing its real-world use 

cases. Yet, some important algorithms don’t require a particular data structure, so there 

are also several chapters dedicated exclusively to them.

 The Data Structure Concept
Among data structures, there are, actually, two distinct kinds: abstract and concrete. The 

significant difference between them is that an abstract structure is just an interface (a 

set of operations) and a number of conditions or invariants that have to be met. Their 

particular implementations, which may differ significantly in efficiency characteristics 

and inner mechanisms, are provided by the concrete data structures. For instance, an 
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abstract data structure queue may be described by just two operations: enqueue that 

adds an item to the end of the queue and dequeue that gets an item at the beginning 

and removes it. There’s also a constraint that the items should be dequeued in the 

same order they are enqueued. Now, a queue may be implemented using a number of 

different underlying data structures: a linked or a double-linked list, an array, or a tree. 

Each one having different efficiency characteristics and additional properties beyond 

the queue interface. We’ll discuss both kinds in the book, focusing on the concrete 

structures and explaining their usage to implement a particular abstract interface.

The term data structures has somewhat fallen from grace in the recent years, being 

often replaced by conceptually more loaded notions of types, in the context of the 

functional programming paradigm, or classes, in the object-oriented one. Yet, both of 

those notions imply something more than just algorithmic machinery we’re exclusively 

interested in, for this book. First of all, they also distinguish among primitive values 

(numbers, characters, etc.) that are all non-distinct, in the context of algorithms. Besides, 

classes form a hierarchy of inheritance, while types are associated with algebraic rules 

of category theory. So we’ll stick to a neutral data structures term, throughout the book, 

with occasional mentions of the other variants where appropriate.

 Contiguous and Linked Data Structures
The current computer architectures consist of a central processor (CPU), memory, and 

peripheral input-output (IO) devices. The data is someway exchanged with the outside 

world via the IO devices, stored in memory, and processed by the CPU. And there’s a 

crucial constraint, called the von Neumann’s bottleneck: the CPU can only process 

data that is stored inside of it in a limited number of special basic memory blocks called 

registers. So it has to constantly move data elements back and forth between the registers 

and main memory (using intermediate cache to speed up the process). Now, there are 

things that can fit in a register and those that can’t. The first ones are called primitive and 

mostly unite those items that can be directly represented with integer numbers: integers 

proper, floats, and characters. Everything that requires a custom data structure to be 

represented can’t be put in a register as a whole.

Another item that fits into the processor register is a memory address. In fact, 

there’s an important constant—the number of bits in a general-purpose register, which 

defines the maximum memory address that a particular CPU may handle and, thus, the 

maximum amount of memory it can work with. For a 32-bit architecture it’s 2^32 (4 GB) 
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and for 64-bit—you’ve guessed it—2^64. A memory address is usually called a pointer, 

and if you put a pointer in a register, there are commands that allow the CPU to retrieve 

the data in-memory from where it points.

So there are two ways to place a data structure inside the memory:

• A contiguous structure occupies a single chunk of memory, and its 

contents are stored in adjacent memory blocks. To access a particular 

piece, we should know the offset of its beginning from the start of the 

memory range allocated to the structure. (This is usually handled 

by the compiler.) When the processor needs to read or write to this 

piece, it will use the pointer calculated as the sum of the base address 

of the structure and the offset. The examples of contiguous structures 

are arrays and structs.

• A linked structure, on the contrary, doesn’t occupy a contiguous 

block of memory, that is, its contents reside in different places. This 

means that pointers to a particular piece can’t be pre-calculated and 

should be stored in the structure itself. Such structures are much 

more flexible at the cost of this additional overhead both in terms of 

used space and time to access an element (which may require several 

hops when there’s nesting, while in the contiguous structure, it is 

always constant). There exist a multitude of linked data structures 

like lists, trees, and graphs.

 Tuples
In most languages, some common data structures, like arrays or lists, are “built-in,” but, 

under the hood, they will mostly work in the same way as any user-defined ones. To 

implement an arbitrary data structure, these languages provide a special mechanism 

called records, structs, objects, and so on. The proper name for it would be “tuple.” It is 

the data structure that consists of a number of fields, each one holding either a primitive 

value, another tuple, or a pointer to another tuple of any type. This way a tuple can 

represent any structure, including nested and recursive ones. In the context of type 

theory, such structures are called product types.

A tuple is an abstract data structure, and its sole interface is the field accessor 

function: by name (a named tuple) or index (an anonymous tuple). It can be 

Chapter 4  Data StruCtureS



33

implemented in various ways, although a contiguous variant with constant-time access 

is preferred. However, in many languages, especially dynamic, programmers often use 

lists or dynamic arrays to create throw-away ad hoc tuples. Python has a dedicated tuple 

data type that is often used for this purpose, which is a linked data structure under the 

hood. The following Python function will return a tuple (written in parens) of a decimal 

and remainder parts of the number x:

def truncate(x):

    dec = int(x)

    rem = x - dec

    return (dec, rem)

This is a simple and not very efficient way that may have its place when the number 

of fields is small and the lifetime of the structure is short. However, a better approach 

both from the point of view of efficiency and code clarity is to use a predefined structure. 

In Lisp, a tuple is called “struct” and is defined with defstruct, which uses a contiguous 

representation by default (although there’s an option to use a linked list under the hood). 

The following is the definition of a simple pair data structure that has two fields (called 

“slots” in Lisp parlance)—left and right:

(defstruct pair

  left right)

The defstruct macro, in fact, generates several definitions: of the struct type, its 

constructor that will be called make-pair and have two keyword arguments :left and 

:right and field accessors pair-left and pair-right. Also, a common print-object 

method for structs will work for our new structure, as well as a reader macro to restore it 

from the printed form. Here’s how it all fits together:

CL-USER> (make-pair :left "foo" :right "bar")

#S(PAIR :LEFT "foo" :RIGHT "bar")

CL-USER> (pair-right (read-from-string (prin1-to-string *)))

"bar"

prin1-to-string and read-from-string are complimentary Lisp functions that 

allow to print the value in a computer-readable form (if an appropriate print-function 

is provided) and read it back. Good print representations readable to both humans 

and, ideally, computers are very important to code transparency and should never be 

neglected.
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There’s a way to customize every part of the definition. For instance, if we plan to use 

pairs frequently, we can leave out the pair- prefix by specifying the (:conc-name nil) 

property. Here is an improved pair definition and shorthand constructor for it from 

RUTILS, which we’ll use throughout the book. It uses :type list allocation to integrate 

with destructuring macros:

(defstruct (pair (:type list) (:conc-name nil))

  "A generic pair with left (LT) and right (RT) elements."

  lt rt)

(defun pair (x y)

  "A shortcut to make a pair of X and Y."

  (make-pair :lt x :rt y))

 Passing Data Structures in Function Calls
One final remark. There are two ways to use data structures with functions: either 

pass them directly via copying appropriate memory areas (call-by-value)—an 

approach usually applied to primitive types—or pass a pointer (call-by-reference). 

In the first case, there’s no way to modify the contents of the original structure in the 

called function, while in the second variant it is possible, so the risk of unwarranted 

change should be taken into account. The usual way to handle it is by making a copy 

before invoking any changes, although, sometimes, mutation of the original data 

structure may be intended so a copy is not needed. Obviously, the call-by-reference 

approach is more general, because it allows both modification and copying, and 

more efficient because copying is on demand. That’s why it is the default way to 

handle structures (and objects) in most programming languages. In a low-level 

language like C, however, both variants are supported. Moreover, in C++, the pass-

by-reference has two kinds: pass the pointer and pass what’s actually called a 

reference, which is syntax sugar over pointers that allows accessing the argument 

with non-pointer syntax (dot instead of arrow) and adds a couple of restrictions. But 

the general idea, regardless of the idiosyncrasies of particular languages, remains the 

same.
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 Structs in Action: Union-Find
Data structures come in various shapes and flavors. Here, I’d like to mention one 

peculiar and interesting example that is both a data structure and an algorithm, to 

some extent. Even the name speaks about certain operations rather than a static form. 

Well, most of the more advanced data structures all have this feature that they are 

defined not only by the shape and arrangement but also via the set of operations that 

are applicable. Union-Find is a family of data structure–algorithms that can be used 

for efficient determination of set membership in sets that change over time. They may 

be used for finding the disjoint parts in networks, detection of cycles in graphs, finding 

the minimum spanning tree, and so forth. One practical example of such problems is 

automatic image segmentation: separating different parts of an image, a car from the 

background or a cancer cell from a normal one.

Let’s consider the following problem: How to determine if two points of the graph 

have a path between them, given a graph that is a set of points (vertices) and edges 

between some of the pairs of these points? A path in the graph is a sequence of points 

leading from source to destination with each pair having an edge that connects them. 

If some path between two points exists, they belong to the same component, and if it 

doesn’t, to two disjoint ones.

Here is a graph with three disjoint components:
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For two arbitrary points, how to determine if they have a connecting path? The 

naive implementation may take one of them and start building all the possible paths 

(this may be done in a breadth-first or depth-first manner or even randomly). Anyway, 

such procedure will, generally, require a number of steps proportional to the number of 

vertices of the graph. Can we do better? This is a usual question that leads to the creation 

of more efficient algorithms.

The Union-Find approach is based on a simple idea: when adding, the items 

record the id of the component they belong to. But how to determine this id? Use the id 

associated with some point already in this subset or the current point’s id if the point is 

in a subset of its own. And what if we have the subsets already formed? No problem. We 

can simulate the addition process by iterating over each vertex and taking the id of an 

arbitrary point it’s connected to as the subset’s id. The following is the implementation of 

this approach (to simplify the code, we’ll use the pointers to point structs instead of ids, 

but, conceptually, it’s the same idea):

(defstruct point

  parent)  ; if the parent is null the point is the root

(defun uf-union (point1 point2)

  "Join the subsets of POINT1 and POINT2."

  (setf (point-parent point1) (or (point-parent point2)

                                  point2)))

(defun uf-find (point)

  "Determine the id of the subset that a POINT belongs to."

  (let ((parent (point-parent point)))

    (if parent

        (uf-find parent)

        point)))

Just calling (make-point) will add a new subset with a single item in it to our set.

Note that uf-find uses recursion to find the root of the subset, that is, the point 

that was added first. So, for each vertex, we store some intermediary data, and, to get 

the subset id, each time, we’ll have to perform additional calculations. This way, we 

managed to reduce the average-case find time, but, still, haven’t completely excluded the 

possibility of it requiring traversal of every element of the set. Such so-called degraded 
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case may manifest when each item is added referencing the previously added one. That 

is, there will be a single subset with a chain of its members connected to the next one like 

this: a -> b -> c -> d. If we call uf-find on a, it will have to enumerate all of the set’s 

elements.

Yet, there is a way to improve uf-find behavior: by compressing the tree depth to 

make all points along the path to the root point to it, that is, squashing each chain into a 

wide shallow tree of depth 1:

  d

^ ^ ^

| | |

a b c

Unfortunately, we can’t do that, at once, for the whole subset, but, during each 

run of uf-find, we can compress one path, which will also shorten all the paths in the 

subtree that is rooted in the points on it! Still, this cannot guarantee that there will not 

be a sequence of enough unions to grow the trees faster than finds can flatten them. But 

there’s another tweak that, combined with path compression, allows to ensure sublinear 

(actually, almost constant) time of both operations: keep track of the size of all trees and 

link the smaller tree below the larger one. This will ensure that all trees’ heights will stay 

below (log n). The rigorous proof of that is quite complex, although, intuitively, we can 

see the tendency by looking at the base case: if we add a two-element tree and a one- 

element one, we’ll still get the tree of the height 2.

Here is the implementation of the optimized version:

(defstruct point

  parent

  (size 1))

(defun uf-find (point)

  (let ((parent (point-parent point)))

    (if parent

        ;; here, we use the fact that the assignment will also return

        ;; the value to perform both path compression and find

        (setf (point-parent point) (uf-find parent))

        point)))
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(defun uf-union (point1 point2)

  (rtl:with ((root1 (uf-find point1))

             (root2 (uf-find point2))

             (major minor (if (> (point-size root1)

                                 (point-size root2))

                              (values root1 root2)

                              (values root2 root1))))

    (incf (point-size major) (point-size minor))

    (setf (point-parent minor) major)))

Here, Lisp multiple values come handy, to simplify the code.1

The suggested approach is quite simple in implementation but complex in 

complexity analysis. So I’ll have to give just the final result: m Union-Find operations, 

with tree weighting and path compression, on a set of n objects will work in O((m + n) 

log* n) (where log* is an iterated logarithm—a very slowly increasing function that can 

be considered a constant, for practical purposes).

Finally, this is how to check if none of the points belong to the same subset in almost 

O(n) where n is the number of points to check,2 so in O(1) for two points:

(defun uf-disjoint (points)

  "Return true if all of the POINTS belong to different subsets."

  (let ((roots (list)))

    (dolist (point points)

1 Moreover, Python has special syntax for destructuring such tuples: dec, rem = truncate(3.14). 
However, this is not the optimal way to handle returning the primary and one or more secondary 
values from a function. Lisp provides a more elegant solution called multiple values: all the 
necessary values are returned via the values form (values dec rem) and can be retrieved 
with (multiple-value-bind (dec rem) (truncate 3.14) ...) or (rtl:with ((dec rem 
(truncate 3.14))) ...). It is more elegant because secondary values may be discarded at will 
by calling the function in a usual way: (+ 1 (truncate 3.14)) => 4. This is not possible in 
Python, because you can’t sum a tuple with something. 

2 Actually, the complexity here is O(n^2) due to the use of the function member that performs set 
membership test in O(n), but it’s not essential to the general idea. If uf-disjoint is expected to 
be called with tens or hundreds of points, the roots structure has to be changed to a hash-set that 
has a O(1) membership operation. 

Chapter 4  Data StruCtureS



39

      (let ((root (uf-find point)))

        (when (member root roots)

          (return-from uf-disjoint nil))

        (push root roots))))

  t)

 Takeaways
A couple more observations may be drawn from this simple example:

 1. Not always the clever idea that we initially have works flawlessly 

at once. It is important to check the edge cases for potential 

problems.

 2. We’ve seen an example of a data structure that directly doesn’t 

exist: pieces of information are distributed over individual 

data points. Sometimes, there’s a choice between storing the 

information, in a centralized way, in a dedicated structure like a 

hash-table and distributing it over individual nodes. The latter 

approach is often more elegant and efficient, although it’s not so 

obvious.
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CHAPTER 5

Arrays
array indices
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Arrays are, alongside structs, the most basic data structure and, at the same time, the 

default choice for implementing algorithms. A one-dimensional array that is also called 

a “vector” is a contiguous structure consisting of the elements of the same type. One of 

the ways to create such arrays, in Lisp, is this:

CL-USER> (make-array 3)

#(0 0 0)

The printed result is the literal array representation. It happens that the array is 

shown to hold 0s, but that’s implementation-dependent. Additional specifics can be set 

during array initialization—for instance, the :element-type, :initial-element, and 

even full contents:

CL-USER> (make-array 3 :element-type 'list :initial-element nil)
#(NIL NIL NIL)
CL-USER> (make-array 3 :initial-contents '(1.0 2.0 3.0))
#(1.0 2.0 3.0)

https://doi.org/10.1007/978-1-4842-6428-7_5#DOI
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If you read back such an array, you’ll get a new copy with the same contents:

CL-USER> #(1.0 2.0 3.0)

#(1.0 2.0 3.0)

It is worth noting that the element type restriction is, in fact, not a limitation; the 

default type is T.1 In this case, the array will just hold pointers to its elements that can 

be of arbitrary type. If we specify a more precise type, however, the compiler might be 

able to optimize storage and access by putting the elements in memory directly in the 

array space. This is, mainly, useful for numeric arrays, but it makes multiple orders of 

magnitude difference for them for several reasons, including the existence of vector CPU 

instructions that operate on such arrays.

The arrays we have created are mutable, that is, we can change their contents, 

although we cannot resize them. The main operator to access array elements is aref. 

You will see it in those pieces of code, in this chapter, where we care about performance:

CL-USER> (let ((vec (make-array 3 :initial-contents '(1.0 2.0 3.0))))

           (print (aref vec 0))

           (print (rtl:? vec 1))

           (setf (aref vec 2) 4.0))

           (print (rtl:? vec 2))

           (aref vec 3))

1.0

2.0

4.0

; Evaluation aborted on #<SIMPLE-TYPE-ERROR expected-type: (MOD 3) datum: 3>

In Lisp, array access beyond its boundary, as expected, causes an error.

It is also possible to create constant arrays using the literal notation #(). These 

constants can, actually, be changed in some environments, but don’t expect anything 

nice to come out of such abuse—and the compiler will warn you of that:

CL-USER> (let ((vec #(1.0 2.0 3.0)))

           (setf (aref vec 2) nil)

           (print vec))

; caught WARNING:

1 …or void* in C, or some other type that allows any element in your language of choice.  
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;   Destructive function (SETF AREF) called on constant data.

;   See also:

;     The ANSI Standard, Special Operator QUOTE

;     The ANSI Standard, Section 3.2.2.3

;

; compilation unit finished

;   caught 1 WARNING condition

#(1.0 2.0 NIL)

RUTILS provides more options to easily create arrays with a shorthand notation:

RTL-USER> #v(1 2 3)

#(1 2 3)

RTL-USER> (vec 1 2 3)

#(1 2 3)

Although the results seem identical, they aren’t. The first version creates a mutable 

analog of #(1 2 3), and the second also makes it adjustable (we’ll discuss adjustable or 

dynamic arrays next).

 Arrays as Sequences
Vectors are one of the representatives of the abstract sequence container type that has 

the following basic interface:

• Inquire the length of a sequence: Performed in Lisp using the 

function length.

• Access the element by index: The RUTILS ? operator is the most 

generic variant, while the native one for arrays is aref and a more 

general elt for all built-in sequences (this also includes lists and, 

in some implementations, user-defined, so-called, extensible 

sequences).

• Get the subsequence: The standard provides the function subseq for 

this purpose.
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These methods have some issues that you should mind:

• The length function, for arrays, works in O(1) time as length is 

tracked in the array structure. There is an alternative (more primitive) 

way to handle arrays, employed, primarily, in C when the length 

is not stored and, instead, there’s a special termination “symbol” 

that indicates the end of an array. For instance, C strings have a 

'\0' termination character, and arrays representing command- 

line arguments, in the Unix syscalls API for such functions as exec, 

are terminated with null pointers. Such an approach is, first of all, 

not efficient from the algorithmic point of view as it requires O(n) 

time to query the array’s length. And, what’s even more important, 

it has proven to be a source of a number of catastrophic security 

vulnerabilities—the venerable “buffer overflow” family of errors.

• The subseq function creates a copy of the part of its argument, which 

is an expensive operation. This is the functional approach that is a 

proper default, but many of the algorithms don’t involve subarray 

mutation, and, for them, a more efficient variant would be to use a 

shared-structure variant that doesn’t make a copy but merely returns 

a pointer into the original array. Such option is provided, in the 

Lisp standard, via the so-called displaced arrays, but it is somewhat 

cumbersome to use. That’s why a more straightforward version is 

present in RUTILS which is named slice:

CL-USER> (rtl:with ((vec (rtl:vec 1 2 3))

                    (part (rtl:slice vec 2)))

           (print part)

           (setf (aref part 0) 4)

           (print part)

           vec)

#(3)

#(4)

#(1 2 4)
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Beyond the basic operations, sequences in Lisp are the target of a number of 

higher-order functions, such as find, position, remove-if, and so on. We’ll get back to 

discussing their use later in the book.

 Dynamic Vectors
Let’s examine arrays from the point of view of algorithmic complexity. General-purpose 

data structures are usually compared by their performance on several common 

operations and, also, space requirements. These common operations are access, 

insertion, deletion, and, sometimes, search.

In the case of ordinary arrays, the space used is the minimum possible: almost no 

overhead is incurred except, perhaps, for some meta-information about array size. Array 

element access is performed by index in constant time because it’s just an offset from 

the beginning that is the product of index by the size of a single element. Search for an 

element requires a linear scan of the whole array, or, in the special case of a sorted array, 

it can be done in O(log n) using binary search.

Insertion (at the end of an array) and deletion with arrays is problematic, though. 

Basic arrays are static, that is, they can’t be expanded or shrunk at will. The case of 

expansion requires free space after the end of the array that isn’t generally available 

(because it’s already occupied by other data used by the program), so it means that the 

whole array needs to be relocated to another place in memory with sufficient space. 

Shrinking is possible, but it still requires relocation of the elements following the deleted 

one. Hence, both of these operations require O(n) time and may also cause memory 

fragmentation. This is a major drawback of arrays.

However, arrays definitely should be the default choice for most algorithms. Why? 

First of all, because of the other excellent properties arrays provide and also because, in 

many cases, lack of flexibility can be circumvented in a certain manner. One common 

example is iteration with accumulation of results in a sequence. This is often performed 

with the help of a stack (as a rule, implemented with a linked list), but, in many cases 

(especially when the length of the result is known beforehand), arrays may be used to 

the same effect. Another approach is using dynamic arrays, which add array resizing 

capabilities. And only in the case when an algorithm requires contiguous manipulation 

(insertion and deletion) of a collection of items or another advanced flexibility, linked 

data structures are preferred.
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So the first approach to working around the static nature of arrays is possible when 

we know the target number of elements. For instance, the most common pattern of 

sequence processing is to map a function over it, which produces the new sequence of 

the same size filled with results of applying the function to each element of the original 

sequence. With arrays, it can be performed even more efficiently than with a list. We just 

need to pre-allocate the resulting vector and set its elements one by one as we process 

the input:

(defun map-vec (fn vec)

  "Map function FN over each element of VEC

   and return the new vector with the results."

  (let ((rez (make-array (length vec))))

    (dotimes (i (length vec))

      (setf (aref rez i) (funcall fn (aref vec i))))

    rez))

CL-USER> (map-vec '1+ #(1 2 3))

#(2 3 4)

It should be noted that the standard map and map-into functions implement the 

same functionality.

We use a specific accessor aref here instead of generic ? to ensure efficient operation 

in the so-called “inner loop”—although there’s just one loop here, it will be the inner 

loop of many complex algorithms.

However, in some cases, we don’t know the size of the result beforehand. For 

instance, another popular sequence processing function is called filter or remove- if 

(-not) in Lisp. It iterates over the sequence and keeps only elements that satisfy/don’t 

satisfy a certain predicate. It is, generally, unknown how many elements will remain, 

so we can’t predict the size of the resulting array. One solution will be to allocate the 

full-sized array and fill only so many cells as needed. It is a viable approach although 

suboptimal. Filling the result array can be performed by tracking the current index in it 

or, in Lisp, by using an array with a fill-pointer:

(defun clumsy-filter-vec (pred vec)

  "Return the vector with only those elements of VEC

   for which calling pred returns true."

  (let ((rez (make-array (length vec) :fill-pointer 0)))
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    (dotimes (i (length vec))

      (when (funcall pred (aref vec i))

        (vector-push (aref vec i) rez)))

    rez))

CL-USER> (describe (clumsy-filter-vec 'oddp #(1 2 3)))

#(1 3)

  [vector]

Element-type: T

Fill-pointer: 2

Size: 3

Adjustable: yes

Displaced-to: NIL

Displaced-offset: 0

Storage vector: #<(SIMPLE-VECTOR 3) {100E9AF30F}>

Another more general way would be to use a “dynamic vector.” This is a kind of 

an array that supports insertion by automatically expanding its size (usually, not one 

element at a time but proportionally to the current size of the array). Here is how it 

works:

CL-USER> (let ((vec (make-array 0 :fill-pointer t :adjustable t)))

           (dotimes (i 10)

             (vector-push-extend i vec)

             (describe vec)))

#(0)

  [vector]

Element-type: T

Fill-pointer: 1

Size: 1

Adjustable: yes

Displaced-to: NIL

Displaced-offset: 0

Storage vector: #<(SIMPLE-VECTOR 1) {100ED9238F}>#(0 1)

Fill-pointer: 2

Size: 3

Chapter 5  arrays



48

#(0 1 2)

Fill-pointer: 3

Size: 3

#(0 1 2 3)

Element-type: T

Fill-pointer: 4

Size: 7

...

#(0 1 2 3 4 5 6 7)

Fill-pointer: 8

Size: 15

#(0 1 2 3 4 5 6 7 8)

Element-type: T

Fill-pointer: 9

Size: 15

#(0 1 2 3 4 5 6 7 8 9)

Element-type: T

Fill-pointer: 10

Size: 15

For such “smart” arrays, the complexity of insertion of an element becomes 

asymptotically constant: resizing and moving elements happens less and less often the 

more elements are added. With a large number of elements, this comes at a cost of a lot 

of wasted space, though. At the same time, when the number of elements is small (below 

20), it happens often enough, so that the performance is worse than for a linked list that 

requires a constant number of two operations for each insertion (or one if we don’t care 

to preserve the order). So dynamic vectors are the solution that can be used efficiently 

only when the number of elements is neither too big nor too small.
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 Why Are Arrays Indexed from 0
Although most programmers are used to it, not everyone understands clearly why the 

choice was made, in most programming languages, for 0-based array indexing. Indeed, 

there are several languages that prefer a 1-based variant (for instance, MATLAB and 

Lua). This is quite a deep and yet very practical issue that several notable computer 

scientists, including Dijkstra, have contributed to.

At first glance, it is “natural” to expect the first element of a sequence to be indexed 

with 1, second with 2, and so on. This means that if we have a subsequence from the 

first element to the tenth, it will have the beginning index 1 and the ending 10, that is, 

be a closed interval also called a segment: [1, 10]. The cons of this approach are the 

following:

 1. It is more straightforward to work with half-open intervals (i.e., the 

ones that don’t include the ending index): especially, it is much 

more convenient to split and merge such intervals and, also, test 

for membership. With 0-based indexing, our example interval 

would be half-open: [0, 10).

 2. If we consider multidimensional arrays that are most often 

represented using one- dimensional ones, getting an element of 

a matrix with indices i and j translates to accessing the element 

of an underlying vector with an index i*w + j or i + j*h for 

0-based arrays, while for 1-based ones, it’s more cumbersome: 

(i-1)*w + j . And if we consider three-dimensional arrays 

(tensors), we’ll still get the obvious i*w*h + j*h + k formula 

for 0-based arrays and, maybe, (i-1)*w*h + (j-1)*h + k for 

1-based ones, although I’m not, actually, sure if it’s correct (which 

shows how such calculations quickly become untractable). 

Besides, multidimensional array operations that are much more 

complex than mere indexing also often occur in many practical 

tasks, and they are also more complex and thus error-prone with 

base 1.

There are other arguments, but I consider them to be much more minor and a matter 

of taste and convenience. However, the intervals and multidimensional array issues are 

quite serious. And here is a good place to quote one of my favorite anecdotes that there 
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are two hard problems in CS: cache invalidation and naming things, and off-by-one 

errors. Arithmetic errors with indexing are a very nasty kind of bug, and although it can’t 

be avoided altogether, 0-based indexing turns out to be a much more balanced solution.

Now, using 0-based indexing, let’s write down the formula for finding the middle 

element of an array. Usually, it is chosen to be (floor (length array) 2). This element 

will divide the array into two parts, left and right, each one having length at least (1- (floor 

(length array) 2) : The left part will always have such size and will not include the middle 

element. The right side will start from the middle element and will have the same size if the 

total number of array elements is even or be one element larger if it is odd.

 Multidimensional Arrays
So far, we have only discussed one-dimensional arrays. However, more complex data 

structures can be represented using simple arrays. The most obvious example of such 

structures is multidimensional arrays. There are a staggering variety of other structures that 

can be built on top of arrays, such as binary (or, in fact, any n-ary) trees, hash-tables, and 

graphs, to name a few. If we have a chance to implement the data structure on an array, 

usually, we should not hesitate to take it as it will result in constant access time, good cache 

locality contributing to faster processing, and, in most cases, efficient space usage.

Multidimensional arrays are a contiguous data structure that stores its elements 

so that, given the coordinates of an element in all dimensions, it can be retrieved 

according to a known formula. Such arrays are also called tensors and, in the case of 

two-dimensional arrays, matrices. We have already seen one matrix example in the 

discussion of complexity:

#2A((1 2 3)

    (4 5 6))

A matrix has rows (first dimension) and columns (second dimension). Accordingly, 

the elements of a matrix may be stored in the row-major or column-major order. In 

row-major order, the elements are placed row after row—just like the following, that is, 

the memory will contain the sequence: 1 2 3 4 5 6. In column-major order, they are 

stored by column (this approach is used in many “mathematical” languages, such as 

Fortran or MATLAB), so raw memory will look like this: 1 4 2 5 3 6. If row-major order 

is used, the formula to access the element with coordinates i (row) and j (column) is 

(+ (* i n) j) where n is the length of the matrix’s row, that is, its width. In the case of 
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column-major order, it is (+ i (* j m)) where m is the matrix’s height. It is necessary to 

know which storage style is used in a particular language as in numeric computing it is 

common to intermix libraries written in many languages—C, Fortran, and others—and, 

in the process, incompatible representations may clash.2

Such matrix representation is the most obvious one, but it’s not exclusive. Many 

languages, including Java, use iliffe vectors to represent multidimensional arrays. 

These are vectors of vectors, that is, each matrix row is stored in a separate one- 

dimensional array and the matrix is the vector of such vectors. Besides, more specific 

multidimensional arrays, such as sparse or diagonal matrices, may be represented using 

more efficient storage techniques at the expense of a possible loss in access speed. 

Higher-order tensors may also be implemented with the described approaches.

One classic example of operations on multidimensional arrays is matrix multiplication. 

The following simple straightforward algorithm has the complexity of O(n^3) where n is 

the matrix dimension. The condition for successful multiplication is equality of height of 

the first matrix and width of the second one. The cubic complexity is due to three loops—

by the outer dimensions of each matrix and by the inner identical dimension:

(defun m* (m1 m2)

  (let ((n (array-dimension m1 1))

        (n1 (array-dimension m1 0))

        (n2 (array-dimension m2 1))

        (rez (make-array (list n1 n2))))

    (assert (= n (array-dimension m2 0)))

2 Such incompatibility errors are not a cheap thing: for instance, it is reported that the crash of the 
first Ariane V rocket happened due to interoperation of two programs that used the metric and 
the imperial measurement systems without explicit conversion of the data. There’s an elegant 
solution to such problem: “dimensional numbers,” which are a custom reader macro to encode 
the measure alongside the number. Here is a formula expressed with such numbers:

 (defun running-distance-for-1kg-weight-loss (mass) 
 (* 1/4 (/ #M37600kJ (* #M0.98m/s2 mass)))) 

 CL-USER> (running-distance-for-1kg-weight-loss #M80kg) 
 119897.96  
 CL-USER> (running-distance-for-1kg-weight-loss #I200lb) 
  105732.45

The output is, of course, in metric units. Unfortunately, this approach will not be useful for arrays 
encoded by different languages as they are obtained not by reading the input but by referencing 
external memory. Instead, a wrapper struct/class is, usually, used to specify the element order. 
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    (dotimes (i n1)

      (dotimes (j n2)

        (let ((cur 0))

          (dotimes (k n)

            (incf cur (* (aref m1 i k)

                         (aref m2 k j))))

          (setf (aref rez i j) cur))))

    rez))

There are more efficient albeit much more complex versions using the divide-and- 

conquer approach that can work in only O(n^2.37), but they have significant hidden 

constants and, that’s why, are rarely used in practice, although if you’re relying on an 

established library for matrix operations, such as the Fortran-based BLAS/ATLAS, you 

will find one of them under the hood.

 Binary Search
Now, let’s talk about some of the important and instructive array algorithms. The most 

prominent ones are searching and sorting.

A common sequence operation is searching for the element either to determine 

if it is present, to get its position, or to retrieve the object that has a certain property 

(key- based search). The simple way to search for an element in Lisp is using the 

function find:

CL-USER> (let ((vec (make-array 2 :initial-contents

                                  (list (rtl:pair :foo :bar)

                                        (rtl:pair :baz :quux)))))

           (print (find (rtl:pair :foo :bar) vec))

           (print (find (rtl:pair :foo :bar) vec :test 'equal))

           (print (find (rtl:pair :bar :baz) vec :test 'equal))

           (print (find :foo vec :key 'lt)))

NIL

(:FOO :BAR)

NIL

(:FOO :BAR)
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In the first case, the element was not found due to the wrong comparison predicate: 

the default eql will only consider two structures to be the same if they’re the same 

object, and, in this case, there will be two separate pairs with the same content. So the 

second search is successful as equal performs deep comparison. Then the element is not 

found as it is just not present. And, in the last case, we did the key-based search looking 

just at the lt element of all pairs in vec.

Such search is called sequential scan because it is performed in a sequential manner 

over all elements of the vector starting from the beginning (or end if we specify :from- 

end t) until either the element is found or we have examined all the elements. The 

complexity of such search is, obviously, O(n), that is, we need to access each element of 

the collection (if the element is present, we’ll look, on average, at n/2 elements and, if 

not present, always at all n elements).

However, if we know that our sequence is sorted, we can perform the search 

much faster. The algorithm used for that is one of the most famous algorithms that 

every programmer has to know and use, from time to time—binary search. The more 

general idea behind it is called “divide and conquer”: if there’s some way, looking at 

one element, to determine the outcome of our global operation for more than just 

this element, we can discard the part for which we already know that the outcome is 

negative. In binary search, when we’re looking at an arbitrary element of the sorted 

vector and compare it with the item we search for

• If the element is the same, we have found it.

• If it’s smaller, all the previous elements are also smaller and thus 

uninteresting to us—we need to look only on the subsequent ones.

• If it’s greater, all the following elements are not interesting.

Here is an example of search for the value 5 in the array #(1 3 4 5 7 9) :

  1  3  4  5  7  9

--x--x--^

  5  7  9

     ^--x--

  5  7

  ^--x--

  5 (found)
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Thus, each time, we can examine the middle element and, after that, can discard half 

of the elements of the array without checking them. We can repeat such comparisons 

and halving until the resulting array contains just a single element.

Here’s the straightforward binary search implementation using recursion:

(defun bin-search (val vec &optional (pos 0))

  (if (> (length vec) 1)

      (rtl:with ((mid (floor (length vec) 2))

                 (cur (aref vec mid)))

        (cond ((< cur val) (bin-search val

                                       (rtl:slice vec mid)

                                       (+ pos mid)))

              ((> cur val) (bin-search val

                                       (rtl:slice vec 0 mid)

                                       pos))

              (t (+ pos mid))))

      (when (= (aref vec 0) val)

        pos)))

If the middle element differs from the one we’re looking for, it halves the vector until 

just one element remains. If the element is found, its position (which is passed as an 

optional third argument to the recursive function) is returned. Note that we assume that 

the array is sorted. Generally, there’s no way to quickly check this property unless we 

examine all array elements (and thus lose all the benefits of binary search). That’s why 

we don’t assert the property in any way and just trust the programmer. :)

An important observation is that such recursion is very similar to a loop that at each 

stage changes the boundaries we’re looking in between. Not every recursive function can 

be matched with a similar loop so easily (for instance, when there are multiple recursive 

calls in its body, an additional memory data structure is needed), but when it is possible, 

it usually makes sense to choose the loop variant. The pros of looping are the avoidance 

of both the function calls’ overhead and the danger of hitting the recursion limit or the 

stack overflow associated with it, while the pros of recursion are simpler code and better 

debuggability that comes with the possibility to examine each iteration by tracing using 

the built-in tools.
Another thing to note is interesting counterintuitive arithmetic of additional 

comparisons. In our naive approach, we had three cond clauses, that is, up to two 
comparisons to make at each iteration. In total, we’ll look at (log n 2) elements of our 
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array, so we have no more than (/ (1- (log n 2)) n) chance to match the element 
with the = comparison before we get to inspect the final one-element array. That is, with 
the probability of (- 1 (/ (1- (log n 2)) n)), we’ll have to make all the comparisons 
up to the final one. Even for such small n as 10, this probability is 0.77 and for 100 0.94. 
And this is an optimistic estimate for the case when the element searched for is actually 
present in the array, which may not always be so. Otherwise, we’ll have to make all the 
comparisons. Effectively, these numbers prove the equality comparison meaningless 
and just a waste of computation, although from “normal” programmer intuition it might 
seem like a good idea to implement early exit in this situation…

Finally, there’s also one famous nonobvious bug associated with the binary search 
that was still present in many production implementations for many years past the 
algorithm’s inception. It’s also a good example of the dangers of forfeiting boundary 
condition check that is the root of many severe problems plaguing our computer systems 
by opening them to various exploits. The problem, in our code, may manifest in systems 
that have limited integer arithmetic with potential overflow. In Lisp, if the result of 
summing two fixnums is greater than most-positive-fixnum (the maximum number 
that can be represented directly by the machine word), it will be automatically converted 
to bignums, which are a slower representation but with unlimited precision:

CL-USER> most-positive-fixnum
4611686018427387903
CL-USER> (type-of most-positive-fixnum)
(INTEGER 0 4611686018427387903)
CL-USER> (+ most-positive-fixnum most-positive-fixnum)
9223372036854775806
CL-USER> (type-of (+ most-positive-fixnum most-positive-fixnum))
(INTEGER 4611686018427387904)

In many other languages, such as C or Java, what will happen is either silent overflow 
(the worst), in which case we’ll get just the remainder of division of the result by the 
maximum integer, or an overflow error. Both of these situations are not accounted for in 
the (floor (+ beg end) 2) line. The simple fix to this problem, which makes sense to 
keep in mind for future similar situations, is to change the computation to the following 
equivalent form: (+ beg (floor (- end beg) 2)). It will never overflow. Why? Try to 

figure out on your own. ;)

Taking all that into account and allowing for a custom comparator function, here’s an 

“optimized” version of binary search that returns three values:
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• The final element of the array.

• Its position.

• Has it, actually, matched the element we were searching for?

(defun bin-search (val vec &key (less '<) (test '=) (key 'identity))

  (when (plusp (length vec))

    (let ((beg 0)

          (end (1- (length vec))))

      (do ()

          ((= beg end))

        (let ((mid (+ beg (floor (- end beg) 2))))

          (if (funcall less (funcall key (aref vec mid)) val)

              (setf beg (1+ mid))

              (setf end mid))))

      (values (aref vec beg)

              beg

              (funcall test (funcall key (aref vec beg)) val)))))

How many loop iterations do we need to complete the search? If we were to take 

the final one-element array and expand the array from it by adding the discarded half, it 

would double in size at each step, that is, we’ll be raising 2 to the power of the number 

of expansion iterations (initially, before expansion—after zero iterations—we have one 

element, which is 2^0; after one iteration, we have two elements; after two iterations, 

we have four elements, and so on). The number of iterations needed to expand the full 

array may be calculated by the inverse of exponentiation—the logarithmic function. 

That is, we’ll need (log n 2) iterations (where n is the initial array size). Shrinking the 

array takes the same as expanding, just in the opposite order, so the complexity of binary 

search is O(log n).

How big is the speedup from linear to logarithmic complexity? Let’s do a quick-and- 

dirty speed comparison between the built-in (and optimized) sequential scan function 

find and our bin-search:
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CL-USER> (rtl:with ((size 100000000)

                    (mid (1+ (/ size 2)))

                    (vec (make-array size)))

           (dotimes (i size)

             (setf (aref vec i) i))

           (time (find mid vec))

           (time (bin-search mid vec)))

Evaluation took:

  0.591 seconds of real time

  0.595787 seconds of total run time (0.595787 user, 0.000000 system)

  100.85% CPU

  ...

Evaluation took:

  0.000 seconds of real time

  0.000000 seconds of total run time (0.000000 user, 0.000000 system)

  100.00% CPU

  ...

Unfortunately, I don’t have enough RAM on my notebook to make bin-search take 

at least a millisecond of CPU time. We can count nanoseconds to get the exact difference, 

but a good number to remember is that (log 1000000 2) is approximately 20, so, for the 

million-element array, the speedup will be 50000×!

The crucial limitation of binary search is that it requires our sequence to be 

presorted because sorting before each search already requires at least linear time to 

complete, which kills any performance benefit we might have expected. There are 

multiple situations when the presort condition may hold without our intervention:

• All the data is known beforehand, and we can sort it just once prior 

to running the search, which may be repeated multiple times for 

different values.

• We maintain the sorted order as we add data. Such an approach is 

feasible only if addition is performed less frequently than search. This 

is often the case with databases, which store their indices in sorted 

order.
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A final note on binary search: Obviously, it will only work fast for vectors and not 

linked sequences.

 Binary Search in Action: A Fast Specialized In-Memory DB
In one consumer Internet company I was working for, a lot of text processing (which 

was the company’s bread and butter) relied on access to a huge statistical dataset called 

“ngrams.” Ngrams is a simple natural language processing concept: basically, they are 

phrases of a certain length. A unigram (onegram) is a single word, a bigram a pair of 

words, and a fivegram a list of five words. Each ngram has some weight associated with 

it, which is calculated (estimated) from the huge corpus of texts (we used the crawl of the 

whole Internet). There are numerous ways to estimate this weight, but the basic one is to 

just count the frequency of the occurrence of a specific ngram phrase in the corpus.

The total number of ngrams may be huge: for our case, the whole dataset, on disk, 

measured in tens of gigabytes. And the application requires constant random access to 

it. Using an off-the-shelf database would have incurred us too much overhead as such 

systems are general-purpose and don’t optimize for the particular use cases, like the one 

we had. So a special-purpose solution was needed. In fact, now there is readily available 

ngrams handling software, such as KenLM. We have built our own, and, initially, it relied 

on binary search of the in-memory dataset to answer the queries. Considering the size of 

the data, what do you think was the number of operations required? I don’t remember it 

exactly, but somewhere between 25 and 30. For handling tens of gigabytes or hundreds 

of millions/billions of ngrams, quite a decent result. And, most important, it didn’t 

exceed our application’s latency limits! The key property that enabled such solution 

was the fact that all the ngrams were known beforehand and hence the dataset could be 

presorted. Yet, eventually, we moved to an even faster solution based on perfect hash- 

tables (that we’ll discuss later in this book).

We can outline the operation of such a datastore with the following key structures 

and functions.

A dictionary *dict* will be used to map words to numeric codes. (We’ll discuss 

hash-tables that are employed for such dictionaries several chapters later. For now, it 

will be sufficient to say that we can get the index of a word in our dictionary with (rtl:? 

*dict* word)). The number of entries in the dictionary will be around one million.
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All the ngrams will be stored alphabetically sorted in 2-gigabyte files with the 

following naming scheme: ngram-rank-i.bin. rank is the ngram word count (we were 

specifically using ngrams of ranks from 1 to 5), and i is the sequence number of the 

file. The contents of the files will constitute the alternating ngram indices and their 

frequencies. The index for each ngram will be a vector of 32-bit integers with the length 

equal to the rank of an ngram. Each element of this vector will represent the index of the 

word in *dict*. The frequency will also be a 32-bit integer.

All these files will be read into memory. As the structure of the file is regular—each 

ngram corresponds to a block of (1+ rank) 32-bit integers—it can be treated as a large 

vector.

For each file, we know the codes of the first and last ngrams. Based on this, the 

top-level index will be created to facilitate efficiently locating the file that contains a 

particular ngram.

Next, binary search will be performed directly on the contents of the selected file. 

The only difference with regular binary search is that the comparisons need to be 

performed rank times: for each 32-bit code.

A simplified version of the main function get-freq intended to retrieve the ngram 

frequency for ranks 2–5 will look something like this:

(defun get-freq (ngram)

  (rt:with ((rank (length ngram))

            (codes (ngram-codes ngram))

            (vec index found?

                 (bin-search codes

                             (ngrams-vec rank codes)

                             :less 'codes<

                             :test 'ngram=)))

     (if found?

         (aref vec rank)

         0)))

where

(defun ngram-codes (ngram)

  (map-vec (lambda (word) (rtl:? *dict* word))

           ngram))
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(defun ngrams-vec (rank codes)

  (loop :for ((codes1 codes2) ngrams-vec) :across *ngrams-index*

        :when (and (<= (aref codes1 0) (aref codes 0))

                   (codes< codes codes2 :when= t))

        :do (return ngrams-vec)))

(defun codes< (codes1 codes2 &key when=)

  (dotimes (i (length codes1)

              ;; this will be returned when all

              ;; corresponding elements of codes are equal

              when=)

    (cond ((< (aref codes1 i)

              (aref codes2 i))

           (return t))

          ((> (aref codes1 i)

              (aref codes2 i))

           (return nil)))))

(defun ngram= (block1 block2)

  (let ((rank (1- (length block1))))

    (every '= (rtl:slice block1 0 rank)

              (rtl:slice block2 0 rank)))

We assume that the *ngrams-index* array containing pairs of codes for the first and 

last ngrams in the file and the ngram data from the file itself were already initialized. 

This array should be sorted by the codes of the first ngrams in the pairs. A significant 

drawback of the original version of this program was that it took quite some time to 

read all the files (tens of gigabytes) from disk. During this operation, which measured 

in several dozens of minutes, the application was not responsive. This created a serious 

bottleneck in the system as a whole and complicated updates as well as put normal 

operation at additional risk. The solution we utilized to counteract this issue was a 

common one for such cases: switching to lazy loading using the Unix mmap facility. With 

this approach, the bounding ngram codes for each file should be precalculated and 

stored as metadata, to initialize the *ngrams-index* before loading the data itself.
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 Sorting
Sorting is another fundamental sequence operation that has many applications. Unlike 

searching, there is no single optimal algorithm for sorting, and different data structures 

allow different approaches to it. In general, the problem of sorting a sequence is to place 

all of its elements in a certain order determined by the comparison predicate. There are 

several aspects that differentiate sorting functions:

• In-place: This kind of sorting is a destructive operation, but it is 

often desired because it may be faster and also it preserves space 

(especially relevant when sorting big amounts of data at once). The 

alternative is copying sort.

• Stable: Whether two elements, which are considered the same by the 

predicate, retain their original order or may be shuffled.

• Online: Does the function require to see the whole sequence before 

starting the sorting process, or can it work with each element one by 

one, always preserving the result of processing the already seen part 

of the sequence in the sorted order?

One more aspect of a particular sorting algorithm is its behavior on several special 

kinds of input data: already sorted (in direct and reversed order), almost sorted, and 

completely random. An ideal algorithm should show better than average performance 

(up to O(1)) on the sorted and almost sorted special cases.

Over the history of CS, sorting was and still remains a popular research topic. Not 

surprisingly, several dozens of different sorting algorithms were developed. But before 

discussing the prominent ones, let’s talk about “stupid sort” (or “bogosort”). It is one of 

the sorting algorithms that has a very simple idea behind, but an outstandingly nasty 

performance. The idea is that among all permutations of the input sequence, there 

definitely is the completely sorted one. If we were to take it, we wouldn’t need to do 

anything else. It’s an example of the so-called “generate and test” paradigm that may 

be employed when we know next to nothing about the nature of our task: then, put 

some input into the black box and see the outcome. In the case of bogosort, the number 

of possible inputs is the number of all permutations that’s equal to n!, so considering 

that we need to also examine each permutation’s order, the algorithm’s complexity 

is O(n * n!) (in both time and space)—quite a nasty number, especially, since some 

specialized sorting algorithms can work as fast as O(n) (for instance, bucket sort for 
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integer numbers). On the other hand, if generating all permutations is a library function 

and we don’t care about complexity, such an algorithm will have a rather simple 

implementation that looks quite innocent. So the performance characteristics of third- 

party functions should always be considered as well and not taken for granted. And, by 

the way, your standard library sort function is also a good example of this rule:

(defun bogosort (vec comp)

  (dolist (variant (all-permutations vec))

    (dotimes (i (1- (length variant)))

                ;; this is the 3rd optional argument of dotimes header

                ;; that is evaluated only after the loop finishes normally

                ;;  if it does we have found a completely sorted 

permutation!

                (return-from bogosort variant))

      (when (funcall comp (aref variant (1+ i)) (aref variant i))

        (return)))))  ; current variant is not sorted, skip it

 O(n^2) Sorting
Although we can imagine an algorithm with even worse complexity factors than this, 

bogosort gives us a good lower bound on the sorting algorithm’s performance and an 

idea of the potential complexity of this task. However, there are much faster approaches 

that don’t have a particularly complex implementation. There are a number of such 

simple algorithms that work in quadratic time. A very well-known one, which is 

considered by many a kind of “Hello world” algorithm, is bubble sort. Yet, in my opinion, 

it’s quite a bad example to teach (sadly, often it is taught) because it’s both not very 

straightforward and has poor performance characteristics. That’s why it’s never used 

in practice. There are two simple quadratic sorting algorithms that you actually have a 

chance to encounter in the wild: selection adn Insertion sort. Amond then, insertion sort 

is used quite frequently. Their comparison is quite insightful, so we’ll take a look at both, 

instead of focusing just on the former.

Selection sort is an in-place sorting algorithm that moves left to right from the 

beginning of the vector one element at a time and builds the sorted prefix to the left of 

the current element. This is done by finding the “largest” (according to the comparator 

predicate) element in the right part and swapping it with the current element:
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(defun selection-sort (vec comp)

  (dotimes (i (1- (length vec)))

    (let ((best (aref vec i))

          (idx i))

      (dotimes (j (- (length vec) i 1))

        (when (call comp (aref vec (+ i j 1)) best)

          (setf best (aref vec (+ i j 1))

                idx (+ i j 1))))

       (rotatef (aref vec i) (aref vec idx))))  ; this is the Lisp swap 

operator

  vec)

Selection sort requires a constant number of operations regardless of the level of 

sortedness of the original sequence: (/ (* n (- n 1)) 2)—the sum of the arithmetic 

progression from 1 to n, because, at each step, it needs to fully examine the remainder of 

the elements to find the maximum and the remainder’s size varies from n to 1. It handles 

equally well both contiguous and linked sequences.

Insertion sort is another quadratic-time in-place sorting algorithm that builds the 

sorted prefix of the sequence. However, it has a few key differences from selection sort: 

instead of looking for the global maximum on the right-hand side, it looks for a proper 

place of the current element on the left-hand side. As this part is always sorted, it takes 

linear time to find the place for the new element and insert it there leaving the side in 

sorted order. Such change has great implications:

• It is stable.

• It is online. The left part is already sorted, and, in contrast with 

selection sort, it doesn’t have to find the maximum element of the 

whole sequence in the first step. It can handle encountering it at any 

step.

• For sorted sequences, it works in the fastest possible way—in linear 

time—as all elements are already inserted into proper places and 

don’t need moving. The same applies to almost sorted sequences, 

for which it works in almost linear time. However, for reverse sorted 
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sequences, its performance will be the worse. In fact, there is a clear 

proportion of the algorithm’s complexity to the average offset of the 

elements from their proper positions in the sorted sequence: O(k * n),  

where k is the average offset of the element. For sorted sequences k=0 

and for reverse sorted sequences, it’s (/ (- n 1) 2).

(defun insertion-sort (vec comp)

  (dotimes (i (1- (length vec)))

    (do ((j i (1- j)))

        ((minusp j))

      (if (funcall comp (aref vec (1+ j)) (aref vec j))

          (rotatef (aref vec (1+ j)) (aref vec j))

          (return))))

  vec)

As you see, the implementation is very simple: we look at each element starting from 

the second and compare it to the previous element, and if it’s better, we swap them and 

continue the comparison with the previous element until we reach the array’s beginning.

So where’s the catch? Is there anything that makes selection sort better than 

insertion? Well, if we closely examine the number of operations required by each 

algorithm, we’ll see that selection sort needs exactly (/ (* n (- n 1)) 2) comparisons 

and on average n/2 swaps. For insertion sort, the number of comparisons varies from  

n- 1 to (/ (* n (- n 1)) 2), so, in the average case, it will be (/ (* n (- n 1)) 4), 

that is, half as many as for the other algorithm. In the sorted case, each element is 

already in its position, and it will take just one comparison to discover that, in the reverse 

sorted case, the average distance of an element from its position is (/ (- n 1) 2) and, 

for the middle variant, it’s in the middle, that is, (/ (- n 1) 4), times the number of 

elements (n). But, as we can see from the implementation, insertion sort requires almost 

the same number of swaps as comparisons, that is, (/ (* (- n 1) (- n 2)) 4) in the 

average case, and it matches the number of swaps of selection sort only in the close to 

best case, when each element is on average one-half step away from its proper position. 

If we sum up all comparisons and swaps for the average case, we’ll get the following 

numbers:
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• Selection sort: (+ (/ (* n (- n 1)) 2) (/ n 2)) = (/ (+ (* n 

n) n) 2)

• Insertion sort: (+ (/ (* n (- n 1)) 2) (+ (/ (* (- n 1) (- n 

2)) 4) = (/ (+ (* 1.5 n n) (* -2.5 n) 1) 2)

The second number is slightly higher than the first. For small ns, it is almost 

negligible: for instance, when n=10, we get 55 operations for selection sort and 63 for 

insertion. But, asymptotically (for huge ns like millions and billions), insertion sort will 

need 1.5 times more operations. Also, it is often the case that swaps are more expensive 

operations than comparisons (although the opposite is also possible).

In practice, insertion sort ends up being used more often. In general, quadratic 

sorts are only used when the input array is small (and so the difference in the number of 

operations doesn’t matter), and Insertion sort has the most useful properties. However, 

one situation where selection sort’s predictable performance is an important factor is in 

the systems with deadlines.

 Quicksort
There are a number of other O(n^2) sorting algorithms similar to selection and insertion 

sorts, but studying them quickly turns boring, so we won’t, as there are also a number 

of significantly faster algorithms that work in O(n * log n) time (almost linear). 

They usually rely on the divide-and-conquer approach when the whole sequence 

is recursively divided into smaller subsequences that have some property, thanks to 

which it’s easier to sort them, and then these subsequences are combined back into the 

final sorted sequence. The feasibility of such performance characteristics is justified 

by the observation that ordering relations are recursive, that is, if we have compared 

two elements of an array and then compare one of them to the third element, with a 

probability of half a step away, we’ll also know how it relates to the other element.

Probably, the most famous of such algorithms is quicksort. Its idea is, at each 

iteration, to select some element of the array as the “pivot” point and divide the array 

into two parts—all the elements that are smaller and all those that are larger than the 

pivot—and then recursively sort each subarray. As all left elements are below the pivot 

and all right above, when we manage to sort the left and right sides, the whole array 

will be sorted. This invariant holds for all iterations and for all subarrays. The word 
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“invariant,” literally, means some property that doesn’t change over the course of 

the algorithm’s execution when other factors, for example, bounds of the array we’re 

processing, are changing.

There’re several tricks in quicksort implementation. The first one has to do with 

pivot selection. The simplest approach is to always use the last element as the pivot. 

Now, how do we put all the elements greater than the pivot after it if it’s already the last 

element? Let’s say that all elements are greater—then the pivot will be at index 0. Now, if 

moving left to right over the array we encounter an element that is not greater than the 

pivot, we should put it before, that is, the pivot’s index should increment by 1. When we 

reach the end of the array, we know the correct position of the pivot, and in the process, 

we can swap all the elements that should precede it in front of this position. Now, we 

have to put the element that is currently occupying the pivot’s place somewhere. Where? 

Anywhere after the pivot, but the most obvious thing is to swap it with the pivot:

(defun quicksort (vec comp)

  (when (> (length vec) 1)

    (with ((pivot-i 0)

           (pivot (aref vec (1- (length vec)))))

      (dotimes (i (1- (length vec)))

        (when (funcall comp (aref vec i) pivot)

          (rotatef (aref vec i)

                   (aref vec pivot-i))

          (incf pivot-i)))

      ;; swap the pivot (last element) in its proper place

      (rotatef (aref vec (1- (length vec)))

               (aref vec pivot-i))

      (quicksort (rtl:slice vec 0 pivot-i) comp)

      (quicksort (rtl:slice vec (1+ pivot-i)) comp)))

  vec)

Although recursion is employed here, such implementation is space-efficient as it 

uses array displacement (“slicing”) that doesn’t create new copies of the subarrays, so 

sorting happens in-place. Speaking of recursion, this is one of the cases when it’s not so 

straightforward to turn it into looping (this is left as an exercise to the reader :) ).

What is the complexity of such implementation? Well, if, on every iteration, we 

divide the array in two equal halves, we’ll need to perform n comparisons and n/2 swaps 

and increments, which totals to 2n operations. And we’ll need to do that (log n 2) 
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times, which is the height of a complete binary tree with n elements. At every level in the 

recursion tree, we’ll need to perform twice as many sorts with twice as little data, so each 

level will take the same number of 2n operations. Total complexity is 2n * (log n 2), 

that is, O(n * log n), in the ideal case.

However, we can’t guarantee that the selected pivot will divide the array into two 

ideally equal parts. In the worst case, if we were to split it into two totally unbalanced 

subarrays, with n-1 and 0 elements, respectively, we’d need to perform sorting n times 

and perform a number of operations that will diminish in the arithmetic progression 

from 2n to 2. This sums to (* n (- n 1))—a dreaded O(n^2) complexity. So the worst- 

case performance for quicksort is not just worse, but in a different complexity league 

than the average-case one. Moreover, the conditions for such performance (given our 

pivot selection scheme) are not so uncommon: sorted and reverse sorted arrays. And the 

almost sorted ones will result in the almost worst-case scenario.

It is also interesting to note that if, at each stage, we were to split the array into parts 

that have a 10:1 ratio of lengths, this would have resulted in n * log n complexity! How 

come? The 10:1 ratio, basically, means that the bigger part each time is shortened at a 

factor of around 1.1, which still is a power-law recurrence. The base of the algorithm will 

be different, though: 1.1 instead of 2. Yet, from the complexity theory point of view, the 

logarithm base is not important because it’s still a constant: (log n x) is the same as 

(/ (log n 2) (log x 2)), and (/ 1 (log x 2)) is a constant for any fixed logarithm 

base x. In our case, if x is 1.1, the constant factor is 7.27. This means that quicksort, in the 

quite bad case of recurring 10:1 splits, will be just a little more than seven times slower 

than in the best case of recurring equal splits. Significant, yes. But, if we were to compare 

n * log n (with base 2) vs. n^2 performance for n=1000, we’d already get a 100 times 

slowdown, which will only continue increasing as the input size grows. Compare this to a 

constant factor of 7…

So how do we achieve at least 10:1 split or, at least, 100:1 or similar? One of the 

simple solutions is called the 3-medians approach. The idea is to consider not just a 

single point as a potential pivot but three candidates—first, middle, and last points—and 

select the one which has the median value among them. Unless accidentally two or all 

three points are equal, this guarantees that we won’t be taking the extreme value. Thus, 

the all-to-nothing split can be avoided. Also, for a sorted array, this should produce 

a nice near to equal split. How probable is stumbling at the special case when we’ll 

always get at the extreme value due to equality of the selected points? The calculations 

here are not so simple, so I’ll give just the answer: it’s extremely improbable that such 
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condition will hold for all iterations of the algorithm due to the fact that we’ll always 

remove the last element and all the swapping that is going on. More precisely, the only 

practical variant when it may happen is when the array consists almost or just entirely 

of the same elements. And this case will be addressed next. One more refinement to the 

three-median approach that will work even better for large arrays is nine-median that, 

as is apparent from its name, performs the median selection not among three but nine 

equidistant points in the array.

Dealing with equal elements is another corner case for quicksort that should be 

addressed properly. The fix is simple: to divide the array not in two but three parts, 

smaller, larger, and equal to the pivot. This will allow for the removal of the equal 

elements from further consideration and will even speed up sorting instead of slowing it 

down. The implementation adds another index (this time, from the end of the array) that 

will tell us where the equal-to-pivot elements will start, and we’ll be gradually swapping 

them into this tail as they are encountered during array traversal.

 Production Sort
I was always wondering how it’s possible, for quicksort, to be the default sorting 

algorithm when it has such bad worst-case performance and there are other algorithms 

like merge sort or heap sort that have guaranteed O(n * log n) ones. With all the 

mentioned refinements, it’s apparent that the worst-case scenario, for quicksort, can 

be completely avoided (in the probabilistic sense), while it has a very nice property of 

sorting in-place with good cache locality, which significantly contributes to better real- 

world performance. Moreover, production sort implementation will be even smarter 

by utilizing quicksort while the array is large and switching to something like insertion 

sort when the size of the subarray reaches a certain threshold (10–20 elements). All this, 

however, is applicable only to arrays. When we consider lists, other factors come into 

play that make quicksort much less plausible.

Here’s an attempt at such—let’s call it “production sort”—implementation (the 

function 3-medians is left as an exercise to the reader). Essentially, it is a more hardened 

version of quicksort that has to do additional bookkeeping due to the adaptive selection 

of the pivot (with 3-medians) and falls back to insertion sort when the vector size falls 

below ten elements:
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(defun prod-sort (vec comp &optional (eq 'eql))

  (cond ((< (length vec) 2)

         vec)

        ((< (length vec) 10)

         (insertion-sort vec comp))

        (t

         (rotatef (aref vec (1- (length vec)))

                  (aref vec (3-medians vec comp)))

         (rtl:with ((pivot-i 0)

                    (pivot-count 1)

                    (last-i (1- (length vec)))

                    (pivot (aref vec last-i)))

           (do ((i 0 (1+ i)))

               ((> i (- last-i pivot-count)))

             (cond ((funcall comp (aref vec i) pivot)

                    (rotatef (aref vec i)

                             (aref vec pivot-i))

                    (incf pivot-i))

                   ((funcall eq (aref vec i) pivot)

                    (rotatef (aref vec i)

                             (aref vec (- last-i pivot-count)))

                    (incf pivot-count)

                     (decf i))))  ; decrement i to reprocess newly swapped 

point

           (dotimes (i pivot-count)

             (rotatef (aref vec (+ pivot-i i))

                      (aref vec (- last-i i))))

         (prod-sort (rtl:slice vec 0 pivot-i) comp eq)

         (prod-sort (rtl:slice vec (+ pivot-i pivot-count)) comp eq))))

  vec)

All in all, the example of quicksort is very interesting, from the point of view of 

complexity analysis. It shows the importance of analyzing the worst-case and other 

corner-case scenarios and, at the same time, teaches that we shouldn’t give up 

immediately if the worst case is not good enough, for there may be ways to handle such 

corner cases that reduce or remove their impact.
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 Performance Benchmark
Finally, let’s look at our problem from another angle: simple and stupid. We have 

developed three sorting functions’ implementations: insertion, quick, and prod. Let’s 

create a tool to compare their performance on randomly generated datasets of decent 

sizes. This may be done with the following code and repeated many times to exclude the 

effects of randomness (obviously, that could be automated as well):

(defun random-vec (size)

  (let ((vec (make-array size)))

    (dotimes (i size)

      (setf (aref vec i) (random size)))

    vec))

(defun print-sort-timings (sort-name sort-fn vec)

  ;; we'll use in-place modification of the input vector VEC

  ;; so we need to copy it to preserve the original for future use

  (let ((vec (copy-seq vec))

        (len (length vec)))

    (format t "= ~Asort of random vector (length=~A) =~%"

            sort-name len)

    (time (funcall sort-fn vec '<))

    (format t "= ~Asort of sorted vector (length=~A) =~%"

            sort-name len)

    (time (funcall sort-fn vec '<))

    (format t "= ~Asort of reverse sorted vector (length=~A) =~%"

            sort-name len)

    (time (funcall sort-fn vec '>))))

CL-USER> (let ((vec (random-vec 10000)))

           (print-sort-timings "Insertion " 'insertion-sort vec)

           (print-sort-timings "Quick" 'quicksort vec)

           (print-sort-timings "Prod" 'prod-sort vec))

= Insertion sort of random vector (length=10000) =

Evaluation took:
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  0.632 seconds of real time

...

= Insertion sort of sorted vector (length=10000) =

Evaluation took:

  0.000 seconds of real time

...

= Insertion sort of reverse sorted vector (length=10000) =

Evaluation took:

  1.300 seconds of real time

...

= Quicksort of random vector (length=10000) =

Evaluation took:

  0.039 seconds of real time

...

= Quicksort of sorted vector (length=10000) =

Evaluation took:

  1.328 seconds of real time

...

= Quicksort of reverse sorted vector (length=10000) =

Evaluation took:

  1.128 seconds of real time

...

= Prodsort of random vector (length=10000) =

Evaluation took:

  0.011 seconds of real time

...

= Prodsort of sorted vector (length=10000) =

Evaluation took:

  0.011 seconds of real time

...

= Prodsort of reverse sorted vector (length=10000) =

Evaluation took:

  0.021 seconds of real time

...
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Overall, this is a really primitive approach that can’t serve as conclusive evidence on 

its own, but it has value as it aligns well with our previous calculations. Moreover, it once 

again reveals some things that may be omitted in those calculations: for instance, the 

effects of the hidden constants of the Big-O notation or of the particular programming 

vehicles used. We can see that, for their worst-case scenarios, where quicksort and 

insertion sort both have O(n^2) complexity and work approximately on par with each 

other. Yet, the difference between logarithmic and quadratic runtimes is clearly seen 

in the random vector scenario. Also, our prodsort algorithm demonstrates its expected 

performance that is ~100× better than the basic algorithms for their worst cases. It is also 

four times faster than quicksort for the random case—probably due to the use of three- 

median pivot selection. As you see, such simple testbeds quickly become essential in 

testing, debugging, and fine-tuning our algorithms’ implementations. So it’s a worthy 

investment.

Finally, it is worth noting that array sort is often implemented as in-place sorting, 

which means that it will modify (spoil) the input vector. We use that in our test function: 

first, we sort the array and then sort the sorted array in direct and reverse orders. This 

way, we can omit creating new arrays. Such destructive sort behavior may be both the 

intended and surprising behavior. The standard Lisp’s sort and stable-sort functions 

also exhibit it, which is, unfortunately, a source of numerous bugs due to the application 

programmer forgetfulness of the function’s side effects (at least, this is an acute case, for 

myself). That’s why RUTILS provides an additional function safe-sort that is just a thin 

wrapper over standard sort to free the programmer’s mind from worrying or forgetting 

about this treacherous sort ‘s property.

 Takeaways

 1. Array is a goto structure for implementing your algorithms. 

First, try to fit it before moving to other things like lists, trees, 

and so on.
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 2. Complexity estimates should be considered in context: of the 

particular task’s requirements and limitations, of the hardware 

platform, and so on. Performing some real-world benchmarking 

alongside back-of-the-napkin abstract calculations may be quite 

insightful.

 3. It’s always worth thinking of how to reduce the code to the 

simplest form: checking of additional conditions, recursion, and 

many other forms of code complexity, although rarely are a game 

changer, often may lead to significant unnecessary slowdowns.
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CHAPTER 6
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Linked data structures are in many ways the opposite of the contiguous ones that we 

have explored to some extent in the previous chapter using the example of arrays. In 

terms of complexity, they fail where those ones shine (first of all, at random access), 

but prevail at scenarios when a repeated modification is necessary. In general, they are 

much more flexible and so allow the programmer to represent almost any kind of a data 

structure, although the ones that require such level of flexibility may not be too frequent. 

Usually, they are specialized trees or graphs.

The basic linked data structure is a singly linked list.

Just like arrays, lists in Lisp may be created both with a literal syntax for constants 

and by calling a function—make-list—that creates a list of a certain size filled with 

nil elements. Besides, there’s a handy list utility that is used to create lists with the 

specified content (the analog of rtl:vec):

CL-USER> '("hello" world 111)

("hello" WORLD 111)

CL-USER> (make-list 3)
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(NIL NIL NIL)

CL-USER> (list "hello" 'world 111)

("hello" WORLD 111)

An empty list is represented as (), and, interestingly, in Lisp, it is also a synonym 

of logical falsehood (nil). This property is used very often, and we’ll have a chance 

to see that.

If we were to introduce our own lists, which may be quite a common scenario in case 

the built-in ones’ capabilities do not suit us, we’d need to define the structure “node,” 

and our list would be built as a chain of such nodes. We might have wanted to store the 

list head and, possibly, tail, as well as other properties like size. All in all, it would look 

like the following:

(defstruct list-cell

  data

  next)

(defstruct our-own-list

  (head nil :type (or list-cell null))

  (tail nil :type (or list-cell null)))

CL-USER> (let ((tail (make-list-cell :data "world")))

           (make-our-own-list

            :head (make-list-cell

                   :data "hello"

                   :next tail)

            :tail tail))

#S(OUR-OWN-LIST

   :HEAD #S(LIST-CELL

            :DATA "hello"

            :NEXT #S(LIST-CELL :DATA "world" :NEXT NIL))

   :TAIL #S(LIST-CELL :DATA "world" :NEXT NIL))
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 Lists as Sequences
Alongside arrays, list is the other basic data structure that implements the sequence 

abstract data type. Let’s consider the complexity of basic sequence operations for 

linked lists:

• So-called random access, that is, access by index of a random 

element, requires O(n) time as we have to traverse all the preceding 

elements before we can reach the desired one (n/2 operations on 

average).

• Yet, once we have reached some element, removing it or inserting 

something after it takes O(1).

• Subsequencing is also O(n).

Getting the list length, in the basic case, is also O(n), that is, it requires full list 

traversal. It is possible, though, to store list length as a separate slot, tracking each 

change on the fly, which means O(1) complexity. Lisp, however, implements the 

simplest variant of lists without size tracking. This is an example of a small but important 

decision that real-world programming is full of. Why is such a solution the right thing in 

this case? Adding the size counter to each list would have certainly made this common 

length operation more effective, but the cost of doing that would’ve included increase 

in occupied storage space for all lists, a need to update size in all list modification 

operations, and, possibly, a need for a more complex cons cell implementation.1 These 

considerations make the situation with lists almost opposite to arrays, for which size 

tracking is quite reasonable because they change much less often and not tracking the 

length historically proved to be a terrible security decision. So what side to choose? 

A default approach is to prefer the solution which doesn’t completely rule out the 

alternative strategy. If we were to choose a simple cons cell sans size (what the authors 

of Lisp did), we’d always be able to add the “smart” list data structure with the size field 

on top of it. Yet, stripping the size field from built-in lists won’t be possible. Similar 

reasoning is also applicable to other questions, such as “Why aren’t lists, in Lisp, doubly 

linked?” Also, it helps that there’s no security implication as lists aren’t used as data 

exchange buffers, for which the problem manifests itself.

1 However, in the Lisp machines, cons cells even had special hardware support, and such change 
would have made it useless.
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For demonstration, let’s add the size field to our-own-list (and, meanwhile, 

consider all the functions that will need to update it…):

(defstruct our-own-list

  (head nil :type (or list-cell null))

  (tail nil :type (or list-cell null))

  (size 0 :type (integer 0)))

Given that obtaining the length of a list, in Lisp, is an expensive operation, a common 

pattern in programs that require multiple requests of the length field is to store its value 

in some variable at the beginning of the algorithm and then use this cached value, 

updating it if necessary.

As we see, lists are quite inefficient in random access scenarios. However, many 

sequences don’t require random access and can satisfy all the requirements of a 

particular use case using just the sequential one. That’s one of the reasons why they are 

called sequences, after all. And if we consider the special case of list operations at index 

0, they are, obviously, efficient: both access and addition/removal are O(1). Also, if the 

algorithm requires a sequential scan, list traversal is rather efficient too. Yet, it is not as 

good as array traversal for it still requires jumping over the memory pointers. There are 

numerous sequence operations that are based on sequential scans. The most common 

is map, which we analyzed in the previous chapter. It is the functional programming 

alternative to looping, a more high-level operation, and thus simpler to understand for 

the common cases, although less versatile.

map is a function that works with different types of built-in sequences. It takes as the 

first argument the target sequence type (if nil is supplied, it won’t create the resulting 

sequence and so will be used just for side effects). Here is a polymorphic example 

involving lists and vectors:

CL-USER> (map 'vector '+

              '(1 2 3 4 5)

              #(1 2 3))

#(2 4 6)

map applies the function provided as its second argument (here, addition) 

sequentially to every element of the sequences that are supplied as other arguments, 

until one of them ends, and records the result in the output sequence. map would have 

been even more intuitive, if it just had used the type of the first argument for the result 
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sequence, that is, be a “do what I mean” dwim-map, while a separate advanced variant 

with result-type selection might have been used in the background. Unfortunately, the 

current standard scheme is not for change, but we can define our own wrapper function:

(defun dwim-map (fn seq &rest seqs)

   "A thin wrapper over MAP that uses the type of the first SEQ for the 

result."

  (apply 'map (type-of seq) fn seqs))

Historically, map in Lisp was originally used for lists in its list-specific variants 

that predated the generic map. Most of those functions like mapcar, mapc, and mapcan 

(replaced in RUTILS by a safer flat-map) are still widely used today.

Now, let’s see a couple of examples of using mapping. Suppose that we’d like to 

extract odd numbers from a list of numbers. Using mapcar as a list-specific map, we might 

try to call it with an anonymous function that tests its argument for oddity and keeps it in 

such a case:

CL-USER> (mapcar (lambda (x) (when (oddp x) x))

                 (rtl:range 1 10))

(1 NIL 3 NIL 5 NIL 7 NIL 9)

However, the problem is that non-odd numbers still have their place reserved in 

the result list, although it is not filled by them. Keeping only the results that satisfy (or 

don’t) certain criteria and discarding the others is a very common pattern that is known 

as “filtering.” There’s a set of Lisp functions for such scenarios: remove, remove-if, and 

remove-if-not, as well as RUTILS’ complements to them keep-if and keep-if-not. We 

can achieve the desired result adding remove to the picture:

CL-USER> (remove nil (mapcar (lambda (x) (when (oddp x) x))

                             (rtl:range 1 10)))

(1 3 5 7 9)

A more elegant solution will use the remove-if(-not) or rtl:keep-if(-not) 

variant. remove-if-not is the most popular among these functions. It takes a predicate 

and a sequence and returns the sequence of the same type holding only the elements 

that satisfy the predicate:

CL-USER> (remove-if-not 'oddp (range 1 10))

(1 3 5 7 9)
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Using such high-level mapping functions is very convenient, which is why there are 

a number of other -if(-not) operations, like find(-if(-not)), member(-if(-not)), 

position(-if(-not)), and so on.

The implementation of mapcar or any other list mapping function, including your 

own task-specific variants, follows the same pattern of traversing the list accumulating 

the result into another list and reversing it in the end:

(defun simple-mapcar (fn list)

  (let ((rez (list)))

    (dolist (item list)

      (setf rez (cons (funcall fn item) rez)))

    (reverse rez)))

The function cons is used to add an item to the beginning of the list. It creates a new 

list head that points to the previous list as its tail.

From the complexity point of view, if we compare such iteration with looping over an 

array, we’ll see that it is also a linear traversal that requires twice as many operations as 

with arrays because we need to traverse the result fully once again, in the end, to reverse 

it. Its advantage, though, is higher versatility: if we don’t know the size of the resulting 

sequence (e.g., in the case of remove-if-not), we don’t have to change anything in 

this scheme and just add a filter line ((when (oddp item) ...), while for arrays we’d 

either need to use a dynamic array (that will need constant resizing and so have at least 

the same double number of operations) or pre-allocate the full-sized result sequence 

and then downsize it to fit the actual accumulated number of elements, which may be 

problematic when we deal with large arrays.

 Lists as Functional Data Structures
The distinction between arrays and linked lists in many ways reflects the distinction 

between the imperative and functional programming paradigms. Within the imperative 

or, in this context, procedural approach, the program is built out of low-level blocks 

(conditionals, loops, and sequentials) that allow for the most fine-tuned and efficient 

implementation, at the expense of abstraction level and modularization capabilities. 

It also heavily utilizes in-place modification and manual resource management to 
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keep overhead at a minimum. An array is the most suitable data structure for such a 

way of programming. Functional programming, on the contrary, strives to bring the 

abstraction level higher, which may come at a cost of sacrificing efficiency (only when 

necessary and, ideally, only for noncritical parts). Functional programs are built by 

combining referentially transparent computational procedures (a.k.a. “pure functions”) 

that operate on more advanced data structures (either persistent ones or having special 

access semantics, e.g., transactional) that are also more expensive to manage but provide 

additional benefits.

Singly linked lists are a simple example of functional data structures. A functional 
or persistent data structure is the one that doesn’t allow in-place modification. In other 

words, to alter the contents of the structure, a fresh copy with the desired changes should 

be created. The flexibility of linked data structures makes them suitable for serving as 

functional ones. We have seen the cons operation that is one of the earliest examples of 

nondestructive, that is, functional, modification. This action prepends an element to the 

head of a list, and as we’re dealing with the singly linked list, the original doesn’t have 

to be updated: a new cons cell is added in front of it with its next pointer referencing 

the original list that becomes the new tail. This way, we can both preserve the pointer 

to the original head and add a new head. Such an approach is the basis for most of the 

functional data structures: the functional trees, for example, add a new head and a new 

route from the head to the newly added element, adding new nodes along the way—

according to the same principle.

It is interesting, though, that lists can be used in destructive and nondestructive 

fashions likewise. There are both low- and high-level functions in Lisp that perform list 

modification, and their existence is justified by the use cases in many algorithms. Purely 

functional lists render many of the efficient list algorithms useless. One of the high-level 

list modification functions is nconc. It concatenates two lists together updating in the 

process the next pointer of the last cons cell of the first list:

CL-USER> (let ((l1 (list 1 2 3))

               (l2 (list 4 5 6)))

           (nconc l1 l2)  ; note no assignment to l1

           l1)            ; but it is still changed

(1 2 3 4 5 6)
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There’s a functional variant of this operation, append, and, in general, it is considered 

distasteful to use nconc as the risk of unwarranted modification outweighs the minor 

efficiency gains. Using append, we’ll need to modify the previous piece of code because 

otherwise the newly created list will be garbage-collected immediately:

CL-USER> (let ((l1 (list 1 2 3))

               (l2 (list 4 5 6)))

           (setf l1 (append l1 l2))

           l1)

(1 2 3 4 5 6)

The low-level list modification operations are rplaca and rplacd. They can be 

combined with list-specific accessors nth and nthcdr that provide indexed access to 

list elements and tails, respectively. Here’s, for example, how to add an element in the 

middle of a list:

CL-USER> (let ((l1 (list 1 2 3)))

           (rplacd (nthcdr 0 l1)

                   (cons 4 (nthcdr 1 l1)))

           l1)

(1 4 2 3)

Just to reiterate, although functional list operations are the default choice, 

for efficient implementation of some algorithms, you’ll need to resort to the ugly 

destructive ones.

 Different Kinds of Lists
We have, thus far, seen the most basic linked list variant—a singly linked one. It has a 

number of limitations: for instance, it’s impossible to traverse it from the end to the 

beginning. Yet, there are many algorithms that require accessing the list from both sides 

or do other things with it that are inefficient or even impossible with the singly linked 

one; hence, other, more advanced list variants exist.

But first, let’s consider an interesting tweak to the regular singly linked list—a circular 

list. It can be created from the normal one by making the last cons cell point to the first. 

It may seem like a problematic data structure to work with, but all the potential issues 

with infinite looping while traversing it are solved if we keep a pointer to any node and 
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stop iteration when we encounter this node for the second time. What’s the use for 

such structure? Well, not so many, but there’s a prominent one: the ring buffer. A ring 

or circular buffer is a structure that can hold a predefined number of items, and each 

item is added to the next slot of the current item. This way, when the buffer is completely 

filled, it will wrap around to the first element, which will be overwritten at the next 

modification. By our buffer-filling algorithm, the element to be overwritten is the one 

that was written the earliest for the current item set. Using a circular linked list is one 

of the simplest ways to implement such a buffer. Another approach would be to use an 

array of a certain size moving the pointer to the next item by incrementing an index in 

the array. Obviously, when the index reaches array size, it should be reset to zero.

A more advanced list variant is a doubly linked one, in which all the elements have 

both the next and previous pointers. The following definition, using inheritance, 

extends our original list-cell with a pointer to the previous element. Thanks to the 

basic object-oriented capabilities of structs, it will work with the current definition of 

our-own-list as well and allow it to function as a doubly linked list:

(defstruct (list-cell2 (:include list-cell))

  prev)

Yet, we still haven’t shown the implementation of the higher-level operations of 

adding and removing an element to/from our-own-list. Obviously, they will differ 

for singly and doubly linked lists, and that distinction will require us to differentiate 

the doubly linked list types. That, in turn, will demand invocation of a rather heavy OO 

machinery, which is beyond the subject of this book. Instead, for now, let’s just examine 

the basic list addition function, for the doubly linked list:

(defun our-cons2 (data list)

  (when (null list) (setf list (make-our-own-list)))

  (let ((new-head (make-list-cell2

                   :data data

                   :next @list.head)))

    (when (rtl:? list 'head)

      (setf (rtl:? list 'head 'prev) new-head))

    (make-our-own-list

     :head new-head

     :tail (rtl:? list 'tail)

     :size (1+ (rtl:? list 'size)))))
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The first thing to note is the use of the @ syntactic sugar, from RUTILS, that 

implements the mainstream dot notation for slot-value access. @list.head.prev  

refers to the prev field of the head field of the provided list structure of the assumed 

our-own-list type. The more standard Lisp variants (which are more cumbersome) may 

look like one of the following: (our-cons2-prev (our-own-list-head list)) or  

(slot- value (slot-value list 'head) 'prev).2

More important here is that, unlike for the singly linked list, this function requires 

an in-place modification of the head element of the original list: setting its prev pointer. 

This immediately makes doubly linked lists nonpersistent.

Finally, the first line is the protection against trying to access the null list (that will 

result in a much-feared, especially in Java land, null pointer exception class of error).

At first sight, it may seem that doubly linked lists are more useful than singly linked 

ones. But they also have higher overhead so, in practice, they are used quite sporadically. 

We may see just a couple of use cases on the pages of this book. One of them is presented 

in the next part—a double-ended queue.

Besides doubly linked list, there are also association lists that serve as a variant of key-

value (kv) data structures. At least three types may be found in Common Lisp code, and 

we’ll briefly discuss them in Chapter 7. Finally, a skip list is a probabilistic data structure 

based on singly linked lists that allows for faster search. Other more esoteric list variants, 

such as self-organized list and XOR-list, may also be found in the literature—but very rarely 

in practice.

 FIFO and LIFO
The flexibility of lists allows them to serve as a common choice for implementing a 

number of popular abstract data structures.

 Queue
A queue or FIFO (first-in-first-out) has the following interface:

• enqueue an item at the end.

• dequeue the first element: get it and remove it from the queue.

2 Although, for structs, it is implementation-dependent if this will work. In all the current 
implementations, it will.
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It imposes a first-in-first-out (FIFO) ordering on the elements. A queue can be 

implemented directly with a singly linked list like our-own-list. Obviously, it can also 

be built on top of a dynamic array but will require permanent expansion and contraction 

of the collection, which, as we already know, isn’t the preferred scenario for its usage.

There are numerous uses for the queue structures for processing items in a certain 

order (some of which we’ll see in further chapters of this book).

 Stack
A stack or LIFO (last-in-first-out) is even simpler than a queue, and it is used even more 

widely. Its interface is as follows:

• push an item on top of the stack making it the first element.

• pop an item from the top: get it and remove it from the stack.

A simple Lisp list can serve as a stack, and you can see such uses in almost every 

file with Lisp code. The most common pattern is result accumulation during iteration—

using the stack interface, we can rewrite simple-mapcar in an even simpler way (which is 

idiomatic Lisp):

(defun simple-mapcar (fn list)

  (let ((rez (list)))

    (dolist (item list)

      (push (funcall fn item) rez))

    (reverse rez)))

Stacks hold elements in reverse-chronological order and can thus be used to 

keep the history of changes to be able to undo them. This feature is used in procedure 

calling conventions by the compilers: there exists a separate segment of program 

memory called the stack segment, and when a function call happens (beginning from 

the program’s entry point called the main function in C), all of its arguments and local 

variables are put on this stack as well as the return address in the program code segment 

where the call was initiated. Such an approach allows for the existence of local variables 

that last only for the duration of the call and are referenced relative to the current stack 

head and not bound to some absolute position in memory like the global ones. After 

the procedure call returns, the stack is “unwound,” and all the local data is forgotten 
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returning the context to the same state in which it was before the call. Such stack-based 

history-keeping is a very common and useful pattern that may be utilized in userland 

code likewise.

Lisp itself also uses this trick to implement global variables with a capability to have 

context-dependent values through the extent of let blocks: each such variable also has 

a stack of values associated with it. This is one of the most underappreciated features of 

the Lisp language used quite often by experienced lispers. Here is a small example with 

a standard global variable (they are called special in Lisp parlance due to this special 

property) *standard-output* that stores a reference to the current output stream:

CL-USER> (print 1)

1

1

CL-USER> (let ((*standard-output* (make-broadcast-stream)))

           (print 1))

1

In the first call to print, we see both the printed value and the returned one and, 

in the second, only the return value of the print-function, while its output is sent, 

effectively, to /dev/null.

Stacks can be also used to implement queues. We’ll need two of them to do that: 

one will be used for enqueuing the items and the other for dequeuing. Here’s the 

implementation:

(defstruct queue

  head

  tail)

(defun enqueue (item queue)

  (push item (rtl:? queue 'head)))

(defun dequeue (queue)

  ;; Here and in the next condition, we use the property that an empty list

  ;;  is also logically false. This is discouraged by many Lisp

  ;;  styleguides, yet in many cases such code is not only more compact

  ;; but also more clear.

  (unless @queue.tail
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    (do ()

        ;; this loop continues until the head becomes empty

        ((null (rtl:? queue 'head)))

      (push (pop (rtl:? queue 'head)) (rtl:? queue 'tail))))

      ;; By pushing all the items from the head to the tail,

      ;; we reverse their order — this is the second reversing

      ;; that cancels the reversing performed when we push the items

      ;; onto the head, so it restores the original order.

  (when (rtl:? queue 'tail)

    (values (pop (rtl:? queue 'tail))

            t)))  ; this second value is used to indicate

                  ; that the queue was not empty

CL-USER> (let ((q (make-queue)))

           (print q)

           (enqueue 1 q)

           (enqueue 2 q)

           (enqueue 3 q)

           (print q)

           (dequeue q)

           (print q)

           (enqueue 4 q)

           (print q)

           (dequeue q)

           (print q)

           (dequeue q)

           (print q)

           (dequeue q)

           (print q)

           (dequeue q))

#S(QUEUE :HEAD NIL :TAIL NIL)

#S(QUEUE :HEAD (3 2 1) :TAIL NIL)

#S(QUEUE :HEAD NIL :TAIL (2 3))

#S(QUEUE :HEAD (4) :TAIL (2 3))

#S(QUEUE :HEAD (4) :TAIL (3))
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#S(QUEUE :HEAD (4) :TAIL NIL)

#S(QUEUE :HEAD NIL :TAIL NIL)

NIL  ; no second value indicates that the queue is now empty

Such queue implementation still has O(1) operation times for enqueue/dequeue. 

Each element will experience exactly four operations: two pushes and two pops (for the 

head and tail). However, for dequeue this will be the average (amortized) performance, 

while there may be occasional peaks in individual operation runtimes: specifically, after 

long uninterrupted series of enqueues.

Another stack-based structure is the stack with a minimum element, that is, 

some structure that not only holds elements in LIFO order but also keeps track of the 

minimum among them. The challenge is that if we just add the min slot that holds 

the current minimum, when this minimum is popped out of the stack, we’ll need to 

examine all the remaining elements to find the new minimum. We can avoid this 

additional work by adding another stack—a stack of minimums. Now, each push and pop 

operation requires us to also check the head of this second stack and, in case the added/

removed element is the minimum, push it to the stack of minimums or pop it from there, 

accordingly.

A well-known algorithm that illustrates stack usage is fully parenthesized arithmetic 

expression evaluation:

(defun arith-eval (expr)

  "EXPR is a list of symbols that may include:

   square brackets, arithmetic operations, and numbers."

  (let ((ops ())

        (vals ())

        (op nil)

        (val nil))

    (dolist (item expr)

      (case item

        ([ ) ; do nothing

        ((+ - * /) (push item ops))

        (] (setf op (pop ops)

                 val (pop vals))

           (case op

             (+ (incf val (pop vals)))

             (- (decf val (pop vals)))
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             (* (setf val (* val (pop vals))))

             (/ (setf val (/ val (pop vals)))))

           (push val vals))

        (otherwise (push item vals))))

    (pop vals)))

CL-USER> (arith-eval '([ 1 + [ [ 2 + 3 ] * [ 4 * 5 ] ] ] ]))

101

 Deque
A deque is a short name for a double-ended queue, which can be traversed in both 

orders: FIFO and LIFO. It has four operations: push-front and push-back (also called 

shift) and pop-front and pop-back (unshift). This structure may be implemented 

with a doubly linked list or likewise a simple queue with two stacks. The difference for 

the two-stack implementation is that now items may be pushed back and forth between 

head and tail depending on the direction we’re popping from, which results in worst- 

case linear complexity of such operations: when there’s constant alteration of front and 

back directions.

The use case for such structure is the algorithm that utilizes both direct and reverse 

ordering: a classic example being job-stealing algorithms, where the main worker is 

processing the queue from the front, while other workers, when idle, may steal the 

lowest-priority items from the back (to minimize the chance of a conflict for the same 

job).

 Stacks in Action: SAX Parsing
Custom XML parsing is a common task for those who deal with different datasets, as 

many of them come in XML form, for example, Wikipedia and other Wikidata resources. 

There are two main approaches to XML parsing:

• DOM parsing reads the whole document and creates its tree 

representation in memory. This technique is handy for small 

documents, but, for huge ones, such as the dump of Wikipedia, it 

will quickly fill all available memory. Also, dealing with the deep tree 

structure, if you want to extract only some specific pieces from it, is 

not very convenient.
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• SAX parsing is an alternative variant that uses the stream approach. 

The parser reads the document and, upon completing the processing 

of a particular part, invokes the relevant callback: what to do when an 

open tag is read, when a closing one is read, and with the contents of 

the current element. These actions happen for each tag, and we can 

think of the whole process as traversing the document tree utilizing 

the so-called “visitor pattern”: when visiting each node, we have a 

chance to react after the beginning, in the middle, and in the end.

Once you get used to SAX parsing, due to its simplicity, it becomes a tool of choice 

for processing XML, as well as JSON and other formats that allow for a similar stream 

parsing approach. Often the simplest parsing pattern is enough: remember the tag we’re 

looking at, and when it matches a set of interesting tags, process its contents. However, 

sometimes, we need to make decisions based on the broader context. For example, let’s 

say we have the text marked up into paragraphs, which are split into sentences, which 

are, in turn, tokenized. To process such a three-level structure, with SAX parsing, we 

could use the following outline (utilizing the primitives from the CXML library):

(defclass text-sax (sax:sax-parser-mixin)

  ((parags :initform (list) :accessor sax-parags)

   (parag :initform (list) :accessor sax-parag)

   (sent :initform (list) :accessor sax-sent)

   (tag-stack :initform (list) :accessor sax-tag-stack)))

(defmethod sax:start-element ((sax text-sax)

                              namespace-uri local-name qname attrs)

  (declare (ignore namespace-uri qname attrs))

  (push (rtl:mkeyw local-name) (sax-tag-stack sax)))

(defmethod sax:end-element ((sax text-sax)

                            namespace-uri local-name qname)

  (declare (ignore namespace-uri qname))

  (with-slots (tag-stack sent parag parags) sax

    (case (pop tag-stack)

      (:paragraph (push (reverse parag) parags)

                  (setf parag nil))

      (:sentence (push (reverse sent) parag)

                 (setf sent nil)))))
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(defmethod sax:characters ((sax text-sax) text)

  (when (eql :token (first (sax-tag-stack sax)))

    (push text (sax-sent sax))))

(defmethod sax:end-document ((sax text-sax))

  (reverse (sax-parags sax)))

It is our first encounter with the Common Lisp Object System (CLOS) that is based on 

the concepts of objects pertaining to certain classes and methods specialized on those 

classes. Objects are, basically, enhanced structs (with multiple inheritance capabilities), 

while methods allow the programmer to arrange overloaded behavior of the same 

operations (called “generic functions” in Lisp parlance) for different classes of inputs into 

separate self-contained code blocks. CLOS is a very substantial topic that is beyond the 

scope of this book.3 Yet, for those familiar with the OOP paradigm and its implementation 

in any programming language, the idea behind the preceding code should be familiar. In 

fact, this is how SAX parsing is handled in similar Python or Java libraries: by extending 

the provided base class and implementing the specialized versions of its API functions.

This code returns the accumulated structure of paragraphs from the sax:end- 

document method. It uses two stacks—for the current sentence and the current 

paragraph—to accumulate intermediate data during the parsing process. In a similar 

fashion, another stack of encountered tags might have been used to exactly track our 

position in the document tree if there were such necessity. Overall, the more you’ll be 

using SAX parsing, the more you’ll realize that stacks are enough to address 99% of the 

arising challenges.

Here is an example of running the parser on a toy XML document:

CL-USER> (cxml:parse-octets

          ;; FLEXI-STREAMS library is used here

          (flex:string-to-octets "<text>

  <paragraph>

    <sentence><token>A</token><token>test</token></sentence>

     <sentence><token>foo</token><token>bar</token><token>baz</token> 

</sentence>

  </paragraph>

3 To further learn about this topic, I would recommend reading the relevant chapters from the 
book Practical Common Lisp: Generic Functions and Classes.
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  <paragraph>

    <sentence><token>42</token></sentence>

  </paragraph>

</text>")

           (make-instance 'text-sax))

((("A" "test")

  ("foo" "bar" "baz"))

 (("42")))

 Lists as Sets
Another very important abstract data structure is a set. It is a collection that holds each 

element only once no matter how many times we add it there. This structure may be 

used in a variety of cases: when we need to track the items we have already seen and 

processed, when we want to calculate some relations between groups of elements, and 

so forth.

Basically, its interface consists of set-theoretic operations:

• Add/remove an item.

• Check whether an item is in the set.

• Check whether a set is a subset of another set.

• Union, intersection, difference, and so on.

An interesting aspect of sets is that an efficient implementation of element-wise 

operations (add/remove/member) requires the use of different concrete data structures 

and than an implementation of set-wise operations (union/intersection/...), so a choice 

should be made depending on the main use case. One way to implement sets is by using 

linked lists. Lisp has standard library support for this with the following functions:

• adjoin to add an item to the list if it’s not already there

• member to check for item presence in the set

• subsetp for subset relationship query

• union, intersection, set-difference, and set-exclusive-or for 

set operations

Chapter 6  Linked Lists



93

This approach works well for small sets (up to tens of elements), but it is rather 

inefficient in general. Adding an item to the set or checking for membership will require 

O(n) operations, while, in the hash-set (which we’ll discuss in Chapter 7), these are O(1) 

operations. A naive implementation of union and other set-theoretic operations will 

require O(n^2) as we’ll have to compare each element from one set with each one from 

the other. However, if our set lists are in sorted order, set-theoretic operations can be 

implemented efficiently in just O(n) where n is the total number of elements in all sets, 

by performing a single linear scan over each set in parallel. Using a hash-set will also 

result in the same complexity.

Here is a simplified implementation of union for sets of numbers built on sorted lists:

(defun sorted-union (s1 s2)

  (let ((rez ()))

    (do ()

        ((and (null s1) (null s2)))

      (let ((i1 (first s1))

            (i2 (first s2)))

        (cond ((null i1) (dolist (i2 s2)

                           (push i2 rez))

                         (return))

              ((null i2) (dolist (i1 s1)

                           (push i1 rez))

                         (return))

              ((= i1 i2) (push i1 rez)

                         (setf s1 (rest s1)

                               s2 (rest s2)))

              ((< i1 i2) (push i1 rez)

                         (setf s1 (rest s1)))

              ;; just T may be used instead

              ;; of the following condition

              ((> i1 i2) (push i2 rez)

                         (setf s2 (rest s2))))))

    (reverse rez)))

CL-USER> (sorted-union '(1 2 3)

                       '(0 1 5 6))

(0 1 2 3 5 6)
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This approach may be useful even for unsorted list-based sets as sorting is a 

merely O(n * log n) operation. Even better though, when the use case requires 

primarily set-theoretic operations on our sets and the number of changes/

membership queries is comparatively low, the most efficient technique may be to 

keep the lists sorted at all times.

 Merge Sort
Speaking about sorting, the algorithms we discussed for array sorting in the previous 

chapter do not work as efficient for lists for they are based on swap operations, which 

are O(n), in the list case. Thus, another approach is required, and there exist a number 

of efficient list sorting algorithms, the most prominent of which is merge sort. It works 

by splitting the list into two equal parts until we get to trivial one-element lists and then 

merging the sorted lists into the bigger sorted ones. The merging procedure for sorted 

lists is efficient as we’ve seen in the previous example. A nice feature of such an approach 

is its stability, that is, preservation of the original order of the equal elements, given the 

proper implementation of the merge procedure:

(defun merge-sort (list comp)

  (if (null (rest list))

      list

      (let ((half (floor (length list) 2)))

        (merge-lists (merge-sort (subseq seq 0 half) comp)

                     (merge-sort (subseq seq half) comp)

                     comp))))

(defun merge-lists (l1 l2 comp)

  (let ((rez ()))

    (do ()

        ((and (null l1) (null l2)))

      (let ((i1 (first l1))

            (i2 (first l2)))

        (cond ((null i1) (dolist (i l2)

                           (push i rez))

                         (return))
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              ((null i2) (dolist (i l1)

                           (push i rez))

                         (return))

              ((funcall comp i1 i2) (push i1 rez)

                                    (setf l1 (rest l1)))

              (t (push i2 rez)

                 (setf l2 (rest l2))))))

    (reverse rez)))

The same complexity analysis as for binary search applies to this algorithm. At each 

level of the recursion tree, we perform O(n) operations. Each element is pushed into the 

resulting list once and reversed once, and there are at most four comparison operations: 

three null checks and one call of the comp function. We also need to perform one copy 

per element in the subseq operation and take the length of the list (although it can be 

memorized and passed down as the function call argument) on the recursive descent. This 

totals to not more than ten operations per element, which is a constant. And the height of 

the tree is, as we already know, (log n 2). So the total complexity is O(n * log n).

Let’s now measure the real time needed for such sorting, and let’s compare it to the 

time of prod-sort (with optimal array accessors) from Chapter 5:

CL-USER> (rtl:with ((lst (random-list 10000))

                    (vec (make-array 10000 :initial-contents lst)))

           (print-sort-timings "Prod" 'prod-sort vec)

           (print-sort-timings "Merge " 'merge-sort lst))

= Prodsort of random vector =

Evaluation took:

  0.048 seconds of real time

= Prodsort of sorted vector =

Evaluation took:

  0.032 seconds of real time

= Prodsort of reverse sorted vector =

Evaluation took:

  0.044 seconds of real time

= Merge sort of random vector =

Evaluation took:

  0.007 seconds of real time
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= Merge sort of sorted vector =

Evaluation took:

  0.007 seconds of real time

= Merge sort of reverse sorted vector =

Evaluation took:

  0.008 seconds of real time

Interestingly enough, merge sort turned out to be around five times faster, although 

it seems that the number of operations required at each level of recursion is at least two 

to three times bigger than for quicksort. Why we got such result is left as an exercise to 

the reader: I’d start from profiling the function calls and looking where most of the time 

is wasted…

It should be apparent that the merge-lists procedure works in a similar way to 

set-theoretic operations on sorted lists that we’ve discussed in the previous part. It is, 

in fact, provided in the Lisp standard library. Using the standard merge, merge sort 

may be written in a completely functional and also generic way to support any kind of 

sequences:

(defun merge-sort (seq comp)

  (if (or (null seq)  ; avoid expensive length calculation

          (<= (length seq) 1))

      seq

      (let ((half (floor (length seq) 2)))

        (merge (type-of seq)

               (merge-sort (subseq seq 0 half) comp)

               (merge-sort (subseq seq half) comp)

               comp))))

There’s still one substantial difference of merge sort from the array sorting functions: 

it is not in-place. So it also requires the O(n * log n) additional space to hold the half 

sublists that are produced at each iteration. Sorting and merging them in-place is not 

possible. There are ways to somewhat reduce this extra space usage but not totally 

eliminate it.
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 Parallelization of Merge Sort
The extra space drawback of merge sort may, however, turn irrelevant if we consider 

the problem of parallelizing this procedure. The general idea of parallelized 

implementation of any algorithm is to split the work in a way that allows reducing the 

runtime proportional to the number of workers performing those jobs. In the ideal 

case, if we have m workers and are able to spread the work evenly, the running time 

should be reduced by a factor of m. For the merge sort, it will mean just O(n/m * log n).  

Such ideal reduction is not always achievable, though, because often there are 

bottlenecks in the algorithm that require all or some workers to wait for one of them to 

complete its job.

Here’s a trivial parallel merge sort implementation that uses the eager-future2 

library, which adds high-level data parallelism capabilities based on the Lisp 

implementation’s multithreading facilities:

(defun parallel-merge-sort (seq comp)

  (if (or (null seq) (<= (length seq) 1))

      seq

      (rtl:with ((half (floor (length seq) 2))

                 (thread1 (eager-future2:pexec

                            (merge-sort (subseq seq 0 half) comp)))

                 (thread2 (eager-future2:pexec

                            (merge-sort (subseq seq half) comp))))

        (merge (type-of seq)

               (eager-future2:yield thread1)

               (eager-future2:yield thread2)

               comp))))

The eager-future2:pexec procedure submits each merge-sort to the thread pool 

that manages multiple CPU threads available in the system and continues program 

execution not waiting for it to return, while eager-future2:yield pauses execution until 

the thread performing the appropriate merge-sort returns.
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When I ran our testing function with both serial and parallel merge sorts on my 

machine, with four CPUs, I got the following result:

CL-USER> (rtl:with ((lst1 (random-list 10000))

                    (lst2 (copy-list lst1)))

           (print-sort-timings "Merge " 'merge-sort lst1)

           (print-sort-timings "Parallel Merge "

                               'parallel-merge-sort lst2))

= Merge sort of random vector =

Evaluation took:

  0.007 seconds of real time

  114.29% CPU

= Merge sort of sorted vector =

Evaluation took:

  0.006 seconds of real time

  116.67% CPU

= Merge sort of reverse sorted vector =

Evaluation took:

  0.007 seconds of real time

  114.29% CPU

= Parallel Merge sort of random vector =

Evaluation took:

  0.003 seconds of real time

  266.67% CPU

= Parallel Merge sort of sorted vector =

Evaluation took:

  0.003 seconds of real time

  266.67% CPU

= Parallel Merge sort of reverse sorted vector =

Evaluation took:

  0.005 seconds of real time

  220.00% CPU

A speedup of approximately 2×, which is also reflected by the rise in CPU utilization 

from around 100% (i.e., one CPU) to 250%. These are correct numbers as the merge 

procedure is still executed serially and remains the bottleneck. There are more 

sophisticated ways to achieve optimal m times speedup in merge sort parallelization, but 

we won’t discuss them here due to their complexity.
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 Lists and Lisp
Historically, Lisp’s name originated as an abbreviation of “List Processing,” which points 

both to the significance that lists played in the language’s early development and to the 

fact that flexibility (a major feature of lists) was always a cornerstone of its design. Why 

are lists important to Lisp? Maybe, originally, it was connected with the availability and 

the good support of this data structure in the language itself. But, quickly, the focus 

shifted to the fact that, unlike other languages, Lisp code is input in the compiler not in 

a custom string-based format but in the form of nested lists that directly represent the 

syntax tree. Coupled with superior support for the list data structure, it opens numerous 

possibilities for programmatic processing of the code itself, which are manifest in the 

macro system, code walkers and generators, and so on. So “List Processing” turns out 

to be not about lists of data, but about lists of code, which perfectly describes the main 

distinctive feature of this language…

 Takeaways
In this chapter, we have seen the possibilities that the flexibility of linked structures 

opens: lists were used as sequences, sets, stacks, and queues. We’ll continue utilizing this 

flexibility over and over in the following parts.
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CHAPTER 7

Key- Values

value 1

value 2

value 3

key 1
key 3

key 2  

To conclude the description of essential data structures, we need to discuss key-values 

(kvs), which are the broadest family of structures one can imagine. Unlike arrays and 

lists, kvs are not concrete structures. In fact, they span, at least in some capacity, all of the 

popular concrete ones, as well as some obscure.

The main feature of kvs is efficient access to the values by some kind of keys that 

they are associated with. In other words, each element of such data structure is a key- 

value pair that can be easily retrieved if we know the key, and, on the other hand, if we 

ask for the key that is not in the structure, the null result is also returned efficiently. By 

“efficiently,” we usually mean O(1) or, at least, something sublinear (like O(log n)), 

although, for some cases, even O(n) retrieval time may be acceptable. See how broad this 

is! So a lot of different structures may play the role of key-values.

https://doi.org/10.1007/978-1-4842-6428-7_7#DOI
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By the way, there isn’t even a single widely adopted name for such structures. 

Besides key-values—which isn’t such a popular term (I derived it from key-value 

stores)—in different languages, they are called maps, dictionaries, associative arrays, 

tables, objects, and so on.

In a sense, these are the most basic and essential data structures. They are so 

essential that some dynamic languages—for example, Lua, explicitly, and JavaScript, 

without a lot of advertisement—rely on them as the core (sometimes sole) language’s 

data structure. Moreover, key-values are used almost everywhere. The following is a list 

of some of the most popular scenarios:

• Implementation of the object system in programming languages.

• Most of the key-value stores are, for the most part, glorified  

key-value structures.

• Internal tables in the operating system (running process tables or 

file descriptor tables in the Linux kernel), programming language 

environment, or application software.

• All kinds of memoization and caching.

• Efficient implementation of sets.

• Ad hoc or predefined records for returning aggregated data from 

function calls.

• Representing various dictionaries (in language processing  

and beyond).

Considering such a wide spread, it may be surprising that, historically, the 

programming language community only gradually realized the usefulness of key-values. 

For instance, such languages as C and C++ don’t have the built-in support for general 

kvs (if we don’t count structs and arrays, which may be considered significantly limited 

versions). Lisp, on the contrary, was to some extent pioneering their recognition with the 

concepts of alists and plists, as well as being one of the first languages to have hash-table 

support in the standard.

 Concrete Key-values
Let’s see what concrete structures can be considered key-values and in which cases it 

makes sense to use them.
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 Simple Arrays
Simple sequences, especially arrays, may be regarded as a particular variant of kvs 

that allows only numeric keys with efficient (and fastest) constant-time access. This 

restriction is serious. However, as we’ll see in the following, it can often be worked 

around with clever algorithms. As a result, arrays actually play a major role in the key- 

value space, but not in the most straightforward form. However, if it is possible to be 

content with numeric keys and their number is known beforehand, vanilla arrays are the 

best possible implementation option. For example, OS kernels that have a predefined 

limit on the number of processes and a “process table” that is indexed by pid (process id) 

that lies in the range 0..MAX_PID.

So let’s note this curious fact that arrays are also a variant of key-values.

 Associative Lists
The main drawback of using simple arrays for kvs is not even the restriction that all keys 

should somehow be reduced to numbers, but the static nature of arrays that do not lend 

themselves well to resizing. As an alternative, we could then use linked lists, which do 

not have this restriction. If the key-value contains many elements, linked lists are clearly 

not ideal in terms of efficiency. Many times, the key-value contains very few elements, 

perhaps only half a dozen or so. In this case, even a linear scan of the whole list may not 

be such an expensive operation. This is where various forms of associative lists enter 

the scene. They store pairs of keys and values and don’t impose any restrictions, neither 

on the keys nor on the number of elements. But their performance quickly degrades 

below acceptable once the number of elements grows above several. Many flavors 

of associative lists can be invented. Historically, Lisp supported two variants in the 

standard library:

• alists (association lists) are lists of cons pairs. A cons pair is the 

original Lisp data structure, and it consists of two values called 

the car and the cdr (the names come from two IBM machine 

instructions). Association lists have dedicated operations to find a 

pair in the list (assoc) and to add an item to it (pairlis), although 

it may be easier to just push the new cons cell onto it. Modification 

may be performed simply by altering the cdr of the appropriate cons 
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cell. ((:foo . "bar") (42 . "baz")) is an alist of two items with 

keys :foo and 42 and values "bar" and "baz". As you can see, it’s 

heterogenous in a sense that it allows keys of arbitrary type.

• plists (property lists) are flat lists of alternating keys and values. 

They also have dedicated search (getf) and modify (setf getf) 

operations, while insertion may be performed by calling push twice 

(on the value and then the key). The plist with the same data as the 

previous alist will look like this: (:foo "bar" 42 "baz"). Plists are 

used in Lisp to represent the keyword function arguments as a whole.

Deleting an item from such lists is quite efficient if we already know the place that 

we want to clear, but tracking this place if we haven’t found it yet is a bit cumbersome. 

In general, the procedure will be to iterate the list by tails until the relevant cons cell is 

found and then make the previous cell point to this one’s tail. A destructive version for 

alists will look like this:

(defun alist-del (key alist)

  (loop :for tail := alist :then (rest tail) :while tail

        :for prev := alist :then tail

        ;; a more general version of the function will take

        ;; an additional :test argument instead of hardcoding EQL

        :when (eql key (car (first tail)))

        :do (return (if (eql prev alist)

                        ;; special case of the first item

                        (rest alist)

                        (progn (setf (rest prev) (rest tail))

                               alist)))

        :finally (return alist)))

However, the standard provides higher-level removal operations for plists (remf) and 

alists: (remove key alist :key 'car) .

Both of these ad hoc list-based kvs have some historical baggage associated with 

them and are not very convenient to use. Nevertheless, they can be utilized for some 

simple scenarios, as well as for interoperability with the existing language machinery. 

And, however counterintuitive it may seem, if the number of items is small, alists may be 

the most efficient key-value data structure.
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Another nonstandard but more convenient and slightly more efficient variant of 

associative lists was proposed by Ron Garret and is called dlists (dictionary lists). It is a 

cons pair of two lists: the list of keys and the list of values. The dlist for our example will 

look like this: ((:foo 42) . ("bar" "baz")) .

As the interface of different associative lists is a thin wrapper over the standard 

list API, the general list processing knowledge can be applied to dealing with them, 

so we won’t spend any more time describing how they work. Instead, I’d like to end 

the description of list-based kvs with this quote from a Scheme old-timer John Cowan 

posted as a comment to this chapter:

One thing to say about alists is that they are very much the simplest persis-
tent key-value object; we can both have pointers to the same alist and I can 
cons things onto mine without affecting yours. In principle this is possible 
for plists also, but the standard functions for plists mutate them.

In addition, the maximum size at which an alist’s O(n) behavior dominates 
the higher constant factor of a hash table has to be measured for a particu-
lar implementation: in Chicken Scheme, the threshold is about 30.

The self-rearranging alist is not persistent but has other nice properties. 
Whenever you find something in the alist, you make sure you have kept the 
address of the previous pair as well. Then you splice the found item out of its 
existing place, cons it at the front of the alist, and return it. Your caller has 
to be sure to remember that the alist is now at a new location. If you want, 
you can also shorten the alist at any point as you search it to keep the list 
bounded, which makes it a LRU cache.

An interesting hybrid structure is an alist whose last pair does not have () 
in the cdr but rather a hash table. So when you get down to the end, you 
look in the hash table. This is useful when a lot of the mappings are always 
the same but it is necessary to temporarily change a few. As long as the hash 
table is treated as immutable, this data structure is persistent.

There’s life in the old alist yet!

 Hash-Tables
Hash-tables are, probably, the most common way to do key-values, nowadays. They 

are dynamic and don’t impose restrictions on keys while having an amortized O(1) 

performance albeit with a rather high constant. The next chapter will be exclusively 

dedicated to hash-table implementation and usage. Here, it suffices to say that hash- 
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tables come in many different flavors, including the ones that can be efficiently 

precomputed if we want to store a set of items that is known ahead of time. Hash-tables 

are, definitely, the most versatile key-value variant and thus the default choice for such a 

structure. However, they are not so simple and may pose a number of surprises that the 

programmer should understand in order to use them properly.

 Structs
Speaking of structs, they may also be considered a special variant of key-values with a 

predefined set of keys. In this respect, structs are similar to arrays, which have a fixed 

set of keys (from 0 to MAX_KEY). As we already know, generally, structs internally map to 

arrays, so they may be considered a layer of syntactic sugar that provides names for the 

keys and handy accessors. Usually, the struct is pictured not as a key-value but rather a 

way to make the code more “semantic” and understandable. Yet, if we consider returning 

the aggregate value from a function call, as the possible set of keys is known beforehand, 

it’s a good stylistic and implementation choice to define a special-purpose one-off struct 

for this instead of using an alist or a hash-table. Here is a small example—compare the 

clarity of the alternatives:

(defun foo-adhoc-list (arg)

  (let ((rez (list)))

    ...

    (push "hello" rez)

    ...

    (push arg rez)

    ...

    rez))

CL-USER> (foo-adhoc-list 42)

(42 "hello")

(defun foo-adhoc-hash (arg)

  (let ((rez (make-hash-table)))

    ...

    (setf (gethash :baz rez) "hello")

    ...

Chapter 7  Key- Values



107

    (setf (gethash :quux rez) arg))

    ...

    rez))

CL-USER> (foo-adhoc-hash 42)

#<HASH-TABLE :TEST EQL :COUNT 2 {1040DBFE83}>

(defstruct foo-rez

  baz quux)

(defun foo-struct (&rest args)

  (let ((rez (make-foo-rez)))

    ...

    (setf (foo-baz rez) "hello")

    ...

    (setf (foo-quux rez) 42))

    ...

    rez))

CL-USER> (foo-struct 42)

#S(FOO-REZ :BAZ "hello" :QUUX 42)

 Trees
Another versatile option for implementing kvs is by using trees. There are even 

more tree variants than hash-tables, and we’ll also have dedicated chapters to study 

them. Generally, the main advantage of trees, compared to simple hash-tables, is the 

possibility to impose some ordering on the keys (although linked hash-tables also allow 

for that), while the disadvantage is less efficient operation: O(log n). Also, trees don’t 

require hashing. Another major direction that the usage of trees opens is the possibility 

of persistent key-value implementation. Some languages, like Java, have standard library 

support for tree-based kvs (TreeMap), but most languages delegate dealing with such 

structures to library authors for there is a wide choice of specific trees and none may 

serve as the default choice of a key-value structure. Trees and their usage as kvs will also 

be discussed in more detail in a separate chapter.

Chapter 7  Key- Values



108

 Operations
The primary operation for a kv structure is access to its elements by key: to set, change, 

and remove. As there are so many different variants of concrete kvs, there are a number 

of different low-level access operations, some of which we have already discussed in the 

previous chapters and the others we will see in the next ones.

Yet, most of the algorithms don’t necessarily require the efficiency of built-in 

accessors, while their clarity will seriously benefit from a uniform generic access 

operation. Such an operation, as we have already mentioned, is defined by RUTILS 

and is called generic-elt or ? , for short. We have already seen it in action in some 

of the preceding examples. And that’s not an accident as kv access is among the most 

frequent operations. In the following chapter, we will stick to the rule of using the 

specific accessors like gethash when we are talking about some structure-specific 

operations and ? in all other cases—when clarity matters more than low-level 

considerations. ? is implemented using the CLOS generic function machinery that 

provides dynamic dispatch to a concrete retrieval operation and allows defining 

additional variants for new structures as the need arises. Another useful feature of 

generic-elt is chaining that allows expressing multiple accesses as a single call. This 

comes in very handy for nested structures. Consider an example of accessing the first 

element of the field of the struct that is the value in some hash-table: (? x :key 0 

'field). If we were to use concrete operations, it would look like this: (slot-value 

(nth 0 (gethash :key x)) 'field).

The following is the backbone of the generic-elt function that handles chaining 

and error reporting:

(defgeneric generic-elt (obj key &rest keys)

  (:documentation

   "Generic element access in OBJ by KEY.

    Supports chaining with KEYS.")

  (:method :around (obj key &rest keys)

    (reduce #'generic-elt keys :initial-value (call-next-method obj key)))

  (:method (obj key &rest keys)

    (declare (ignore keys))

    (error 'generic-elt-error :obj obj :key key)))
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And here are some methods for specific kvs (as well as sequences):

(defmethod generic-elt ((obj hash-table) key &rest keys)

  (declare (ignore keys))

  (gethash key obj))

(defmethod generic-elt ((obj vector) key &rest keys)

  (declare (ignore keys))

  ;; Python-like handling of negative indices as offsets from the end

  (when (minusp key) (setf key (- (length obj) key)))

  (aref obj key))

(defmethod generic-elt ((obj (eql nil)) key &rest keys)

  (declare (ignore key keys))

  (error "Can't access NIL with generic-elt!"))

generic-setf is a complement function that allows defining setter operations for 

generic-elt. There exists a built-in protocol to make Lisp aware that generic-setf 

should be called whenever setf is invoked for the value accessed with ? : (defsetf ? 

generic-setf).

It is also common to retrieve all keys or values of the kv, which is handled in a generic 

way by the keys and vals RUTILS functions.

Key-values are not sequences in a sense that they are not necessarily ordered, 

although some variants are. But even unordered kvs may be traversed in some random 

order. Iterating over kvs is another common and essential operation. In Lisp, as we 

already know, there are two complimentary iteration patterns: the functional map and 

the imperative do style. RUTILS provides both of them as mapkv and dokv, although I’d 

recommend to first consider the macro dotable that is specifically designed to operate 

on hash-tables.

Finally, another common necessity is the transformation between different kv 

representations, primarily between hash-tables and lists of pairs, which is also handled 

by RUTILS with its ht->pairs/ht->alist and pairs->ht/alist->ht functions.

As you see, the authors of the Lisp standard library hadn’t envisioned the generic 

key-value access protocols, and so it is implemented completely in a third-party add-on. 

Yet, what’s most important is that the building blocks for doing that were provided by the 

language, so this case shows the critical importance that these blocks (primarily, CLOS 

generic functions) have in future-proofing the language’s design.
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 Memoization
One of the major use cases for key-values is memoization—storing the results of previous 

computations in a dedicated table (cache) to avoid recalculating them. Memoization 

is one of the main optimization techniques; I’d even say the default one. Essentially, it 

trades space for speed. And the main issue is that space is also limited, so memoization 

algorithms are geared toward optimizing its usage to retain the most relevant items, that 

is, maximize the probability that the items in the cache will be reused.

Memoization may be performed ad hoc or explicitly: just set up some key scheme 

and a table to store the results and add/retrieve/remove the items as needed. It can also 

be delegated to the compiler in the implicit form. For instance, Java or Python provides 

the @memoize decorator: once it is used with the function definition, each call to it will 

pass through the assigned cache using the call arguments as the cache keys. This is how 

the same feature may be implemented in Lisp, in the simplest fashion:

(defun start-memoizing (fn)

  (stop-memoizing fn)

  (setf (symbol-function fn)

        (let ((table (make-hash-table :test 'equal))

              (vanilla-fn (symbol-function fn)))

          (setf (get fn :cache) table

                (get fn :fn) vanilla-fn)

          (lambda (&rest args)

            (rtl:getsethash (format nil "~{~A~^|~}" args)

                            table

                            (apply vanilla-fn args))))))

(defun stop-memoizing (fn)

  ;; WHEN-IT is a so called anaphoric macro, from RUTILS, that assigns

  ;; the value of its first argument to an implicitly created variable IT

  ;; and evaluates the body when IT isn't null

  (rtl:when-it (get fn :fn)

    (setf (symbol-function fn) rtl:it

          (get fn :fn) nil)))

CL-USER> (defun foo (x)

           (sleep 5)

           x)
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CL-USER> (start-memoizing 'foo)

CL-USER> (time (foo 1))

Evaluation took:

  5.000 seconds of real time

CL-USER> (time (foo 1))

Evaluation took:

  0.000 seconds of real time

CL-USER> (time (foo 2))

Evaluation took:

  5.001 seconds of real time

We use a hash-table to store the memoized results. The getset# macro from RUTILS 

tries to retrieve the item from the table by key and, if it’s not present there, performs the 

calculation given as its last argument returning its result while also storing it in the table 

at key. Another useful Lisp feature utilized in this facility is called “symbol plist”: every 

symbol has an associated key-value plist. Items in this plist can be retrieved using the 

get operator.1

This approach is rather primitive and has a number of drawbacks. First of all, the 

hash-table is not limited in capacity. Thus, if it is used carelessly, a memory leak is 

inevitable. Another possible issue may occur with the keys, which are determined by 

simply concatenating the string representations of the arguments—possibly nonunique. 

Such bug may be very subtle and hard to infer. Overall, memoization is the source of 

implicit behavior that always poses potential trouble but sometimes is just necessary.  

A more nuanced solution will allow us to configure both how the keys are calculated and 

various parameters of the cache, which we’ll discuss next. One more possible decision 

to make might be about what to cache and what not: for example, we could add a time 

measurement around the call to the original function, and only when it exceeds a 

predefined limit the results will be cached.

1 Symbol plists represent one of the unpleasant legacy features of the language in that the most 
obvious accessor name, namely, get, is reserved for working with symbols. Therefore, this name 
cannot be used for accessing other kinds of data. Historically, symbol plists were the first and 
only variant of key-values available in the language (at that time, the other languages didn’t have 
the slightest idea of such a high-level concept).
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 Memoization in Action: Transposition Tables
Transposition tables are a characteristic example of the effective usage of memoization, 

which comes from classic game AI. But the same approach may be applied in numerous 

other areas with lots of computation paths that converge and diverge at times. We’ll 

return to similar problems in the last third of this book.

In such games as chess, the same position may be reached in a great variety 

of moves. All possible sequences are called transpositions, and it is obvious that, 

regardless of how we reached a certain position, if we have already analyzed that 

situation previously, we don’t need to repeat the analysis when it repeats. So caching 

the results allows avoiding a lot of redundant computation. However, the number 

of positions, in chess, that comes up during the analysis is huge, so we don’t stand a 

chance of remembering all of them. In this case, a good predictor for the chance of 

a situation to occur is very likely the number of times it has occurred in the past. For 

that reason, an appropriate caching technique, in this context, is plain LFU (least 

frequently used). But there’s more. Yet, another measure of the value of a certain 

position is how early it occurred in the game tree (since the number of possible 

developments, from it, is larger). So classic LFU should be mixed with this temporal 

information yielding a domain- specific caching approach. And the parameters 

of combining the two measures together are subject to empirical evaluation and 

research.

There’s much more to transposition tables than mentioned in this short 

introduction. For instance, the keys describing the position may need to include 

additional information if the history of occurrence in it impacts the further game 

outcome (castling and repetition rules). Here’s, also, a quote from Wikipedia on their 

additional use in another common chess-playing algorithm:

The transposition table can have other uses than finding transpositions. In 
alpha-beta pruning, the search is fastest (in fact, optimal) when the child of 
a node corresponding to the best move is always considered first. Of course, 
there is no way of knowing the best move beforehand, but when iterative 
deepening is used, the move that was found to be the best in a shallower 
search is a good approximation. Therefore this move is tried first. For stor-
ing the best child of a node, the entry corresponding to that node in the 
transposition table is used.
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 Cache Invalidation
The problem of cache invalidation arises when we set some limit on the size of the 

cache. Once it is full—and a properly setup cache should be full, effectively, all the 

time—we have to decide which item to remove (evict) when we need to put a new 

one in the cache. I’ve already mentioned the saying that (alongside naming things) it 

is the hardest challenge in computer science. In fact, it’s not; it’s rather trivial, from 

the point of view of algorithms. The hard part is defining the notion of relevance. 

There are two general approximations which are used unless there are some specific 

considerations: frequency of access or time of last access. Let’s see the algorithms 

built around these. Each approach uses some additional data stored with each key. 

The purpose of the data is to track one of the properties, that is, either frequency of 

access or time of last access.

 Second Chance and Clock Algorithms
The simplest approach to cache invalidation except for random choice eviction may be 

utilized when we are severely limited in the amount of additional space we can use per 

key. Usually, this situation is typical for hardware caches. The minimal possible amount 

of information to store is 1 bit. If we have just as much space, the only option we have is 

to use it as a flag indicating whether the item was accessed again after it was put into the 

cache. This technique is very fast and very simple and improves cache performance to 

some extent. There may be two ways of tracking this bit efficiently:

 1. Just use a bit-vector (usually called “bitmap,” in such context) of 

the same length as the cache size. To select the item for eviction, 

find the first 0 from the left or right. With the help of one of the 

hardware instructions from the bit scan family (ffs, find first zero; 

clz, count trailing zeroes; etc.), this operation can be blazingly 

fast. In Lisp, we could use the high-level function position:

(defun find-candidate-second-chance (bitmap)

  (declare (type bit-vector bitmap))

  (position 0 bitmap))
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The type declaration is necessary for the implementation to emit the appropriate 

machine instruction. If you’re not confident in that, just disassemble the function and 

look at the generated machine code:

CL-USER> (disassemble 'find-candidate-second-chance)

; disassembly for FIND-CANDIDATE-SECOND-CHANCE

; Size: 228 bytes. Origin: #x103A8E42F0

...

; 340:       B878D53620       MOV EAX, #x2036D578

             ; #<FDEFN SB-KERNEL:%BIT-POSITION/0>

...

So SBCL uses sb-kernel:%bit-position/0. Nice. If you look inside this function, 

though, you’ll find out that it’s also pretty complicated. And, overall, there are lots of 

other assembler instructions in this piece, so if our goal is squeezing the last bit out of it, 

there’s more we can do:

• Force the implementation to optimize for speed: put (declaim 

(optimize (speed 3) (debug 0) (safety 1))) at the top of the 

file with the function definition or use proclaim in the REPL with the 

same declarations.

• Use the low-level function sb-kernel:%bit-position/0 directly. 

However, we should keep in mind that explicitly depending on such 

code might break our application, so this solution may be applied in 

limited contexts and is not future-proof. Yet, sometimes, when the 

only thing you need is a one-off solution for an immediate problem 

at hand and you don’t care about supporting this code, it may be 

acceptable.

• Go even deeper and use the machine instruction directly—SBCL 

allows that as well: (sb-vm::%primitive sb-vm::unsigned-word- 

find-first-bit x). But this will be truly context-dependent (on 

the endianness, hardware architecture, and the size of the bit-vector 

itself, which should fit into a machine word for this technique 

to work). However, there’s one problem with the function find- 

candidate- second-chance: if all the bits are set, it will return nil.  
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By selecting the first element (or, even better, some random element), 

we can fix this problem. Still, eventually, we’ll end up with all 

elements of the bitmap set to 1, so the method will degrade to simple 

random choice. It means that we need to periodically reset the bit- 

vector, either on every eviction—this is a good strategy if we happen 

to hit the cache more often than miss—or after some number of 

iterations, or after every bit is set to 1. Overall, such an approach falls 

into a category of “crazy hacks.”

 2. An alternative method for selecting a candidate to evict is known  

as the clock algorithm. It keeps examining the visited bit of each 

item, in a cycle: if it’s equal to 1, reset it and move to the next item;  

if it’s 0, select the item for eviction. Basically, it’s yet another strategy 

for dealing with the saturation of the bit-vector. Here’s how it may 

be implemented in Lisp with the help of the closure pattern: the 

function keeps track of its internal state, using a lexical variable  

that is only accessible from inside the function and that has a  

value that persists between calls to the function. The closure is 

created by the let block, and the variable closed over is i, here:

(let ((i 0))

  (defun find-candidate-clock (bitmap)

    (declare (type (vector bit) bitmap))

    (loop :with len := (length bitmap)

          :until (zerop (aref bitmap i))

          :do (setf (aref bitmap i) 0)

              (setf i (mod (1+ i) len)))

    i))

Our loop is guaranteed to find the zero bit at least after we cycle over all the 

elements and return to the first one that we have set to zero ourselves. Obviously, here 

and in other places where it is not stated explicitly, we’re talking about single-threaded 

execution only.
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 LFU
So what if we don’t have such a serious restriction on the size of the access counter? 

In this case, a similar algorithm that uses a counter instead of a flag will be called least 

frequently used (LFU) item eviction. There is one problem though: the access counter 

will only grow over time, so some items that were heavily used during some period 

will never be evicted from the cache, even though they may never be accessed again. 

To counteract this accumulation property, which is similar to bitmap saturation we’ve 

seen in the previous algorithm, a similar measure can be applied. Namely, we’ll have to 

introduce some notion of epochs, which reset or diminish the value of all counters. The 

most common approach to epochs is to right shift each counter, that is, divide by 2. This 

strategy is called aging. An LFU cache with aging may be called LRFU—least recently/

frequently used.

As usual, the question arises: How often to apply aging? The answer may be context- 

dependent and dependent on the size of the access counter. For instance, usually, a 

1-byte counter, which can distinguish between 256 access operations, will be good 

enough, and it rarely makes sense to use a smaller one as most hardware operates in 

byte-sized units. The common strategies for aging may be

• Periodically with an arbitrarily chosen interval—which should be 

enough to accumulate some number of changes in the counters but 

not to overflow them.

• After a certain number of cache access operations. Such an approach 

may ensure that the counter doesn’t overflow: say, if we use a 1-byte 

counter and age after each 128 access operations, the counter will 

never exceed 192. Or we could perform the shift after 256 operations 

and still ensure lack of overflows with high probability.

 LRU
An alternative approach to LFU is LRU—evict the item that was used the longest time 

ago. LRU means that we need to store either last-access timestamps or some generation/

epoch counters. Another possibility is to utilize access counters, similar to the ones that 

were used for LFU, except that we initialize them by setting all bits to 1, that is, to the 

maximum possible value (255 for a 1-byte counter). The counters are decremented, 

on each cache access, simultaneously for all items except for the item being accessed. 
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The benefit of such an approach is that it doesn’t require accessing any external notion 

of time making the cache fully self-contained, which is necessary for some hardware 

implementations, for instance. The only thing to remember is not to decrement the 

counter beyond 0. :)

Unlike LFU, this strategy can’t distinguish between a heavily accessed item and 

a sparingly accessed one. So, in the general case, I’d say that LFU with aging (LRFU) 

should be the default approach, although its implementation is slightly more complex.

 Low-Level Caching
So memoization is the primary tool for algorithm optimization, and the lower we 

descend into our computing platform, the more this fact becomes apparent. For 

hardware, it is, basically, the only option. There are many caches in the platform that 

act behind the scenes, but which have a great impact on the actual performance of your 

code: the CPU caches, the disk cache, the page cache, and other OS caches. The main 

issue, here, is the lack of transparency into their operation and sometimes even the lack 

of awareness of their existence. This topic is, largely, beyond the scope of our book, so if 

you want to learn more, there’s a well- known talk “A Crash Course in Modern Hardware” 

and an accompanying list of “Latency Numbers Every Programmer Should Know” that 

you can start with. Here, I can provide only a brief outline.

The most important cache in the system is the CPU cache—or, rather, in most of 

the modern architectures, a system of two or three caches. There’s an infamous von 
Neumann’s bottleneck of the conventional computer hardware design: the CPU works 

roughly two orders of magnitude faster than it can fetch data from memory. Last time I 

checked, the numbers were as follows: execution of one memory transfer took around 

250–300 CPU cycles, that is, around 300 additions or other primitive instructions could 

be run during that time. And the problem is that CPUs operate only on data that they 

get from memory, so if the bottleneck didn’t exist at all, theoretically, we could have 

two orders of magnitude faster execution. Fortunately, the degradation in performance 

is not so drastic, thanks to the use of CPU caches: only around an order of magnitude. 

The cache transfer numbers are the following: from L1 (the fastest and hence smallest) 

cache, around 5 cycles; from L2, 20–30 cycles; and from L3, 50–100 cycles (that’s why L3 

is not always used as it’s almost on par with the main memory). Why do I say that fastest 

means smallest? Just because fast access memory is more expensive and requires more 

energy. Otherwise, we could just make all RAM as fast as the L1 cache.
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How do these caches operate? This is one of the things that every algorithmic 

programmer should know, at least, in general. Even if some algorithm seems good 

on paper, a more cache-friendly one with worse theoretical properties may very well 

outperform it.

The CPU cache temporarily stores contents of the memory cells (memory words) 

indexed by their addresses. It is called set-associative as it operates not on single cells 

but on sequential blocks of those (in the so-called cache lines). The L1 cache of size 

1 MB, usually, will store 64 such blocks, each one holding 16 words. This approach 

is oriented toward the normal sequential layout of executable code, structures, and 

arrays—the majority of the memory contents. And the corresponding to it sequential 

memory access pattern. That is, after reading one memory cell, usually, the processor 

will move on to the next: either because it’s the next instruction to execute or the next 

item in the array being iterated over. That’s why so much importance in program 

optimization folklore is given to cache alignment, that is, structuring the program’s 

memory so that the things commonly accessed together will fit into the same cache line. 

One example of this principle is the padding of structures with zeroes to align their size 

to be a multiple of 32 or 64. The same applies to code padding with nops. And this is 

another reason why arrays are a preferred data structure compared to linked lists: when 

the whole contents fit in the same cache line, its processing performance is blazingly 

fast. The catch, though, is that it’s, practically, impossible for normal programmers to 

directly observe how CPU cache interoperates with their programs. There are no tools 

to make it transparent, so what remains is to rely on the general principles, second-

guessing, and trial and error.

Another interesting choice for hardware (and some software) caches is write- through 

vs. write-back behavior. The question is how the cache deals with cached data being 

modified:

• Either the modifications will be immediately stored to the main 

storage, effectively, making the whole operation longer.

• Or they may, first, be persisted to the cache only, while writing to the 

backing store (synchronization) will be performed on all data in the 

cache at configured intervals.

The second option is faster as there are a smaller number of expensive round-trips, 

but it is less resilient to failure. A good example of the write-back cache in action is the 

origin of the Windows “Safely remove hardware” option. The underlying assumption 
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is that the data to be written to the flash drive passes through the OS cache, which may 

be configured in the write-back fashion. In this case, forced sync is required before 

disconnecting the device to ensure that the latest version of the cached data is saved to it.

Another example of caching drastically impacting performance, which everyone is 

familiar with, is paging or swapping—an operation performed by the operating system. 

When the executing programs together require more (virtual) memory than the size of 

the RAM that is physically available, the OS saves some of the pages of data that these 

programs use to a place on disk known as the swap section.

 Takeaways

 1. Key-values are very versatile and widely used data structures. 

Don’t limit your understanding of them to a particular 

implementation choice made by the designers of the 

programming language you’re currently using.

 2. Trading space for time is, probably, the most widespread and 

impactful algorithmic technique.

 3. Caching, which is a direct manifestation of this technique and 

one of the main applications of key-value data structures, is one 

of the principal factors impacting program performance, on a 

large scale. It may be utilized by the programmer in the form of 

memoization and will also inevitably be used by the underlying 

platform, in hard to control and predict ways. The area of program 

optimization for efficient hardware utilization represents a distinct 

set of techniques, requiring skills that are obscure and not fully 

systematized.
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CHAPTER 8

Hash-Tables
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Now, we can move on to studying advanced data structures which are built on top of the 

basic ones such as arrays and lists, but may exhibit distinct properties and have different 

use cases and special algorithms. Many of them will combine the basic data structures 

to obtain new properties not accessible to the underlying structures. The first and most 

important of these advanced structures is, undoubtedly, the hash-table. However vast 

is the list of candidates to serve as key-values, hash-tables are the default choice for 

implementing them.
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Also, hash-sets, in general, serve as the main representation for medium- and 

large-sized sets as they ensure O(1) membership test, as well as optimal set-theoretic 

operation complexity. A simple version of a hash-set can be created using a normal 

hash-table with t for all values.

 Implementation
The basic properties of hash-tables are average O(1) access and support for arbitrary 

keys. These features can be realized by storing the items in an array at indices 

determined by a specialized function that maps the keys in a pseudo-random way—

hashes them. Technically, the keys should pertain to the domain that allows hashing, 

but, in practice, it is always possible to ensure either directly or by using an intermediate 

transformation. The choice of variants for the hash-function is rather big, but there are 

some limitations to keep in mind:

 1. As the backing array has a limited number of cells (n), the function 

should produce values in the interval [0, n). This limitation can 

be respected by a two-step process: first, produce a number in an 

arbitrary range (for instance, a 32-bit integer) and then take the 

remainder of its division by n.

 2. Ideally, the distribution of indices should be uniform, but similar 

keys should map to quite distinct indices. That is, hashing should 

turn things which are close into things which are distant. This way, 

even very small changes to the input will yield sweeping changes 

in the value of the hash. This property is called the “avalanche 

effect.”

 Dealing with Collisions
Even better would be if there were no collisions—situations when two or more keys are 

mapped to the same index. Is that, at all, possible? Theoretically, yes, but all the practical 

implementations that we have found so far are too slow and not feasible for a hash-table 

that is dynamically updated. However, such approaches may be used if the keyset is static 

and known beforehand. They will be covered in the discussion of perfect hash- tables.
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For dynamic hash-tables, we have to accept that collisions are inevitable. The 

probability of collisions is governed by an interesting phenomenon called “the Birthday 

Paradox.” Let’s say we have a group of people of some size, for instance, 20. What is 

the probability that two of them have birthdays on the same date? It may seem quite 

improbable, considering that there are 365 days in a year and we are talking just about 

a handful of people. But if you take into account that we need to examine each pair of 

people to learn about their possible birthday collision, that will give us (/ (* 20 19) 

2), that is, 190 pairs. We can calculate the exact probability by taking the complement to 

the probability that no one has a birthday collision, which is easier to reason about. The 

probability that two people don’t share their birthday is (/ (- 365 1) 365): there’s only 

one chance in 365 that they do. For three people, we can use the chain rule and state that 

the probability that they don’t have a birthday collision is a product of the probability 

that any two of them don’t have it and that the third person also doesn’t share a birthday 

with any of them. This results in (* (/ 364 365) (/ (- 365 2) 365)). The value  

(- 365 2) refers to the third person not having a birthday intersection with neither the 

first nor the second individually, and those are distinct, as we have already asserted in 

the first term. Continuing in such fashion, we can count the number for 20 persons:

(defun birthday-collision-prob (n)

  (let ((rez 1))

    (dotimes (i n)

      (setf rez (* rez (/ (- 365 i) 365))))

    ;; don't forget that we want the complement of the probability

    ;; of no collisions, hence (- 1.0 ...)

    (- 1.0 rez)))

CL-USER> (birthday-collision-prob 20)

0.4114384

So, among 20 people, there’s already a 40% chance of observing a coinciding 

birthday. And this number grows quickly: it will become 50% at 23, 70% at 30, and 99.9% 

at just 70!

But why on Earth, you could ask, have we started to discuss birthdays? Well, if you 

substitute keys for persons and the array size for the number of days in a year, you’ll get 

the formula of the probability of at least one collision among the hashed keys in an array, 

provided the hash-function produces perfectly uniform output. (It will be even higher if 

the distribution is nonuniform).
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(defun hash-collision-prob (n size)

  (let ((rez 1))

    (dotimes (i n)

      (setf rez (* rez (/ (- size i) size))))

    (- 1.0 rez)))

Let’s say we have ten keys. What should be the array size to be safe against collisions?

CL-USER> (hash-collision-prob 10 10)

0.9996371

99.9%. OK, we don’t stand a chance to accidentally get a perfect layout. :( What if we 

double the array size?

CL-USER> (hash-collision-prob 10 20)

0.9345271

93%. Still, pretty high.

CL-USER> (hash-collision-prob 10 100)

0.37184352

CL-USER> (hash-collision-prob 10 10000)

0.004491329

So, if we were to use a 10000-element array to store ten items, the chance of a 

collision would fall below 1%. Not practical…

Note that the number depends on both arguments, so (hash-collision-prob 10 

100) (0.37) is not the same as (hash-collision-prob 20 200) (0.63).

We did this exercise to completely abandon any hope of avoiding collisions and 

accept that they are inevitable. Such mind/coding experiments may be an effective 

smoke test of our novel algorithmic ideas: before we go full speed and implement them, 

it makes sense to perform some back-of-the-envelope feasibility calculations.

Now, let’s discuss what difference the presence of these collisions makes to our 

hash-table idea and how to deal with this issue. The obvious solution is to have a fallback 

option: when two keys hash to the same index, store both of the items in a list. The 

Chapter 8  hash-tables



125

retrieval operation, in this case, will require a sequential scan to find the requested key 

and return the corresponding value. Such an approach is called “chaining,” and it is used 

by some implementations. Yet, it has a number of drawbacks:

• It complicates the implementation: we now have to deal with both 

a static array and a dynamic list/array/tree. This change opens a 

possibility for some hard-to-catch bugs, especially, in the concurrent 

settings.

• It requires more memory than the hash-table backing array, so we 

will be in a situation when some of the slots of the array are empty 

while others chain several elements.

• It will have poor performance due to the necessity of dealing with a 

linked structure and, what’s worse, not respecting cache locality: the 

chain will not fit in the original array so at least one additional RAM 

round-trip will be required.

One upside of this approach is that it can store more elements than the size of the 

backing array. And, in the extreme case, it degrades to bucketing: when a small number 

of buckets point to long chains of randomly shuffled elements.

The more widely used alternative to chaining is called “open addressing” or “closed 

hashing.” With it, the chains are, basically, stored in the same backing array. The 

algorithm is simple: when the calculated hash is pointing at an already occupied slot in 

the array, find the next vacant slot by cycling over the array. If the table isn’t full, we’re 

guaranteed to find one. If it is full, we need to resize it first. Now, when the element is 

retrieved by key, we need to perform the same procedure: calculate the hash, and then 

compare the key of the item at the returned index. If the keys are the same, we’ve found 

the desired element; otherwise, we need to cycle over the array comparing keys until we 

encounter the item we need.

Here’s an implementation of the simple open addressing hash-table using eql for 

key comparison:

(defstruct ht

  array

  (count 0))
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(defun ht (&rest kvs)

  (let ((rez (make-ht :array (make-array 16 :initial-element (list)))))

    (loop :for (k v) :in kvs :do

      (add-ht k v rez))

    rez))

(defun ht-get (key ht)

  (rtl:with ((size (length (rtl:? ht 'array)))

             (start (rem (hash key) size)))

    (do ((count 0 (1+ count))

         (i start (rem (1+ i) size))

         (item (rtl:? ht 'array start)

               (rtl:? ht 'array i)))

        ((or (null item)

             (= count size)))

      (when (eql key (car item))

        (return

         (values (cdr item)

                 ;;  the second value is an index, at which the item

                 ;;  was found

                 ;; (also used to distinguish the value nil from not found,

                 ;; which is also represented by nil

                 ;;  but with no second value)

                 i))))))

(defun ht-add (key val ht)

  (rtl:with ((array (ht-array ht))

             (size (length array)))

    ;; flet defines a local function that has access

    ;; to the local variables defined in HT-ADD

    (flet ((add-item (k v)

             (do ((i (rem (hash k) size)

                     (rem (1+ i) size))

                 ((null (rtl:? ht 'array i))

                  (setf (rtl:? ht 'array i) (cons k v)))

               ;; this do-loop doesn't have a body

               )))
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      (when (= (hash-table-count ht) size)

        ;; when the backing array is full

        ;; expand it to have the length equal to the next power of 2

        (setf size (expt 2 (ceiling (log (1+ count) 2)))

              (rtl:? ht 'array) (make-array size :initial-element nil))

        ;; and re-add its contents

        (rtl:dovec (item array)

          (add-item (car item) (cdr item)))

      ;; finally, add the new item

      (incf (rtl:? ht 'count))

      (add-item key val)))

(defun ht-rem (key ht)

  ;; here, we use the index of the item returned as the 2nd value of HT-GET

  (rtl:when-it (nth-value 1 (ht-get key ht))

    (setf (rtl:? ht 'array rtl:it) nil)

    ;; return the index to indicate that the item was found

    it))

To avoid constant resizing of the hash-table, just as with dynamic arrays, the backing 

array is, usually, allocated to have the size equal to a power of 2: 16 elements, to begin 

with. When it is filled up to a certain capacity, it is resized to the next power of 2: 32, in 

this case. Usually, around 70–80% is considered peak occupancy as too many collisions 

may happen afterward and the table access performance may severely degrade. In 

practice, this means that normal open addressing hash-tables also waste 20% to 50% 

of allocated space. This inefficiency becomes a serious problem with large tables, so 

other implementation strategies become preferable when the size of data reaches tens 

and hundreds of megabytes. Note that, in our preceding trivial implementation, we 

have, effectively, used the threshold of 100% to simplify the code. Adding a configurable 

threshold is just a matter of introducing a parameter and initiating resizing not when 

(= (hash-table-count ht) size) but upon (= (hash-table-count ht) (floor size 

threshold)). As we’ve seen, resizing the hash-table requires calculating the new indices 

for all stored elements and adding them anew into the resized array.
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Analyzing the complexity of the access function of the hash-table and proving that it 

is amortized O(1) isn’t trivial. It depends on the properties of the hash-function, which 

should ensure good uniformity. Besides, the resizing threshold also matters: the more 

elements are in the table, the higher the chance of collisions. Also, you should keep 

in mind that if the keys possess some strange qualities that prevent them from being 

hashed uniformly, the theoretical results will not hold.

In short, if we consider a hash-table with 60% occupancy (which should be the 

average number, for a common table), we end up with the following probabilities:

• Probability that we’ll need just one operation to access the item (i.e., 

the initially indexed slot is empty): 0.4

• Probability that we’ll need two operations (the current slot is 

occupied; the next one is empty): (* 0.6 0.4)—0.24

• Probability that we’ll need three operations:  

(* (expt 0.6 2) 0.4)—0.14

• Probability that we’ll need four operations:  

(* (expt 0.6 3) 0.4)—0.09

Actually, these calculations are slightly off, and the correct probability of finding an 

empty slot should be somewhat lower, although the larger the table is, the smaller the 

deviation in the numbers. Finding out why is left as an exercise for the reader. :)

As you see, there’s a progression here. With probability around 0.87, we’ll need no 

more than four operations. Without continuing with the arithmetic, I think it should be 

obvious that we’ll need, on average, around three operations to access each item and 

the probability that we’ll need twice as many (6) is quite low (below 5%). So we can say 

that the number of access operations is constant (i.e., independent of the number of 

elements in the table) and is determined only by the occupancy percentage. So, if we 

keep the occupancy in the reasonable bounds, named earlier, on average, one hash-code 

calculation/lookup and a couple of retrievals and equality comparisons will be needed 

to access an item in our hash-table.

 Hash-Code
So we can conclude that a hash-table is primarily parametrized by two things: the hash- 

function and the equality predicate. In Lisp, in particular, there’s a choice of just the four 

standard equality predicates: eq, eql, equal, and equalp. It’s somewhat of a legacy that 
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you can’t use other comparison functions, so some implementations, as an extension, 

allow the programmer to specify other predicates. However, in practice, the following 

approach is sufficient for the majority of the hash-table use cases:

• Use the eql predicate if the keys are numbers, characters, or symbols.

• Use equal if the keys are strings or lists of the mentioned items.

• Use equalp if the keys are vectors, structs, or anything else containing 

one of those (however, there is no standard function to compare 

CLOS objects by value).

But I’d recommend trying your best to avoid using the complex keys requiring 

equalp. Besides the performance penalty of using the heaviest equality predicate that 

performs deep structural comparison, structs, and vectors, in particular, will most likely 

hash to the same index. Here is a quote from one of the implementers describing why 

this happens:

Structs have no extra space to store a unique hash code within them. The 
decision was made to implement this because automatic inclusion of a 
hashing slot in all structure objects would have made all structs an average 
of one word longer. For small structs this is unacceptable. Instead, the user 
may define a struct with an extra slot, and the constructor for that struct 
type could store a unique value into that slot (either a random value or a 
value gotten by incrementing a counter each time the constructor is run). 
Also, create a hash generating function which accesses this hash-slot to gen-
erate its value. If the structs to be hashed are buried inside a list, then this 
hash function would need to know how to traverse these keys to obtain a 
unique value. Finally, then, build your hash-table using the :hash- 
function argument to make-hash-table (still using the equal test argu-
ment), to create a hash-table which will be well-distributed. Alternatively, 
and if you can guarantee that none of the slots in your structures will be 
changed after they are used as keys in the hash-table, you can use the equalp 
test function in your make-hash-table call, rather than equal. If you do, 
however, make sure that these struct objects don’t change, because then 
they may not be found in the hash-table.

But what if you still need to use a struct or a CLOS object as a hash key (for instance, 

if you want to put them in a set)? There are three possible workarounds:

• Choose one of their slots as a key (if you can guarantee its 

uniqueness).
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• Add a special slot to hold a unique value that will serve as a key.

• Use the literal representation obtained by calling the print-function 

of the object (provided there is a custom print-function defined for 

you object). Still, you’ll need to ensure that it will be unique and 

constant. Using an item that changes while being the hash key is a 

source of very nasty bugs, so avoid it at all cost.

These considerations are also applicable to the question of why Java requires 

defining both equals and hashCode methods for objects that are used as keys in the 

hash-table or hash-set.

 Advanced Hashing Techniques
Beyond the direct implementation of open addressing, called “linear probing” (for it 

tries to resolve collisions by performing a linear scan for an empty slot), a number of 

approaches were proposed to improve hash distribution and reduce the collision rate. 

However, for the general case, their superiority remains questionable, and so the utility 

of a particular approach has to be tested in the context of the situations when linear 

probing demonstrates suboptimal behavior. One type of such situations occurs when the 

hash-codes become clustered near some locations due to deficiencies of either the hash- 

function or the keyset.

The simplest modification of linear probing is called “quadratic probing.” It operates 

by performing the search for the next vacant slot using the linear probing offsets (or 

some other sequence of offsets) that are just raised to the power 2. That is, if, with linear 

probing, the offset sequence was 1,2,3, and so on, with the quadratic one, it is 1,4,9,… 

“Double hashing” is another simple alternative, which, instead of a linear sequence 

of offsets, calculates the offsets using another hash-function. This approach makes 

the sequence specific to each key, so the keys that map to the same location will have 

different possible variants of collision resolution. “2-choice hashing” also uses two 

hash-functions but selects the particular one for each key based on the distance from the 

original index it has to be moved for collision resolution.

More elaborate changes to the original idea are proposed in cuckoo, hopscotch, and 

Robin Hood caching, to name some of the popular alternatives. We won’t discuss them 

now, but if the need arises to implement a nonstandard hash-table, it’s worth studying 

all of those before proceeding with an idea of your own. However, who knows, someday 

you might come up with a viable alternative technique, as well…
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 Hash-Functions
The class of possible hash-functions is very diverse: any function that sufficiently 

randomizes the key hashes will do. But what does “good enough” mean? One of the 

ways to find out is to look at the pictures of the distribution of hashes. Yet, there are 

other factors that may condition the choice: speed, complexity of implementation, 

and collision resistance (important for cryptographic hashes that we won’t discuss in 

this book).

The good news is that, for most practical purposes, there’s a single function that is 

both fast and easy to implement and understand. It is called FNV-1a:

(defparameter *fnv-primes*

  '((32 . 16777619)

    (64 . 1099511628211)

    (128 . 309485009821345068724781371)

    (256 . 374144419156711147060143317175368453031918731002211)))

(defparameter *fnv-offsets*

  '((32 . 2166136261)

    (64 . 14695981039346656037)

    (128 . 144066263297769815596495629667062367629)

     (256 . 1000292579580525809070709686206257048370927960142411939452252845

01741471925557)))

(defun fnv-1a (x &key (bits 32))

  (assert (member bits '(32 64 128 256)))

  (let ((rez (rtl:assoc1 bits *fnv-offsets*))

        (prime (rtl:assoc1 bits *fnv-primes*)))

    (dotimes (i (/ bits 8))

      (setf rez (ldb (byte bits 0)

                     (* (logxor rez (ldb (byte 8 (* i 8)) x))

                        prime))))

    rez))

The constants *fnv-primes* and *fnv-offsets* are pre-calculated up to 1024 bits 

(here, I used just a portion of the tables).
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Note that, in this implementation, we use normal Lisp multiplication (*) that is not 

limited to fixed-size numbers (32-bit, 64-bit, etc.), so we need to extract only the first 

bits with ldb.

Also note that if you were to calculate FNV-1a with some online hash calculator, 

you’d, probably, get a different result. Experimenting with it, I noticed that it is the same 

if we use only the nonzero bytes from the input number. This observation aligns well 

with calculating the hash for simple strings when each character is a single byte. For 

them, the hash-function would look like the following:

(defun fnv-1a-str (str)

  (let ((rez (assoc1 32 *fnv-offsets*))

        (prime (assoc1 32 *fnv-primes*)))

    (rtl:dovec (char str)

      (setf rez (ldb (byte 32 0)

                     (* (logxor rez (char-code char))

                        prime))))

    rez))

So even such a simple hash-function has nuances in its implementation, and it should 

be meticulously checked against some reference implementation or a set of expected results.

Alongside FNV-1a, there’s also FNV-1, which is a slightly worse variation, but it may 

be used if we need to apply two different hash-functions at once (like in two-way or 

double hashing).

What is the source of the hashing property of FNV-1a? XORs and modulos. 

Combining these simple and efficient operations is enough to create a desired level of 

randomization. Most of the other hash-functions use the same building blocks as FNV- 

1a. They all perform arithmetic (usually, addition and multiplication as division is slow) 

and XORing, adding into the mix some prime numbers. For instance, here’s what the 

code for another popular hash-function “djb2” approximately looks like:

(defun djb2-str (str)
  (let ((rez 5381))  ; a DJB2 prime number
    (rtl:dovec (char str)
      (setf rez (ldb 32 (+ (char-code char)
                           (ldb (byte 32 0)
                                (+ (ash rez 5)
                                   rez))))))
    rez))
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 Operations
The generic key-value operations we have discussed in the previous chapter obviously 

also apply to hash-tables. There are also specific low-level ones, defined by the Lisp 

standard. And it’s worth mentioning that, in regard to hash-tables, I find the standard 

quite lacking so a lot of utilities were added as part of RUTILS. The reason for the 

deficiency in the standard is, I believe, that when hash-tables had been added to 

Lisp, they were still pretty novel technology not widely adopted in the programming 

language community. So there had been neither any significant experience using them 

nor a good understanding of the important role they would play. Languages such as 

Python or Clojure as well as the ones that were designed even later were developed 

with this knowledge already in mind. Yet, this situation doesn’t pose insurmountable 

difficulty for Lisp users as the language provides advanced extension tools such as 

macros and reader macros, so the necessary parts can be added and, in fact, exist as 

third-party extensions. Using them becomes just a question of changing your habits 

and adapting to more efficient approaches. The situation is different for the users of 

many other languages, such as Java users, who had to wait for the new major version 

of the language to get access to such things as literal hash-table initialization—the 

feature I consider to be crucially important to improving the level of code clarity, in the 

declarative paradigm.

 Initialization
Normally, the hash-table can be created with make-hash-table, which has a number 

of configuration options, including :test (default: eql). Most of the implementations 

allow the programmer to make synchronized (thread-safe) hash-tables via another 

configuration parameter, but the variants of concurrency control will differ.

Yet, it is important to have a way to define hash-tables already pre-initialized with 

a number of key-value pairs, and make-hash-table can’t handle this. Pre-initialized 

hash- tables represent a common necessity for tables serving as dictionaries, and such 

pre- initialization greatly simplifies many code patterns. Thus, RUTILS provides such a 

syntax (in fact, in two flavors) with the help of reader macros:

#{equal "foo" :bar "baz" 42}

#h(equal "foo" :bar "baz" 42)
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Both of these expressions will expand into a call to make-hash-table with equal 

test and two calls to set operation to populate the table with the kv pairs "foo" :bar 

and "baz" 42 . For this stuff to work, you need to switch to the appropriate readtable by 

executing (named-readtables:in-readtable rutils-readtable).

The reader macro to parse #h()-style literal readtables isn’t very complicated. As all 

reader macros, it operates on the character stream of the program text, processing one 

character at a time. Here is its implementation:

(defun |#h-reader| (stream char arg)

  (read-char stream)  ; skip the open paren

  ;; we can also add a sanity check to ensure that this character

  ;; is indeed a #\(

  (rtl:with (;; read-delimited-list is a standard library function

             ;; that reads items until a delimiter is encountered

             ;; and then returns them as a list of parsed Lisp objects

             (sexp (read-delimited-list #\) stream t))

             ;; the idea is that the first element may be a hash-table

             ;; test function; in this case, the number of items in the

             ;; definition will be odd as each key-value pair should have

             ;; an even number of elements

             (test (when (oddp (length sexp))

                     (first sexp)))

             ;; the rest of the values, after the possible test function,

             ;; are key-value pairs

             (kvs (rtl:group 2 (if test (rest sexp) sexp)))

             (ht (gensym)))

    `(let ((,ht (make-hash-table :test ',(or test 'eql))))

       ;; iterate the tail of the KVS list (:on loop clause)

       ;; and, for each key-value pair, generate an expression

       ;; to add the value for the key in the resulting hash-table

       ,@(mapcar (lambda (kv)

                   `(setf (rtl:? ,ht ,(first kv)) ,(second kv)))

                 ,kvs)

       ,ht)))
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After such a function is defined, it can be plugged into the standard readtable:

(set-dispatch-macro-character #\# #\h '|#h-reader|)

Or it may be used in a named readtable (you can learn how to do that, from the docs).

print-hash-table is the utility to perform the reverse operation—display 

hash- tables in the similar manner:

CL-USER> (print-hash-table #h(equal "foo" :bar "baz" 42))

#{EQUAL

  "foo" :BAR

  "baz" 42

 }

#<HASH-TABLE :TEST EQUAL :COUNT 2 {10127C0003}>

The last line of the output is the default Lisp printed representation of the hash-table. 

As you see, it is opaque and doesn’t display the elements of the table. RUTILS also allows 

switching to printing the literal representation instead of the standard one with the help 

of toggle-print-hash-table. However, this extension is intended only for debugging 

purposes as it is not fully standard-conforming.

 Access
Accessing the hash-table elements is performed with gethash, which returns two things: 

the value at key and t when the key was found in the table, or two nils otherwise. By 

using (setf (gethash key ht) val) (or (setf (rtl:? ht key) val)), we can modify 

the stored value. Notice the reverse order of arguments of gethash compared to the 

usual order in most accessor functions, when the structure is placed first and the key 

second. However, gethash differs from generic ? in that it accepts an optional argument 

that is used as the default value if the requested key is not present in the table. An 

alternative approach can be found in such languages as Python, where there’s a notion 

of “default hash-tables” that may be initialized with a common default element. Lisp 

doesn’t provide such capability out of the box; however, it’s possible to easily implement 

default hash-tables and plug them into the generic-elt mechanism:

(defstruct default-hash-table

  table

  default-value)
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(defun gethash-default (key ht)

  (gethash key (rtl:? ht 'table) (rtl:? ht 'default-value)))

(defmethod generic-elt ((kv default-hash-table) key &rest keys)

  (gethash-default key kv))

RUTILS also defines a number of aliases/shorthands for hash-table operations. As 

the # symbol is etymologically associated with hashes, it is used in the names of all these 

functions:

• get# is a shorthand and a more distinctive alias for gethash.

• set# is an alias for (setf (gethash ....

• getset# is an implementation of the common pattern: this operation 

either retrieves the value if the key is found in the table or calculates 

its third argument, returns it, and also sets it for the given key for 

future retrieval.

• rem# is an alias for remhash (remove the element from the table).

• take# both returns the key and removes it (unlike rem# that  

only removes).

• in# tests for the presence of the key in the table.

• also, p# is an abbreviated version of print-hash-table.

 Iteration
Hash-tables are unordered collections, in principle. But, still, there is always a way to 

iterate over them in some (unspecified) order. The standard utility for that is either 

maphash, which unlike map doesn’t populate the resulting collection and is called just for 

the side effects, or the special loop syntax. Both are suboptimal, from several points of 

view, so RUTILS defines a couple of alternative options:

• dotable functions in the same manner as dolist except that it uses 

two variables: for the key and the value.

• mapkv, mentioned in the previous chapter, works just like mapcar 

by creating a new result table with the same configuration as the 

hash-table it iterates over and assigns the results of invoking the first 

argument—the function of two elements—with each of the kv pairs.
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Despite the absence of a predefined ordering, there are ways in which some order 

may be introduced. For example, in SBCL, the order in which the elements are added 

is preserved by using additional vectors called index-vector and next-vector that 

store this information. Another option which allows forcing arbitrary ordering is to use 

the so-called linked hash-table. It is a combination of a hash-table and a linked list: 

each key-value pair also has the next pointer, which links it to some other item in the 

table. This way, it is possible to have ordered key-values without resorting to tree-based 

structures. A poor man’s linked hash-table can be created on top of the normal one with 

the following trick: substitute values by pairs containing a value plus a pointer to the next 

pair and keep track of the pointer to the first pair in a special slot:

(defstruct linked-hash-table-item

  key

  val

  next)

(defstruct linked-hash-table

  (table (make-hash-table))

  head

  tail)

(defun gethash-linked (key ht)

  ;; we use GETHASH instead of a shorter (rtl:? ht 'table key 'val)

  ;; to preserve the second return value

  (gethash key (rtl:? ht 'table)))

(defun sethash-linked (key ht val)

  ;; The initial order of items is the order of addition.

  ;;  If we'd like to impose a different order, we'll have to perform 

reordering

  ;; after each addition or implement a custom sethash function.

  (with-slots (table head tail) ht

    (rtl:if-it (gethash key table)

               (setf (rtl:? rtl:it 'val) val)

               (let ((new (make-linked-hash-table-item

                           :key key :val val)))

                 (rtl:sethash key table new)
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                 (when (null head)

                   (setf (rtl:? ht 'head) new))

                 (setf (rtl:? ht 'tail)

                       (if tail

                           (setf (rtl:? ht 'tail 'next) new)

                           new))))))

(defmethod mapkv (fn (ht linked-hash-table))

  (let ((rez (make-linked-hash-table

              :table (make-hash-table

                      :test (hash-table-test (rtl:? ht 'table))))))

    (do ((item (rtl:? ht 'head) (rtl:? item 'next)))

        ((null item))

      (let ((k (rtl:? item 'key)))

        (sethash-linked k rez (funcall fn k (rtl:? item 'val)))))

    rez))

The issue with this approach, as you can see from the code, is that we also need to 

store the key, and it duplicates the data also stored in the backing hash-table itself. So an 

efficient linked hash-table has to be implemented from scratch using an array as a base 

instead of a hash-table.

 Perfect Hashing
In the previous exposition, we have concluded that using hash-tables implies a 

significant level of reserved unused space (up to 30%) and inevitable collisions. Yet, if 

the keyset is static and known beforehand, we can do better: find a hash-function, which 

will exclude collisions (simple perfect hashing) and even totally get rid of reserved space 

(minimal perfect hashing, MPH). Although the last variant will still need extra space to 

store the additional information about the hash-functions, it may be much smaller: in 

some methods, down to ~3–4 bits per key, so just 5–10% overhead. Statistically speaking, 

constructing such a hash-function is possible. But the search for its parameters may 

require some trial and error.
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 Implementation
The general idea is simple, but how to find the appropriate hash-function? There are 

several approaches described in sometimes hard-to-follow scientific papers and a 

number of cryptic programs in low-level C libraries. At a certain point in time, I needed 

to implement some variant of an MPH, so I read those papers and studied the libraries 

to some extent. Not the most pleasant process, I should confess. One of my Twitter 

pals once wrote: “Looks like it’s easier for people to read 40 blog posts than a single 

whitepaper.” And, although he was putting a negative connotation to it, I recognized 

the statement as a very precise description of what a research engineer does: read a 

whitepaper (or a dozen, for what it’s worth) and transform it into working code and—

as a possible byproduct—into an explanation (“blog post”) that other engineers will 

understand and be able to reproduce. And it’s not a skill every software developer should 

be easily capable of. Not all papers can even be reproduced because the experiment was 

not set up correctly, some parts of the description are missing, the data is not available, 

and so on. Of those, which, in principle, can be, only some are presented in the form that 

is clear enough to be reliably programmed.

Here is one of the variants of minimal perfect hashing that possesses such qualities. 

It works for datasets of any size as a three-step process:

 1. At the first stage, by the use of a common hash-function (in 

particular, the Jenkins hash), all keys are near-uniformly 

distributed into buckets, so that the number of keys in each bucket 

doesn’t exceed 256. It can be achieved with very high probability 

if the hash divisor is set to (ceiling (length keyset) 200). This 

allows the algorithm to work for datasets of arbitrary size, thereby 

reducing the problem to a simpler one that already has a known 

solution.

 2. Next, for each bucket, the perfect hash-function is constructed. This 

function is a table (and it’s an important mathematical fact that 

each discrete function is equivalent to a table, albeit, potentially, 

of unlimited length). The table contains byte-sized offsets for each 

hash-code, calculated by another application of the Jenkins hash, 

which produces two values in one go (actually, three, but one 

of them is not used). The divisor of the hash-function, this time, 

Chapter 8  hash-tables



140

equals to double the number of elements in the bucket. And the 

uniqueness requirement is that the sum of offsets corresponding, in 

the table, to the two values produced by the Jenkins hash is unique, 

for each key. To check if the constraint is satisfied, the hashes are 

treated as vertices of a graph, and if it happens to be acyclic (the 

probability of this event is quite high if the parameters are chosen 

properly), the requirement can be satisfied, and it is possible to 

construct the perfect hash-function, by the process described as the 

next step. Otherwise, we change the seed of the Jenkins hash and try 

again until the resulting graph is acyclic. In practice, just a couple of 

tries are needed.

 3. Finally, the hash-function for the current bucket may be 

constructed from the graph by the CHM92 algorithm (named after 

the authors and the year of the paper), which is another version of 

perfect hashing but suitable only for limited keysets. Here, you can 

see the CHM92 formula implemented in code:

(deftype octet () '(unsigned-byte 8))

(deftype quad () '(unsigned-byte 32))

(defstruct mpht

  (data #() :type simple-vector)

  (offsets (make-array 0 :element-type 'octet) :type (simple-array octet))

  (meta (make-array 0 :element-type 'quad) :type (simple-array quad))

  (div nil))

;; div is the divisor of the top-level hash, which is calculated as:

;; (/ (1- (length meta)) 2)

(defun mpht-index (item mpht)

  (with-slots (offsets meta div) mpht

    (rtl:with ((bucket-id (* (mod (jenkins-hash item) div) 2))

               (bucket-offset (aref meta bucket-id))

               (bucket-seed (aref meta (+ 1 bucket-id)))

               ;; the number of items in the bucket is calculated

               ;; by subtracting the offset of the next bucket

               ;; from the offset of the current one
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               (bucket-count (- (aref meta (+ 2 bucket-id))

                                bucket-offset))

               (hash1 hash2 (jenkins-hash2

                             item bucket-div))

               (base (* bucket-offset 2)))

      (+ bucket-offset (mod (+ (aref offsets (+ base hash1))

                               (aref offsets (+ base hash2)))

                            bucket-count)))))

The jenkins-hash function is not provided here for the sake of space conservation: 

apart from FNV-1, most hash-functions require a page or two of code to implement, and 

Jenkins hash is no exception. The actual implementation can be found in the const- table 

repository.

This algorithm guarantees exactly O(1) hash-table access and uses 2 bytes per key, 

that is, it will result in a constant 25% overhead on the table’s size (in a 64-bit system): 

two byte-sized offsets for the hashes plus negligible 8 bytes per bucket (each bucket 

contains ~200 elements) for meta-information. Better space utilization solutions (up to 

four times more efficient) exist, but they are harder to implement and explain.

The Jenkins hash-function was chosen for two reasons:

• Primarily, because, being a relatively good-quality hash, it has a 

configurable parameter seed that is used for probabilistic probing 

(searching for an acyclic graph). On the contrary, FNV-1a doesn’t 

work well with an arbitrary prime, hence the usage of a pre- 

calculated one that isn’t subject to change.

• Also, it produces three pseudo-random numbers right away, and we 

need two for the second stage of the algorithm.

 The CHM92 Algorithm
The CHM92 algorithm operates by performing a depth-first search (DFS) on the 

graph, in the process labeling the edges with unique numbers and calculating the 

corresponding offset for each of the Jenkins hash values. In the picture, you can see one 

of the possible labelings: each vertex is the value of one of the two hash-codes returned 

by jenkins-hash2 for each key, and every edge, connecting them, corresponds to a 

key that produced the hashes. The unique indices of the edges were obtained during 
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DFS. Now, each hash-code is mapped iteratively to the number that is (- edge-index 

other-vertex-index). So some codes will map to the same number, but it is guaranteed 

that, for each key, the sum of two corresponding numbers will be unique (as the edge 

indices are unique).

 

Let’s say we have implemented the described scheme like I did in the const- table 
library. Now, we need to perform the measurements to validate that we have, in fact, 
achieved the desired improvement over the standard hash-table implementation. In this 
case, we are interested not only in speed measurements, which we already know how to 
perform, but also in calculating the space occupied.

The latter goal is harder to achieve. Usually, most of the programming languages will 
provide the analog of a sizeof function that returns the space occupied by an array, a 
structure, or an object. Here, we’re interested not in “shallow” sizeof but in a “deep” one 
that will descend into the structure’s slots and add their sizes recursively.

First, let’s create functions to populate the tables with a significant number of 
random string key-value pairs:

(defun random-string (size)
  (coerce (loop :repeat size :collect (code-char (+ 32 (random 100))))
          'string))

(defun random-hash-table (&key (n 100000))
  (let ((rez (make-hash-table :test 'equal)))
    (loop :repeat n :do
      (setf (gethash (random-string (+ 3 (random 4))) rez)
            (random-string (+ 3 (random 4)))))
    rez))

(defun random-const-table (&key (n 100000))

  (let ((rez (make-const-table :test 'equal)))
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    (loop :repeat n :do

      (setf (gethash (random-string (+ 3 (random 4))) rez)

            (random-string (+ 3 (random 4)))))

    rez))

A very approximate space measurement may be performed using the standard 

operator room. But it doesn’t provide detailed per-object statistics. Here’s a result of the 

room measurement, in SBCL (the format of the report will be somewhat different, for 

each implementation):

CL-USER> (room)

Dynamic space usage is:   45,076,224 bytes.

Immobile space usage is:  18,998,832 bytes (64,672 bytes overhead).

Read-only space usage is:          0 bytes.

Static space usage is:         1,264 bytes.

Control stack usage is:        9,048 bytes.

Binding stack usage is:          640 bytes.

Control and binding stack usage is for the current thread only.

Garbage collection is currently enabled.

Breakdown for dynamic space:

  11,369,232 bytes for  76,040 simple-vector objects

   9,095,952 bytes for 160,669 instance objects

   8,289,568 bytes for 518,098 cons objects

   3,105,920 bytes for  54,655 simple-array-unsigned-byte-8 objects

   2,789,168 bytes for  54,537 simple-base-string objects

   2,344,672 bytes for   9,217 simple-character-string objects

   6,973,472 bytes for 115,152 other objects

  43,967,984 bytes for 988,368 dynamic objects (space total)

Breakdown for immobile space:

  16,197,840 bytes for 24,269 code objects

   1,286,496 bytes for 26,789 symbol objects

   1,041,936 bytes for 27,922 other objects

  18,526,272 bytes for 78,980 immobile objects (space total)
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CL-USER> (defparameter *ht* (random-hash-table))

*HT*

CL-USER> (room)

...

Breakdown for dynamic space:

  13,349,920 bytes for    77,984 simple-vector objects

  11,127,008 bytes for   208,576 simple-character-string objects

   9,147,824 bytes for   161,469 instance objects

   8,419,360 bytes for   526,210 cons objects

   3,517,792 bytes for     2,997 simple-array-unsigned-byte-32 objects

   3,106,288 bytes for    54,661 simple-array-unsigned-byte-8 objects

   7,671,168 bytes for   166,882 other objects

  56,339,360 bytes for 1,198,779 dynamic objects (space total)

So it seems like we added roughly 10 megabytes by creating a hash-table with 

100,000 random five- to nine-character keys and values. Almost all of that space 

went into the keys and values themselves—9 MB (“11,127,008 bytes for 208,576 

simple- character-string objects” vs. “2,344,672 bytes for 9,217 simple-character-string 

objects”—a bit less than when 200,000 new strings were added).

Also, if we examine the hash-table, we can see that its occupancy is rather high—

around 90%! (The number of keys, 99706 instead of 100000, tells us that there was a small 

portion of duplicate keys among the randomly generated ones.)

CL-USER> (describe *ht*)

#<HASH-TABLE :TEST EQUAL :COUNT 99706 {1002162EF3}>  [hash-table]

Occupancy: 0.9

Rehash-threshold: 1.0

Rehash-size: 1.5

Size: 111411

And now, a simple time measurement:

CL-USER> (let ((keys (keys *ht*)))

           (time (loop :repeat 100 :do

                   (dolist (k keys)

                     (gethash k *ht*)))))
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Evaluation took:

  0.029 seconds of real time

  0.032000 seconds of total run time (0.032000 user, 0.000000 system)

  110.34% CPU

  72,079,880 processor cycles

  0 bytes consed

Now, let’s try the const-tables that are the MPHT implementation:

CL-USER> (time (defparameter *ct* (cstab:build-const-table *ht*)))

...........................................................................

Evaluation took:

  0.864 seconds of real time

...

CL-USER> (room)

...

Breakdown for dynamic space:

  14,179,584 bytes for    78,624 simple-vector objects

  11,128,464 bytes for   208,582 simple-character-string objects

   9,169,120 bytes for   161,815 instance objects

   8,481,536 bytes for   530,096 cons objects

   3,521,808 bytes for     2,998 simple-array-unsigned-byte-32 objects

   3,305,984 bytes for    54,668 simple-array-unsigned-byte-8 objects

   7,678,064 bytes for   166,992 other objects

  57,464,560 bytes for 1,203,775 dynamic objects (space total)

Another megabyte was added for the metadata of the new table, which doesn’t 

seem significantly different from the hash-table version. Surely, often we’d like to be 

much more precise in space measurements. For this, SBCL recently added an allocation 

profiler sb-aprof, but we won’t go into the details of its usage in this chapter.

And now, time measurement:

CL-USER> (let ((keys (rtl:keys *ht*)))

            (time (loop :repeat 100 :do

                    (dolist (k keys)

                      (cstab:csget k *ct*)))))

Evaluation took:

  3.561 seconds of real time
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Oops, a two-orders-of-magnitude slowdown! It has to do with many factors: the 

lack of optimization in my implementation compared to the one in SBCL, the need 

to calculate more hashes and with a slower hash-function, and others. I’m sure that 

the implementation may be sped up at least an order of magnitude, but, even then, 

what’s the benefit of using it over the default hash-tables? Especially considering that 

MPHTs have a lot of moving parts and rely on a number of “low-level” algorithms like 

graph traversal or efficient membership testing, most of which need a custom efficient 

implementation…

Still, there’s one dimension in which MPHTs may provide an advantage: significantly 

reduce space usage by not storing the keys. However, it becomes problematic if we 

need to distinguish the keys that are in the table from the unknown ones as those will 

also hash to some index, that is, overlap with an existing key. So, either the keyspace 

should be known beforehand and exhaustively covered in the table or some precursory 

membership test is necessary when we anticipate the possibility of unseen keys. Yet, 

there are ways to perform the test efficiently (exactly or probabilistically), which require 

much less storage space than would be needed to store the keys themselves. Some of 

them we’ll see in the following chapters.

If the keys are omitted, the whole table may be reduced to a jump-table. Jump- tables are 

a low-level trick possible when all the keys are integers in the interval [0, n). It removes the 

necessity to perform sequential equality comparisons for every possible branch until one of 

the conditions matches: instead, the numbers are used directly as an offset. That is, the table 

is represented by a vector, each hash-code being the index in that vector.

A jump-table for the MPHT will be simply a data array, but sometimes evaluation 

of different code is required for different keys. Such more complex behavior may be 

implemented in Lisp using the lowest-level operators tagbody and go (and a bit of 

macrology if we need to generate a huge table). This implementation will be a complete 

analog of the C switch statement. The skeleton for such “executable” table will look like 

this, where 0, 1, ... are goto labels:

(block nil

  (tagbody (go key)

    0 (return (do-something0))

    1 (return (do-something1))

    ...))
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 Distributed Hash-Tables
Another active area of hash-table-related research is algorithms for distributing them 

over the network. This is a natural way to represent a lot of datasets, and thus there 

are numerous storage systems (both general- and special-purpose) which are built as 

distributed hash-tables. Among them are, for instance, Amazon DynamoDB and an 

influential open source project Kademlia. We will discuss in more detail, in Chapter 15, 

some of the technologies developed for this use case, and here I wanted to mention just 

one concept.

Consistent hashing addresses the problem of distributing the hash-codes among 

k storage nodes under the real-world limitations that some of them may become 

temporarily unavailable or new peers may be added into the system. The changes result 

in changes of the value of k. The straightforward approach would just divide the space of 

all codes into k equal portions and select the node into whose portion the particular key 

maps. Yet, if k is changed, all the keys need to be rehashed, which we’d like to avoid at all 

cost as rehashing the whole database and moving the majority of the keys between the 

nodes, at once, will saturate the network and bring the system to a complete halt.

The idea or rather the tweak behind consistent hashing is simple: we also hash the 

node ids and store the keys on the node that has the next hash-code larger than the hash 

of the key (modulo n, i.e., wrap around 0). Now, when a new node is added, it is placed 

on this so-called “hash ring” between two other peers, so only part of the keys from a 

single node (the next on the ring) require being redistributed to it. Likewise, when the 

node is removed, only its keys need to be reassigned to the next peer on the ring (it is 

supposed that the data is stored in multiple copies on different nodes, so when one of 

the nodes disappears, the data doesn’t become totally lost).

The only problem with applying this approach directly is the uneven distribution of 

keys originating from uneven placement of the hash-codes of the nodes on the hash ring. 

This problem can be solved with another simple tweak: have multiple ids for each node 

that will be hashed to different locations, effectively emulating a larger number of virtual 

nodes, each storing a smaller portion of the keys. Due to the randomization property of 

hashes, not so many virtual nodes will be needed, to obtain a nearly uniform distribution 

of keys over the nodes.

A more general version of this approach is called rendezvous hashing. In it, the key 

for the item is combined with the node id for each node and then hashed. The largest 

value of the hash determines the designated node to store the item.
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 Hashing in Action: Content Addressing
Hash-tables are so ubiquitous that it’s, actually, difficult to single out some peculiar 

use case. Instead, let’s talk about hash-functions. They can find numerous uses beyond 

determining the positions of the items in the hash-table, and one of them is called 

“content addressing”: globally identify a piece of data by its fingerprint instead of using 

external meta-information like name or path. This is one of the suggested building 

blocks for large-scale distributed storage systems, but it works locally, as well: your git 

SCM system silently uses it behind the scenes to identify the changesets it operates upon.

The advantages of content addressing are the following:

• Its potential for space economy: if the system has a chance of 

operating on repeated items (like git does, although it’s not the only 

reason for choosing such naming scheme for blobs: the other being 

the lack of a better variant), content addressing will make it possible 

to avoid storing them multiple times.

• It guarantees that the links will always return the same content, 

regardless of where it is retrieved from, who added it to the network, 

how, and when. This enables such distributed protocols as BitTorrent 

that split the original file into multiple pieces, each one identified by 

its hash. These pieces can be distributed in an untrusted network.

• As mentioned in the preceding text, content addressing also results 

in a conflict-free naming scheme (provided that the hash has enough 

bits—usually, cryptographic hashes such as SHA1 are used for this 

purpose, although, in many cases, such powerful hash-functions are 

an overkill).

The trivial implementation of content addressing (using the sha1 library for hash 

calculations—a de facto standard hash for such purposes) could look something like this:

(defun content-address (object)

  (sha1:sha1-hex (with-output-to-string (out)

                   (format out "~A:" (class-of object))

                   (print-object object out))))

(defun ca-get-object (address repo)

  (gethash address repo))
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(defun ca-add-object (object repo)

  (let ((addr (content-address object)))

    (values (rtl:set# addr repo object)

            addr)))

(defun ca-rem-object (object repo)

  (remhash (content-address object) repo))

Once again, we’ll be relying on the CLOS print-object generic function that may 

need extension for some particular object types we’d like to store in our repository:

CL-USER> (defparameter *repo* (make-hash-table :test 'equal))

CL-USER> (ca-add-object "test" *repo*)

"test"

"514BE1254CC9825EE125651650B5F9F6CF5C55D9"

CL-USER> (rtl:print-hash-table *repo*)

#{EQUAL

  "514BE1254CC9825EE125651650B5F9F6CF5C55D9" "test"

 }

However, there are some additional considerations that usually come into play 

when such a system is implemented on a large scale. The primary one of them is 

that maintaining a flat mapping for zillions of keys becomes prohibitively resource 

demanding. That’s why the keyspace is usually split into two or more parts that define 

a hierarchy of tables. For instance, in git which has to deal with the limitations of the 

deteriorating performance of filesystems when the number of files in a single directory 

exceeds a certain limit, the original 40-character object name (obtained from an SHA1 

hash) is split into a two-character directory name and a 38-character filename. We could 

implement the same scheme for our content addressing code in the following manner:

(defun content-address2 (object)

  ;; here, we use SHA1-DIGEST to get the numeric

  ;; value (as a sequence of bytes) of the hash

  ;; instead of its string representation

  ;; that was previously obtained from SHA1-HEX

  (let ((hash (sha1:sha1-digest
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               (with-output-to-string (out)

                 (format out "~A:" (class-of object))

                 (print-object object out)))))

    (rtl:pair (elt hash 0)

              ;; the cryptic format ~{~2,'0X~} is used

              ;; to print numbers in hex (X) with a fixed length

              ;; of 2 chars padded by zeroes from the left

              (format nil "~{~2,'0X~}" (subseq hash 1)))))

(defun ca-get-object2 (address2 repo)

  (apply 'rtl:? repo address2))

(defun ca-add-object2 (object repo)

  (rtl:with (((top addr) (content-address2 object))

             (subrepo (rtl:getset# top repo

                                   (make-hash-table :test 'equal))))

    (values (rtl:set# addr subrepo object)

            (rtl:pair top addr))))

(defun ca-rem-object2 (object repo)

  (rtl:with (((top addr) (content-address2 object)))

    (rtl:when-it (gethash top repo)

      (remhash addr rtl:it))))

CL-USER> (defparameter *repo2* (make-hash-table))

(ca-add-object2 "foo" *repo2*)

(ca-add-object2 "bar" *repo2*)

"bar"

(195 "F50F210FA56B285C6DA1B09C72782791BBB15A")

CL-USER> (rtl:print-hash-table *repo2*)

#{

  138 #{EQUAL

        "8AB31BA5528396616249FCA3879C734FF3440D" "foo"

       }

  195 #{EQUAL

        "F50F210FA56B285C6DA1B09C72782791BBB15A" "bar"

       }

 }
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Such a hierarchy facilitates sharding (distributed storage). However, making this 

system distributed over the network raises many more concerns, and we’ll return to 

discussing them in Chapter 15 of the book.

 Takeaways
This chapter presented a number of complex approaches that require a lot of attention 

to detail to be implemented efficiently. On the surface, the hash-table concept may seem 

rather simple, but, as we have seen, the production-grade implementations are not that 

straightforward. What general conclusions can we make?

 1. In such mathematically loaded areas as hash-function and hash-

table implementation, rigorous testing is critically important, for 

there are a number of unexpected sources of errors: incorrect 

implementation, integer overflow, concurrency issues, and so 

on. A good testing strategy is to use an already existing trusted 

implementation and perform a large-scale comparison testing 

with a lot of random inputs.

 2. Besides, a correct implementation doesn’t necessarily mean a fast 

one. Low-level optimization techniques play a crucial role here.

 3. In the implementation of MPHT, we have seen in action another 

important approach to solving algorithmic and, more generally, 

mathematical problems: reducing them to a problem that has a 

known solution. Namely, we have turned a problem of efficiently 

finding a perfect hash-table for an unlimited number of keys into 

finding it for a limited number of keys.

 4. Space measurement is another important area of algorithm 

evaluation that is somewhat harder to accomplish than runtime 

profiling. We’ll also see more usage of both of these tools 

throughout the book.
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Balancing a binary tree is the infamous interview problem that has all that folklore and 

debate associated with it. To tell you the truth, like the other 99% of programmers, I 

never had to perform this task for some work-related project. And not even due to the 

existence of ready-made libraries, but because self-balancing binary trees are, actually, 

pretty rarely used. But trees, in general, are ubiquitous even if you may not recognize 

their presence. The source code we operate with, at some stage of its life, is represented 

as a tree (a popular term here is Abstract Syntax Tree or AST, but the abstract variant is 

not the only one the compilers process). The directory structure of the filesystem is the 

tree. The object-oriented class hierarchy is likewise. And so on. So, returning to interview 

questions, trees indeed are a good area as they allow to cover a number of basic points: 

linked data structures, recursion, and complexity. But there’s a much better task, which 

I have encountered a lot in practice and also used quite successfully in the interview 

process: breadth-first tree traversal. We’ll talk about it a bit later.

Similar to how hash-tables can be thought of as more sophisticated arrays (they are 

sometimes even called “associative arrays”), trees may be considered an expansion of 

linked lists. Although, technically, a few specific trees are implemented not as a linked 

data structure but are based on arrays, the majority of trees are linked. Like hash- 

tables, some trees also allow for efficient access to the element by key, representing an 

alternative key-value implementation option.

https://doi.org/10.1007/978-1-4842-6428-7_9#DOI
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Basically, a tree is a recursive data structure that consists of nodes. Each node 

may have zero or more children. If the node doesn’t have a parent, it is called the root 

of the tree. And the constraint on trees is that the root is always single. Graphs may 

be considered a generalization of trees that don’t impose this constraint, and we’ll 

discuss them in a separate chapter. In graph terms, a tree is an acyclic directed single- 

component graph. Directed means that there’s a one-way parent-child relation. And 

acyclic means that a child can’t have a connection to the parent either directly or 

through some other nodes (in the opposite case, what will be the parent and what the 

child?). The recursive nature of trees manifests in the fact that if we extract an arbitrary 

node of the tree with all of its descendants, the resulting part will remain a tree. We can 

call it a subtree. Besides parent-child or, more generally, ancestor-descendant “vertical” 

relationships that apply to all the nodes in the tree, we can also talk about horizontal 

siblings—the set of nodes that have the same parent/ancestor.

Another important tree concept is the distinction between terminal (leaf) and 

nonterminal (branch) nodes. Leaf nodes don’t have any children. In some trees, the data 

is stored only in the leaves with branch nodes serving to structure the tree in a certain 

manner. In other trees, the data is stored in all nodes without any distinction.

 Implementation Variants
As we said, the default tree implementation is a linked structure. A linked list may be 

considered a degenerate tree with all nodes having a single child. A tree node may have 

more than one child, and so, in a linked representation, each tree root or subroot is the 

origin of a number of linked lists (sometimes, they are called “paths”):

Tree:  a

      / \

     b   c

    / \   \

   d   e   f

Lists:

a -> b -> d

a -> b -> e

a -> c -> f
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b -> d

b -> e

c -> f

So a simple linked tree implementation will look a lot like a linked list one:

(defstruct (tree-node (:conc-name nil))

  key

  children)  ; instead of linked list's next

CL-USER> (rtl:with ((f (make-tree-node :key "f"))

                    (e (make-tree-node :key "e"))

                    (d (make-tree-node :key "d"))

                    (c (make-tree-node :key "c" :children (list f)))

                    (b (make-tree-node :key "b" :children (list d e))))

            (make-tree-node :key "a"

                            :children (list b c)))

#S(TREE-NODE

   :KEY "a"

   :CHILDREN (#S(TREE-NODE

                 :KEY "b"

                 :CHILDREN (#S(TREE-NODE :KEY "d" :CHILDREN NIL)

                            #S(TREE-NODE :KEY "e" :CHILDREN NIL)))

              #S(TREE-NODE

                 :KEY "c"

                 :CHILDREN (#S(TREE-NODE :KEY "f" :CHILDREN NIL)))))

Similar to lists that had to be constructed from tail to head, we had to populate the 

tree in reverse order: from leaves to root. With lists, we could, as an alternative, use push 

and reverse the result, in the end. But, for trees, there’s no such operation as reverse.

Obviously, not only lists can be used as a data structure to hold the children. When 

the number of children is fixed (e.g., in a binary tree), they may be defined as separate 

slots: for example, left and right. Another option will be to use a key-value, which 

allows assigning labels to tree edges (as the keys of the kv), but the downside is that the 

ordering isn’t defined (unless we use an ordered kv like a linked hash-table). We may 

also want to assign weights or other properties to the edges, and, in this case, either an 

additional collection (say child-weights) or a separate edge struct should be defined to 
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store all those properties. In the latter case, the node structure will contain edges instead 

of children. In fact, the tree can also be represented as a list of such edge structures, 

although this approach is quite inefficient, for most of the use cases.

Another tree representation utilizes the available linked list implementation directly 

instead of reimplementing it. Let’s consider the following simple Lisp form:

(defun foo (bar)

  "Foo function."

  (baz bar))

It is a tree with the root containing the symbol defun and four children:

• The terminal symbol foo

• The tree containing the function arguments ((bar))

• The terminal string (the docstring “Foo function.”)

• The tree containing the form to evaluate ((baz bar))

By default, in the list-based tree, the first element is the head, and the rest are the 

leaves. This representation is very compact and convenient for humans, so it is used 

not only for source code. For example, you can see a similar representation for the 

constituency trees, in linguistics:

(TOP (S (NP (DT This)) (VP (VBZ is) (NP (DT a) (NN test))) (. .)))

;; if we'd like to use the above form as Lisp code,

;; we'd have to shield the symbol "." with ||: (|.| |.|) instead of (. .)

It is equivalent to the following parse tree:

   TOP

  /   |          \

 |    VP          |

 |    |   \       |

 NP   |    NP     |

 |    |   /  \    |

 DT  VBZ DT  NN   .

This is  a  test  .
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Another, more specific alternative is when we are interested only in the terminal 

nodes. In that case, there will be no explicit root, and each list item will be a subtree.  

The following trees are equivalent:

(((a b (c d)) e) (f (g h)))

<root>

      /      \

    /  \    /  \

  / | \ e  f   /\

 a  b /\      g  h

     c  d

A tree that has all terminals at the same depth and all nonterminal nodes present—a 

complete tree—with a specified number of children may be stored in a vector. This is a 

very efficient implementation that we’ll have a glance at when we talk about heaps.

Finally, a tree may be also represented, although quite inefficiently, with a matrix 

(only one-half is necessary).

 Tree Traversal
It should be noted that, unlike with other structures, basic operations, such as tree 

construction, modification, and element search and retrieval, work differently for 

different tree variants. Thus, we’ll discuss them further when describing those variants.

Yet, one tree-specific operation is common to all tree representations: traversal. 

Traversing a tree means iterating over its subtrees or nodes in a certain order. The most 

direct traversal is called depth-first search or DFS. It is the recursive traversal from parent 

to child and then to the next child after we return from the recursion. The simplest DFS 

for our tree-node -based tree may be coded in the following manner:

(defun dfs-node (fn root)

  (funcall fn (key root))

  (dolist (child (children root))

    (dfs-node fn child)))
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;; Here, *tree* is taken from the previous example

CL-USER> (dfs-node 'print *tree*)

"a"

"b"

"d"

"e"

"c"

"f"

In the spirit of Lisp, we could also define a convenience macro:

(defmacro dotree-dfs ((value root) &body body)

  (let ((node (gensym)))  ; GENSYM is a fresh symbol

                          ; used to prevent possible symbol

                          ; collisions for NODE

    `(dfs-node (lambda (,node)

                 (let ((,value (key ,node)))

                    ,@body))

               ,root)))

And if we’d like to traverse a tree represented as a list, the changes are minor:

(defun dfs-list (fn tree)

  ;; we need to handle both subtrees (lists) and

  ;; leaves (atoms) — so, we'll just convert

  ;; everything to a list

  (let ((tree (rtl:mklist tree)))

    (funcall fn (first tree))

    (dolist (child (rest tree))

      (dfs-list fn child))))

CL-USER> (dfs-list 'print '(defun foo (bar)

                             "Foo function."

                             (baz bar)))

DEFUN

FOO

BAR
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"Foo function."

BAZ

BAR

Recursion is very natural in tree traversal: we could even say that trees are recursion 

realized in a data structure. And the good news here is that, very rarely, there’s a chance 

to hit recursion limits as the majority of trees are not infinite, and also the height of the 

tree, which conditions the depth of recursion, grows proportionally to the logarithm of 

the tree size,1 and that’s pretty slow.

These simple DFS implementations apply the function before descending down 

the tree. This style is called preorder traversal. There are alternative styles: inorder and 

postorder. With postorder, the call is executed after the recursion returns, that is, on the 

recursive ascent:

(defun post-dfs (fn node)

  (dolist (child (children node))

    (post-dfs fn child))

  (funcall fn (key node)))

CL-USER> (post-dfs 'print *tree*)

"d"

"e"

"b"

"f"

"c"

"a"

Inorder traversal is applicable only to binary trees: first, traverse the left side, then 

call fn, and then descend into the right side.

An alternative traversal approach is breadth-first search (BFS). It isn’t so natural as 

DFS as it traverses the tree layer by layer, that is, it has to, first, accumulate all the nodes 

that have the same depth and then integrate them. In the general case, it isn’t justified, 

but there are a number of algorithms where exactly such ordering is required.

1 This statement is strictly true for balanced trees, but, even for imbalanced trees, such estimation 
is usually correct.
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Here is an implementation of BFS (preorder) for our tree-nodes:

(defun bfs (fn nodes)

  (let ((next-level (list)))

    (dolist (node (rtl:mklist nodes))

      (funcall fn (key node))

      (dolist (child (children node))

        (push child next-level)))

    (when next-level

      (bfs fn (reverse next-level)))))

CL-USER> (bfs 'print *tree*)

"a"

"b"

"c"

"d"

"e"

"f"

An advantage of BFS traversal is that it can handle potentially unbounded trees, that 

is, it is suitable for processing trees in a streamed manner, layer by layer.

In object orientation, tree traversal is usually accomplished by means of the so- 

called visitor pattern. Basically, it’s the same approach of passing a function to the 

traversal procedure but in disguise of additional (and excessive) OO-related machinery. 

Here is a visitor pattern example in Java:

interface ITreeVisitor {

   List<ITreeNode> children;

   void visit(ITreeNode node);

}

interface ITreeNode {

   void accept(ITreeVisitor visitor);

}

interface IFn {

   void call(ITreeNode);

}
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class TreeNode implements ITreeNode {

   public void accept(ITreeVisitor visitor) {

      visitor.visit(this);

   }

}

class PreOrderTreeVisitor implements ITreeVisitor {

   private IFn fn;

   public PreOrderTreeVisitor(IFn fn) {

        this.fn = fn;

   }

   public void visit(ITreeNode node) {

       fn.call(node);

       for (ITreeeNode child : node.children())

           child.visit(this);

   }

}

The zest of this example is the implementation of the method visit that calls the 

function with the current node and iterates over its children by recursively applying the 

same visitor. You can see that it’s exactly the same as our dfs-node.

One of the interesting tree traversal tasks is tree printing. There are many ways in 

which trees can be displayed. The simplest one is directory style (like the one used by the 

Unix tree utility):

$ tree /etc/acpi

/etc/acpi

├── asus-wireless.sh
├── events
│   ├── asus-keyboard-backlight-down
│   ├── asus-keyboard-backlight-up
│   ├── asus-wireless-off
│   └── asus-wireless-on
└── undock.sh
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It may be implemented with DFS and only requires tracking of the current level in 

the tree:

(defun pprint-tree-dfs (node &optional (level 0)

                             (skip-levels (make-hash-table)))

  (when (= 0 level)

    (format t "~A~%" (key node)))

  (let ((last-index (1- (length (children node)))))

    (rtl:doindex (i child (children node))

      (let ((last-child-p (= i last-index)))

        (dotimes (j level)

          (format t "~C    "

                  (if (rtl:? skip-levels j) #\Space #\│)))
        (format t "~C── ~A~%"
                (if last-child-p #\└ #\├)
                (key child))

        (setf (rtl:? skip-levels level) last-child-p)

        (pprint-tree-dfs child

                         (1+ level)

                         skip-levels))))))

CL-USER> (pprint-tree-dfs *tree*)

a

├── b
│   ├── d
│   └── e
└── c
    └── f

1+ and 1- are standard Lisp shortcuts for adding/subtracting 1 to/from a number. 

The skip-levels argument is used for the last elements to not print the excess │.

A more complicated variant is top-to-bottom printing:

;; example from CL-NLP library

CL-USER> (nlp:pprint-tree

          '(TOP (S (NP (NN "This"))

                   (VP (VBZ "is")
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                       (NP (DT "a")

                           (JJ "simple")

                           (NN "test")))

                   (|.| ".")))

           TOP

            :

            S

  .-----------:---------.

  :          VP         :

  :   .---------.       :

 NP   :        NP       :

  :   :   .----:-----.  :

 NN  VBZ DT   JJ    NN  .

  :   :   :    :     :  :

This  is  a simple test .

This style, most probably, will need a BFS and a careful calculation of spans of each 

node to properly align everything. Implementing such a function is left as an exercise to 

the reader, and a very enlightening one, I should say.

 Binary Search Trees
Now, we can return to the topic of basic operations on tree elements. The advantage of 

trees is that, when built properly, they guarantee O(log n) for all the main operations: 

search, insertion, modification, and deletion.

This quality is achieved by keeping the leaves sorted and the trees in a balanced 

state. “Balanced” means that any pair of paths from the root to the leaves have lengths 

that may differ by at most some predefined quantity: ideally, just 1 (AVL trees), or, as 

in the case of Red-Black (RB) trees, the longest path can be at most twice as long as the 

shortest. Yet, such situations when all the elements align along a single path, effectively, 

turning the tree into a list, should be completely ruled out. We have already seen, with 

binary search and quicksort (remember the justification for the three-median rule), why 

this constraint guarantees logarithmic complexity.
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The classic example of balanced trees are binary search trees (BSTs), of which AVL 

and Red-Black trees are the most popular variants. All the properties of BSTs may be 

trivially extended to n-ary trees, so we’ll discuss the topic using the binary tree examples.

Just to reiterate the general intuition for the logarithmic complexity of tree 

operations, let’s examine a complete binary tree: a tree that has all levels completely 

filled with elements, except maybe for the last one. In it, we have n elements, and each 

level contains twice as many nodes as the previous. This property means that n is not 

greater than (+ 1 2 4 ... (/ k 2) k), where k is the capacity of the last level. This 

formula is nothing but the sum of a geometric progression with the number of items 

equal to h, which is, by the textbook

(/ (* 1 (- 1 (expt 2 h)))

   (- 1 2))

In turn, this expression may be reduced to (- (expt 2 h) 1). So (+ n 1) equals 

(expt 2 h), that is, the height of the tree (h) equals (log (+ n 1) 2).

BSTs have the ordering property: if some element is to the right of another in 

the tree, it should consistently be greater (or smaller—depending on the ordering 

direction). This constraint means that after the tree is built, just extracting its 

elements by performing an inorder DFS produces a sorted sequence. The treesort 

algorithm utilizes this approach directly to achieve the same O(n * log n) 

complexity as other efficient sorting algorithms. This n * log n is the complexity of 

each insertion (O(log n)) multiplied by the number of times it should be performed (n). 

So treesort operates by taking a sequence and adding its elements to the BST, then 

traversing the tree, and putting the encountered elements into the resulting array, in 

a proper order.

Besides, the ordering property also means that, after adding a new element to the 

tree, in the general case, it should be rebalanced as the newly added element may not 

be placed in an arbitrary spot, but has just two admissible locations, and choosing 

either of those may violate the balance constraint. The specific balance invariants and 

approaches to tree rebalancing are the distinctive properties of each variant of BSTs that 

we will see in the following.
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 Splay Trees
A splay tree represents a kind of BST that is one of the simplest to understand and to 

implement. It is also quite useful in practice. It has the least strict constraints and a nice 

property that recently accessed elements occur near the root. Thus, a splay tree can 

naturally act as an LRU cache. However, there are degraded scenarios that result in O(n) 

access performance, although the average complexity of splay tree operations is O(log 

n) due to amortization (we’ll talk about it in a bit).

The approach to balancing a splay tree is to move the element we have accessed/

inserted into the root position. The movement is performed by a series of operations 

that are called tree rotations. A certain pattern of rotations forms a step of the 

algorithm. For all BSTs, there are just two possible tree rotations, and they serve as 

the basic block, in all balancing algorithms. A rotation may be either a left or a right 

one. Their purpose is to put the left or the right child into the position of its parent, 

preserving the order of all the other child elements. The rotations can be illustrated 

by the following diagrams in which x is the parent node, y is the target child node that 

will become the new parent, and A, B, and C are subtrees. It is said that the rotation is 

performed around the edge x -> y.

Left rotation:

    x          y

   / \        / \

  y   C  ->  A   x

 / \            / \

A   B          B   C

Right rotation:

  x              y

 / \            / \

A   y    ->    x   C

   / \        / \

  B   C      A   B

As you see, the left and right rotations are complementary operations, that is, 

performing one after the other will return the tree to the original state. During the 

rotation, the inner subtree (B) has its parent changed from y to x.
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Here’s an implementation of rotations:

(defstruct (bst-node (:conc-name nil)

                     (:print-object (lambda (node out)

                                      (format out "[~a-~@[~a~]-~@[~a~]]"

                                              (key node)

                                              (lt node)

                                              (rt node)))))

  key

  val  ; we won't use this slot in the examples,

       ; but without it, in real-world use cases,

       ; such a tree doesn't have any value ;)

  lt   ; left child

  rt)  ; right child

(defun tree-rotate (node parent grandparent)

  (cond

    ((eql node (lt parent)) (setf (lt parent) (rt node)

                                  (rt node) parent))

    ((eql node (rt parent)) (setf (rt parent) (lt node)

                                  (lt node) parent))

    (t (error "NODE (~A) is not the child of PARENT (~A)"

              node parent)))

  (cond

    ((null grandparent) (return-from tree-rotate node))

    ((eql parent (lt grandparent)) (setf (lt grandparent) node))

    ((eql parent (rt grandparent)) (setf (rt grandparent) node))

    (t (error "PARENT (~A) is not the child of GRANDPARENT (~A)"

              parent grandparent))))

You have probably noticed that we need to pass to this function not only the nodes 

on the edge around which the rotation is executed but also the grandparent node of the 

target to link the changes to the tree. If grandparent is not supplied, it is assumed that 

parent is the root, and we need to separately reassign the variable holding the reference 

to the tree to child, after the rotation.
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Splay trees combine rotations into three possible actions:

• The zig step is used to make the node the new root when it’s already 

the direct child of the root. It is accomplished by a single left/right 

rotation(depending on whether the target is to the left or to the right 

of the root) followed by an assignment.

• The zig-zig step is a combination of two zig steps that is performed 

when both the target node and its parent are left/right nodes. The 

first rotation is around the edge between the target node and its 

parent and the second around the target and its former grandparent 

that has become its new parent, after the first rotation.

• The zig-zag step is performed when the target and its parent are not 

in the same direction: either one is left while the other is right or vice 

versa. In this case, correspondingly, first, a left rotation around the 

parent is needed and then a right one around its former grandparent 

(that has now become the new parent of the target). Or vice versa.

However, with our implementation of tree rotations, we don’t have to distinguish the 

three different steps as they are all handled at once, and so the implementation of the 

operation splay becomes really trivial:

(defun splay (node &rest chain)

  (loop :for (parent grandparent) :on chain :do

    (tree-rotate node parent grandparent))

  node)

The key point here and in the implementation of splay tree operations is the use of 

reverse chains of nodes from the child to the root which will allow performing chains 

of splay operations in an end-to-end manner and also custom modifications of the tree 

structure.

From the code, it is clear that splaying requires at maximum the same number 

of steps as the height of the tree because each rotation brings the target element one 

level up. Now, let’s discuss why all splay tree operations are O(log n). Element access 

requires binary search for the element in the tree, which is O(log n) provided the tree 

is balanced, and then splaying it to root—also O(log n). Deletion requires searching, 
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then swapping the element either with the rightmost child of its left subtree or the 

leftmost child of its right subtree (direct predecessor/successor)—to make it childless—

removing it, and, finally, splaying the parent of the removed node. And update is, at 

worst, deletion followed by insertion.

Here is the implementation of the splay tree built of bst-nodes and restricted to only 

arithmetic comparison operations. All of the high-level functions, such as st-search, 

st-insert, or st-delete, return the new tree root obtained after that should substitute 

the previous one in the caller code:

(defun node-chain (item root &optional chain)

  "Return as the values the node equal to ITEM or the closest one to it

   and the chain of nodes leading to it, in the splay tree based in ROOT."

  (if root

      (with-slots (key lt rt) root

        (let ((chain (cons root chain)))

          (cond ((= item key) (values root

                                      chain))

                ((< item key) (st-search item lt chain))

                ((> item key) (st-search item rt chain)))))

      (values nil

              chain)))

(defun st-search (item root)

  (rtl:with ((node chain (node-chain item root)))

    (when node

      (apply 'splay chain))))

(defun st-insert (item root)

  (assert root nil "Can't insert item into a null tree")

  (rtl:with ((node chain (st-search item root)))

    (unless node

      (let ((parent (first chain)))

        ;; here, we use the property of the := expression

        ;; that it returns the item being set
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        (push (setf (rtl:? parent (if (> (key parent) item)

                                      'lt

                                      'rt))

                    (make-bst-node :key item))

               chain)))

    (apply 'splay chain)))

(defun idir (dir)

  (case dir

    (rtl:lt 'rt)

    (rtl:rt 'lt)))

(defun closest-child (node)

  (dolist (dir '(lt rt))

    (let ((parent nil)

          (current nil))

      (do ((child (funcall dir node) (funcall (idir dir) child)))

          ((null child) (when current

                          (return-from closest-child

                            (values dir

                                    current

                                    parent))))

        (setf parent current

              current child)))))

(defun st-delete (item root)

  (rtl:with ((node chain (st-search item root))

             (parent (second chain)))

    (if (null node)

        root  ; ITEM was not found

        (rtl:with ((dir child child-parent (closest-child node))

                   (idir (idir dir)))

          (when parent

            (setf (rtl:? parent (if (eql (lt parent) node)

                                    'lt

                                    'rt))

                  child))
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          (when child

            (setf (rtl:? child idir) (rtl:? node idir))

            (when child-parent

              (setf (rtl:? child-parent idir) (rtl:? child dir))))

          (if parent

              (apply 'splay (rest chain))

              child)))))

(defun st-update (old new root)

  (st-insert new (st-delete old root)))

The deletion is somewhat tricky due to the need to account for different cases: when 

removing the root, the direct child of the root, or the other node.

Let’s test the splay tree operation in the REPL (coding pprint-bst as a slight 

modification of pprint-tree-dfs is left as an exercise to the reader):

CL-USER> (defparameter *st* (make-bst-node :key 5))

CL-USER> *st*

[5--]

CL-USER> (pprint-bst (setf *st* (st-insert 1 *st*)))

1

├──.
└── 5
CL-USER> (pprint-bst (setf *st* (st-insert 10 *st*)))

10

├── 1
│    ├── .
│    └── 5
└── .
CL-USER> (pprint-bst (setf *st* (st-insert 3 *st*)))

3

├── 1
└── 10
     ├── .
     └── 5
CL-USER> (pprint-bst (setf *st* (st-insert 7 *st*)))

7
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├── 3
│    ├── 1
│    └── 5
└── 10
CL-USER> (pprint-bst (setf *st* (st-insert 8 *st*)))

8

├── 7
│    ├── 3
│    │    ├── 1
│    │    └── 5
│    └── .
└── 10
CL-USER> (pprint-bst (setf *st* (st-insert 2 *st*)))

2

├── 1
└── 8
     ├── 7
     │    ├── 3
     │    │    ├── .
     │    │    └── 5
     │    └── .
     └── 10
CL-USER> (pprint-bst (setf *st* (st-insert 4 *st*)))

4

├── 2
│    ├── 1
│    └── 3
└── 8
     ├── 7
     │    ├── 5
     │    └── .
     └── 10
CL-USER> *st*

[4-[2-[1--]-[3--]]-[8-[7-[5--]-]-[10--]]]

As you can see, the tree gets constantly rearranged at every insertion.
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Accessing an element, when it’s found in the tree, also triggers tree restructuring:

CL-USER> (pprint-bst (st-search 5 *st*))

5

├── 4
│    ├── 2
│    │    ├── 1
│    │    └── 3
│    └── .
└── 8
     ├── 7
     └── 10

The insertion and deletion operations, for the splay tree, also may have an alternative 

implementation: first, split the tree in two at the place of the element to be added/

removed and then combine them. For insertion, the combination is performed by 

making the new element the root and linking the previously split subtrees to its left and 

right. As for deletion, splitting the splay tree requires splaying the target element and 

then breaking the two subtrees apart (removing the target that has become the root). The 

combination is also O(log n), and it is performed by splaying the rightmost node of the 

left subtree (the largest element) so that it doesn’t have the right child. Then the right 

subtree can be linked to this vacant slot.

Although regular access to the splay tree requires splaying of the element we have 

touched, tree traversal should be implemented without splaying. Or rather, just the 

normal DFS/BFS procedures should be used. First of all, this approach will keep the 

complexity of the operation at O(n) without the unnecessary log n multiplier added by 

the splaying operations. Besides, accessing all the elements inorder will trigger the edge- 

case scenario and turn the splay tree into a list—exactly the situation we want to avoid.

 Complexity Analysis
All of those considerations apply under the assumption that all the tree operations are 

O(log n). But we haven’t proven it yet. Turns out that, for splay trees, it isn’t a trivial 

task and requires amortized analysis. Basically, this approach averages the cost of all 

operations over all tree elements. Amortized analysis allows us to confidently use many 
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advanced data structures for which it isn’t possible to prove the required time bounds for 

individual operations, but the general performance over the lifetime of the data structure 

is in those bounds.

The principal tool of amortized analysis is the potential method. Its idea is to 

combine, for each operation, not only its direct cost but also the change to the potential 

cost of other operations that it brings. For splay trees, we can observe that only zig-zig 

and zig-zag steps are important for the analysis, as the zig step happens only once for 

each splay operation and changes the height of the tree by at most 1. Also, both zig-zig 

and zig-zag have the same potential.

Rigorously calculating the exact potential requires a number of mathematical proofs 

that we don’t have space to show here, so let’s just list the main results:

 1. The potential of the whole splay tree is the sum of the ranks of all 

nodes, where rank is the logarithm of the number of elements in 

the subtree rooted at node:

(defun rank (node)

  (let ((size 0))

    (dotree-dfs (_ node)

      (incf size))

    (log size 2)))

 2. The change of potential produced by a single zig-zig/zig-zag step 

can be calculated in the following manner:

(+ (- (rank grandparent-new) (rank grandparent-old))

   (- (rank parent-new) (rank parent-old))

   (- (rank node-new) (rank node-old)))

Since (= (rank node-new) (rank grandparent-old)) it can be reduced 

to:

(- (+ (rank grandparent-new) (rank parent-new))

   (+ (rank parent-old) (rank node-old)))
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Which is not larger than:

(- (+ (rank grandparent-new) (rank node-new))

   (* 2 (rank node-old)))

Which, in turn, due to the concavity of the log function,  

may be reduced to:

(- (* 3 (- (rank node-new) (rank node-old))) 2)

The amortized cost of any step is 2 operations larger than the 

change in potential as we need to perform 2 tree rotations, so 

it's not larger than:

(* 3 (- (rank node-new) (rank node-old)))

 3. When summed over the entire splay operation, this expression 

“telescopes” to (* 3 (- (rank root) (rank node))) which is 

O(log n). Telescoping means that when we calculate the sum of 

the cost of all zig-zag/zig-zig steps, the inner terms cancel each 

other out and only the boundary ones remain. The difference  

in ranks is, in the worst case, log n as the rank of the root is  

(log n 2) and the rank of the arbitrary node is between that  

value and (log 1 2) (0).

 4. Finally, the total cost for m splay operations is O(m log n + n log n),  

where the m log n term represents the total amortized cost of a 

sequence of m operations and n log n is the change in potential that 

it brings.

As mentioned, the preceding exposition is just a cursory look at the application of 

the potential method that skips some important details. If you want to learn more, you 

can start with the discussion on CS Theory StackExchange.
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To conclude, similar to hash-tables, the performance of splay tree operations for a 

concrete element depends on the order of the insertion/removal of all the elements of 

the tree, that is, it has an unpredictable (random) nature. This property is a disadvantage 

compared to some other BST variants that provide precise performance guarantees. 

Another disadvantage, in some situations, is that the tree is constantly restructured, 

which makes it mostly unfit for usage as a persistent data structure and also may not play 

well with many storage options. Yet, splay trees are simple and, in many situations, due 

to their LRU property, may be preferable over other BSTs.

 Red-Black and AVL Trees
Another BST that has similar complexity characteristics to splay trees and, in general, 

a somewhat similar approach to rebalancing is the scapegoat tree. Both of these BSTs 

don’t require storing any additional information about the current state of the tree, 

which results in the random aspect of their operation. And although it is smoothed over 

all the tree accesses, it may not be acceptable in some usage scenarios.

An alternative approach, if we want to exclude the random factor, is to track the 

tree state. Tracking may be achieved by adding just 1 bit to each tree node (as with 

 Red- Black trees) or 2 bits, the so-called balance factors (AVL trees).2 However, for most 

of the high-level languages, including Lisp, we’ll need to go to great lengths or even 

perform low-level non-portable hacking to, actually, ensure that exactly 1 or 2 bits is 

spent for this data, as the standard structure implementation will allocate a whole word 

even for a bit- sized slot. Moreover, in C likewise, due to cache alignment, the structure 

will also have the size aligned to memory word boundaries. So, by and large, usually we 

don’t really care whether the data we’ll need to track is a single bit flag or a full integer 

counter.

2 Although it was shown that this value may also be reduced to a single bit if the tree is 
implemented as a rank balanced tree with delta ranks allowed of 1 or 2 meaning “when going 
upward there is an additional increment in height of one or two.” 
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The balance guarantee of an RB tree is that, for each node, the height of the left and 

right subtrees may differ by at most a factor of 2. Such boundary condition occurs when 

the longer path contains alternating red and black nodes and the shorter only black 

nodes. Balancing is ensured by the requirement to satisfy the following invariants:

 1. Each tree node is assigned a label: red or black (basically, a 1-bit 

flag: 0 or 1).

 2. The root should be black (0).

 3. All the leaves are also black (0). And the leaves don’t hold any 

data. A good implementation strategy to satisfy this property is to 

have a constant singleton terminal node that all preterminals will 

link to: (defparameter *rb-leaf* (make- rb- node)).

 4. If a parent node is red (1), then both its children should be black (0).  

Due to mock leaves, each node has exactly two children.

 5. Every path from a given node to any of its descendant leaf nodes 

should contain the same number of black nodes.

So, to keep the tree in a balanced state, the insert/update/delete operations should 

perform rebalancing when the constraints are violated. Robert Sedgewick has proposed 

the simplest version of the Red-Black tree called the Left-Leaning Red-Black (LLRB) 

tree. The LLRB tree maintains an additional invariant that all red links must lean left 

except during inserts and deletes, which makes for the simplest implementation of the 

operations. In the following, we can see the outline of the insert operation:

(defstruct (rb-node (:include bst-node) (:conc-name nil))

  (red nil :type boolean))

(defun rb-insert (item root &optional parent)

  (let ((node (make-rb-node :key item)))

    (when (null root)

      (return-from rb-insert node))

    (when (and (red (lt root))

               (red (rt root)))

      (setf (red root) (not (red root))

            (red (lt root)) nil

            (red (rt root)) nil))
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    (cond ((< (key root) value)

           (setf (lt root) (rb-insert node (lt root) root)))

          ((> (key root) value)

           (setf (rt root) (rb-insert node (rt root) root))))

    (when (and (red (rt root))

               (not (red (lt root))))

      (setf (red (lt root)) (red root)

            root (tree-rotate (lt root) root parent)

            (red root) t))

    (when (and (red (lt root))

               (not (red (rt root))))

      (setf (red (rt root)) (red root)

            root (tree-rotate (rt root) root parent)

            (red root) t)))

  root)

This code is more of an outline. You can easily find the complete implementation 

of the RB tree on the Internet. The key here is to understand the principle of their 

operation. Also, we won’t discuss AVL trees in detail. Suffice to say that they are based on 

the same principles but use a different set of balancing operations.

Both Red-Black and AVL trees may be used when worst-case performance 

guarantees are required, for example, in real-time systems. Besides, they serve as a 

basis for implementing persistent data structures that we’ll talk about later. The Java 

TreeMap and similar data structures from the standard libraries of many languages are 

implemented with one of these BSTs. And the implementations of them both are present 

in the Linux kernel and are used as data structures for various queues.

OK, now you know how to balance a binary tree. :D

 B-Trees
A B-tree is a generalization of a BST that allows for more than two children. The number 

of children is not unbounded and should be in a predefined range. For instance, the 

simplest B-tree—2-3 tree—allows for two or three children. Such trees combine the 

main advantage of self-balanced trees—logarithmic access time—with the benefit of 
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arrays—locality—the property which allows for faster cache access or retrieval from 

the storage. That’s why B-trees are mainly used in data storage systems. Overall, B-tree 

implementations perform the same trick as we saw in prod-sort: switching to sequential 

search when the sequence becomes small enough to fit into the cache line of the CPU.

Each internal node of a B-tree contains a number of keys. For a 2-3 tree, the number 

is either 1 or 2. The keys act as separation values which divide the subtrees. For example, 

if the keys are x and y, all the values in the leftmost subtree will be less than x, all values 

in the middle subtree will be between x and y, and all values in the rightmost subtree will 

be greater than y. Here is an example:

              [ 7 . 18 ]

         /        |        \

[ 1 . 3 ]    [ 10 . 15 ]    [ 20 . _ ]

This tree has four nodes. Each node has two key slots and may have zero (in the case 

of the leaf nodes), two, or three children. The node structure for it might look like this:

(defstruct 23-node

  key1

  key2

  val1

  val2

  lt

  md

  rt)

Yet, a more general B-tree node would, probably, contain arrays for keys/values and 

children links:

(defstruct bt-node

  (keys (make-array *max-keys*))

  (vals (make-array *max-keys*))

  (children (make-array (1+ *max-keys*)))

The element search in a B-tree is very similar to that of a BST. Except that there 

will be up to *max-keys* comparisons instead of one, in each node. Insertion is more 

tricky as it may require rearranging the tree items to satisfy its invariants. A B-tree is 

kept balanced after insertion by the procedure of splitting a would-be overfilled node, 
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of (1+ n) keys, into two (/ n 2) key siblings and inserting the mid-value key into the 

parent. That’s why, usually, the range of the number of keys in the node in the B-tree is 

chosen to be between k and (* 2 k). Also, in practice, k will be pretty large: an order 

of 10s or even 100. Depth only increases when the root is split, maintaining balance. 

Similarly, a B-tree is kept balanced after deletion by merging or redistributing keys 

among siblings to maintain the minimum number of keys for non-root nodes. A merger 

reduces the number of keys in the parent potentially forcing it to merge or redistribute 

keys with its siblings and so on. The depth of the tree will increase slowly as elements are 

added to it, but an increase in the overall depth is infrequent and results in all leaf nodes 

being one more node farther away from the root.

A version of B-trees that is particularly developed for storage systems and is used in a 

number of filesystems, such as NTFS and ext4, and databases, such as Oracle and SQLite, 

is B+ trees. A B+ tree can be viewed as a B-tree in which each node contains only keys 

(not key-value pairs) and to which an additional level is added at the bottom with linked 

leaves. The leaves of the B+ tree are linked to one another in a linked list, making range 

queries or an (ordered) iteration through the blocks simpler and more efficient. Such a 

property could not be achieved in a B-tree, since not all keys are present in the leaves: 

some are stored in the root or intermediate nodes.

However, a newer Linux filesystem, developed specifically for use on the SSDs 

and called btrfs, uses plain B-trees instead of B+ trees because the former allows 

implementing copy-on-write, which is needed for efficient snapshots. The issue with B+ 

trees is that their leaf nodes are interlinked, so if a leaf were copy-on-write, its siblings 

and parents would have to be as well, as would their siblings and parents, and so on until 

the entire tree was copied. We can recall the same situation pertaining to the doubly 

linked lists compared to singly linked ones. So a modified B-tree without leaf linkage is 

used in btrfs, with a refcount associated with each tree node but stored in an ad hoc free 

map structure.

Overall, B-trees are a very natural continuation of BSTs, so we won’t spend more 

time with them here. I believe it should be clear how to deal with them overall. Surely, 

there are a lot of B-tree variants that have their nuances, but those should be studied in 

the context of a particular problem they are considered for.
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 Heaps
A different variant of a binary tree is a binary heap. Heaps are used in many different 

algorithms, such as pathfinding, encoding, minimum spanning tree, and so on. They 

even have their own O(log n) sorting algorithm—the elegant heapsort. In a heap, 

each element is either the smallest (min-heap) or the largest (max-heap) element of 

its subtree. It is also a complete tree, and the last layer should be filled left to right. This 

invariant makes the heap well suited for keeping track of element priorities. So priority 

queues are, usually, based on heaps. Thus, it’s beneficial to be aware of the existence of 

this peculiar data structure.

The constraints on the heap allow representing it in a compact and efficient 

manner—as a simple vector. Its first element is the heap root, the second and third are 

its left and right children (if present), and so on, by recursion. This arrangement permits 

access to the parent and children of any element using the simple offset-based formulas 

(in which the element is identified by its index):

(defun hparent (i)

  "Calculate the index of the parent of the heap element with an index I."

  (floor (- i 1) 2))

(defun hrt (i)

  "Calculate the index of the right child of the heap element with an index I."

  (* (+ i 1) 2))

(defun hlt (i)

  "Calculate the index of the left child of the heap element with an index I."

  (- (hrt i) 1))

So, to implement a heap, we don’t need to define a custom node structure and, 

besides, can get to any element in O(1)! Here is the utility to rearrange an arbitrary array 

in a min-heap formation (in other words, we can consider a binary heap to be a special 

arrangement of array elements). It works by iteratively placing each element in its proper 

place by swapping with children until it’s larger than both of the children:

(defun heapify (vec)

  (let ((mid (floor (length vec) 2)))

    (dotimes (i mid)

      (heap-down vec (- mid i 1))))

  vec)
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(defun heap-down (vec beg &optional (end (length vec)))

  (let ((l (hlt beg))

        (r (hrt beg)))

    (when (< l end)

      (let ((child (if (or (>= r end)

                           (> (aref vec l)

                              (aref vec r)))

                       l r)))

        (when (> (aref vec child)

                 (aref vec beg))

          (rotatef (aref vec beg)

                   (aref vec child))

          (heap-down vec child end)))))

  vec)

And here is the reverse operation to pop the item up the heap:

(defun heap-up (vec i)

  (when (> (aref vec i)

           (aref vec (hparent i)))

    (rotatef (aref vec i)

             (aref vec (hparent i)))

    (heap-up vec (hparent i)))

  vec)

Also, as with other data structures, it’s essential to be able to visualize the content 

of the heap in a convenient form, as well as to check the invariants. These tasks may be 

accomplished with the help of the following functions:

(defun draw-heap (vec)

  (format t "~%")

  (rtl:with ((size (length vec))

             (h (+ 1 (floor (log size 2)))))

    (dotimes (i h)

      (let ((spaces (make-list (- (expt 2 (- h i)) 1)

                          :initial-element #\Space)))

        (dotimes (j (expt 2 i))
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          (let ((k (+ (expt 2 i) j -1)))

            (when (= k size) (return))

            (format t "~{~C~}~2D~{~C~}"

                    spaces (aref vec k) spaces)))

        (format t "~%"))))

  (format t "~%")

  vec)

(defun check-heap (vec)

  (dotimes (i (floor (length vec) 2))

    (when (= (hlt i) (length vec)) (return))

    (assert (not (> (aref vec (hlt i)) (aref vec i)))

            () "Left child (~A) is > parent at position ~A (~A)."

            (aref vec (hlt i)) i (aref vec i))

    (when (= (hrt i) (length vec)) (return))

    (assert (not (> (aref vec (hrt i)) (aref vec i)))

            () "Right child (~A) is > than parent at position ~A (~A)."

            (aref vec (hrt i)) i (aref vec i)))

  vec)

CL-USER> (check-heap #(10 5 8 2 3 7 1 9))

Left child (9) is > parent at position 3 (2).

   [Condition of type SIMPLE-ERROR]

CL-USER> (check-heap (draw-heap (heapify #(1 22 10 5 3 7 8 9 7 13))))

               22

       13              10

    9       3       7       8

  5   7   1

#(22 13 10 9 3 7 8 5 7 1)

Due to the regular nature of the heap, drawing it with BFS is much simpler than for 

most other trees.
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As with ordered trees, heap element insertion and deletion require repositioning of 

some of the elements:

(defun heap-push (node vec)

  (vector-push-extend node vec)

  (heap-up vec (1- (length vec))))

(defun heap-pop (vec)

  (rotatef (aref vec 0) (aref vec (- (length vec) 1)))

  ;; PROG1 is used to return the result of the first form

  ;; instead of the last, like it happens with PROGN

  (prog1 (vector-pop vec)

    (heap-down vec 0)))

Now, we can implement heapsort. The idea is to iteratively arrange the array in heap 

order element by element. Each arrangement will take log n time as we’re pushing 

the item down a complete binary tree, the height of which is log n. And we’ll need to 

perform n such iterations:

(defun heapsort (vec)

  (heapify vec)

  (dotimes (i (length vec))

    (let ((last (- (length vec) i 1)))

      (rotatef (aref vec 0)

               (aref vec last))

      (heap-down vec 0 last)))

  vec)

CL-USER> (heapsort #(1 22 10 5 3 7 8 9 7 13))

#(1 3 5 7 7 8 9 10 13 22)

There are so many sorting algorithms, so why invent yet another one? That’s a 

totally valid point, but the advantage of heaps is that they keep the maximum/minimum 

element constantly at the top so you don’t have to perform a full sort or even descend 

into the tree if you need just the top element. This simplification is especially relevant if 

we constantly need to access such elements as with priority queues.
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Actually, a heap should not necessarily be a tree. Besides the binary heap, there are 

also binomial, Fibonacci, and other kinds of heaps that may even not necessarily be 

trees, but even collections of trees (forests). We’ll discuss some of them in more detail 

in the next chapters, in the context of the algorithms for which their use makes a notable 

difference in performance.

 Tries
If I were to answer the question “What’s the most underappreciated data structure?” I’d 

probably say, a trie. For me, tries are a gift that keeps on giving, and they have already 

saved me program performance in a couple of situations that seemed hopeless. Besides, 

they are very simple to understand and implement.

A trie is also called a prefix tree. It is, usually, used to optimize dictionary storage and 

lookup when the dictionary has a lot of entries and there is some overlap between them. 

The most obvious example is a normal English language dictionary. A lot of words have 

common stems (“work,” “word,” “worry” all share the same beginning “wor”), and there 

are many wordforms of the same word (“word,” “words,” “wording,” “worded”).

There are many approaches to trie implementation. Let’s discuss the most 

straightforward and, so to say, primitive one. Here is a trie for representing a string 

dictionary that is character-based and uses an alist to store children pointers:

(defstruct (tr-node (:conc-name nil))

  val

  (children (list)))

(defun tr-lookup (key root)

  (rtl:dovec (ch key

              ;; when iteration terminates normally

              ;; we have found the node we were looking for

              (val root))

    (rtl:if-it (rtl:assoc1 ch (children root))

               (setf root rtl:it)

               (return))))

(defun tr-add (key val root)

  (let ((i 0))
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    (rtl:dovec (ch key)

      (rtl:if-it (rtl:assoc1 ch (children root))

                 (setf root rtl:it

                       i (1+ i))

                 (return)))

    (if (= i (length key))

        ;; something has already being stored at key -

        ;; so we signal a continuable error that

        ;; gives the user two options: overwrite or abort

        (cerror "Assign a new value"

                "There was already a value at key: ~A" (val root))

        (rtl:dovec (ch (rtl:slice key i))

          (let ((child (make-tr-node)))

            (push (cons ch child) (children root))

            (setf root child))))

    (setf (val root) val)))

CL-USER> (defparameter *trie* (make-tr-node))

*TRIE*

CL-USER> *trie*

#S(TR-NODE :VAL NIL :CHILDREN NIL)

For the sake of brevity, we won’t define a special print-function for our trie and will 

use a default one. In a real setting, though, it is highly advisable:

CL-USER> (tr-lookup "word" *trie*)

NIL

CL-USER> (tr-add "word" 42 *trie*)

42

CL-USER> *trie*

#S(TR-NODE

   :VAL NIL

   :CHILDREN

   ((#\w

     . #S(TR-NODE

          :VAL NIL

          :CHILDREN
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          ((#\o

            . #S(TR-NODE

                 :VAL NIL

                 :CHILDREN

                 ((#\r

                   . #S(TR-NODE

                        :VAL NIL

                        :CHILDREN

                        ((#\d

                          . #S(TR-NODE

                               :VAL 42

                               :CHILDREN NIL)))))))))))))

CL-USER> (tr-lookup "word" *trie*)

42

CL-USER> (tr-add "word" :foo *trie*)

There was already a value at key: 42

   [Condition of type SIMPLE-ERROR]

Restarts:

 0: [CONTINUE] Assign a new value

 1: [RETRY] Retry SLIME REPL evaluation request.

 2: [*ABORT] Return to SLIME's top level.

 3: [ABORT] abort thread (#<THREAD "repl-thread" RUNNING>)

Backtrace:

  0: (TR-ADD "word" :FOO #S(TR-NODE :VAL 42 :CHILDREN NIL))

  1: (SB-INT:SIMPLE-EVAL-IN-LEXENV (TR-ADD "word" :FOO *TRIE*) #<NULL- 

LEXENV>)

  2: (EVAL (TR-ADD "word" :FOO *TRIE*))

 --more--

;;; Take the restart 0

:FOO

CL-USER> (tr-add "we" :baz *trie*)

:BAZ

CL-USER> *trie*
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#S(TR-NODE

   :VAL NIL

   :CHILDREN

   ((#\w

     . #S(TR-NODE

          :VAL NIL

          :CHILDREN

          ((#\e . #S(TR-NODE

                     :VAL :BAZ

                     :CHILDREN NIL))

           (#\o . #S(TR-NODE

                     :VAL NIL

                     :CHILDREN

                     ((#\r

                       . #S(TR-NODE

                            :VAL NIL

                            :CHILDREN

                            ((#\k

                              . #S(TR-NODE

                                   :VAL :BAR

                                   :CHILDREN NIL))

                             (#\d

                              . #S(TR-NODE

                                   :VAL :FOO

                                   :CHILDREN NIL)))))))))))))

There are many ways to optimize this trie implementation. First of all, you can see 

that some space is wasted on intermediate nodes with no values. This is mended by 

radix trees (also known as Patricia trees) that merge all intermediate nodes. That is, our 

trie would change into the following more compact structure:

#S(TR-NODE

   :VAL NIL

   :CHILDREN

   ((#\w

     . #S(TR-NODE

          :VAL NIL
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          :CHILDREN

          ((#\e . #S(TR-NODE

                     :VAL :BAZ

                     :CHILDREN NIL))

           ("or" . #S(TR-NODE

                      :VAL NIL

                      :CHILDREN ((#\k . #S(TR-NODE

                                           :VAL :BAR

                                           :CHILDREN NIL))

                                 (#\d . #S(TR-NODE

                                           :VAL :FOO

                                           :CHILDREN NIL))))))))))

Besides, there are ways to utilize the array to store trie offsets (similar to heaps), 

instead of using a linked backbone for it. Such variant is called a succinct trie. Also, 

there are compressed (C-tries), hash-array mapped (HAMTs), and other kinds of 

tries.

The main advantage of tries is efficient space usage, thanks to the elimination of 

repetition in key storage. In many scenarios, usage of tries also improves the speed 

of access. Consider the task of matching against a dictionary of phrases, for example, 

biological or medical terms, names of companies, works of art, and so on. These are 

usually two- to three-word-long phrases, but, occasionally, there may be an outlier 

of ten or more words. The straightforward approach would be to put the dictionary 

into a hash-table and then iterate over the input string trying to find the phrases in 

the table, starting from each word. The only question is: Where do we put an end 

of the phrase? As we said, the phrase may be from one to, say, ten words in length. 

With a hash-table, we have to check every variant: a single-word phrase, a two-word 

one, and so on up to the maximum length. Moreover, if there are phrases with the 

same beginning, which is often the case, we’d do duplicate work of hashing that 

beginning, for each variant (unless we use an additive hash, but this isn’t advised 

for hash-tables). With a trie, all the duplication is not necessary: we can iteratively 

match each word until we either find the match in the tree or discover that there is no 

continuation of the current subphrase.
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 Trees in Action: Efficient Mapping
Finally, the last family of tree data structures I had to mention is trees for representing 

spatial relations. Overall, mapping and pathfinding is an area that prompted the creation 

of a wide range of useful algorithms and data structures. There are two fundamental 

operations for processing spatial data: nearest neighbor search and range queries. Given 

the points on the plane, how do we determine the closest points to a particular one? 

How do we retrieve all points inside a rectangle or a circle? A primitive approach is to 

loop through all the points and collect the relevant information, which results in at least 

O(n) complexity—prohibitively expensive if the number of points is beyond several tens 

or hundreds. And such problems, by the way, arise not only in the field of processing 

geospatial data (they are at the core of such systems as PostGIS, mapping libraries, etc.) 

but also in machine learning (for instance, the k-NN algorithm directly requires such 

calculations) and other areas.

A more efficient solution has a O(log n) complexity and is, as you might expect, 

based on indexing the data in a special-purpose tree. The changes to the tree will also 

have O(log n) complexity, while the initial indexing is O(n log n). However, in most 

of the applications that use this technique, changes are much less frequent than read 

operations, so the upfront cost pays off.

There are a number of trees that allow efficient storage of spatial data: segment 

trees, interval trees, k-d trees, R-trees, and so on. The most common spatial data 

structure is an R-tree (rectangle tree). It distributes all the points in an n-dimensional 

space (usually, n will be two or three) among the leaves of the tree by recursively 

dividing the space into k rectangles holding roughly the same number of points until 

each tree node has at most k points.

Let’s say we have started from 1000 points on the plane and chosen k to be 10. In 

this case, the first level of the tree (i.e., children of the root) will contain ten nodes, each 

one having as the value the dimensions of the rectangle that bounds approximately 

100 points. Every node like that will have ten more children, each one having around 

ten points. Maybe some will have more, and, in this case, we’ll give those nodes ten 

children each with, probably, one or two points in the rectangles they will command. 

Now, we can perform a range search with the obtained tree by selecting only the nodes 

that intersect the query rectangle. For a small query box, this approach will result in the 

discarding of the majority of the nodes at each level of the tree. So a range search over an 

R-tree has O(k log n) where k is the number of intersecting rectangles.
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Now, let’s consider neighbor search. Obviously, the closest points to a particular one 

we are examining lie either in the same rectangle as the point or in the closest ones to 

it. So we need to, first, find the smallest bounding rectangle, which contains our point, 

perform the search in it, and then, if we haven’t got enough points yet, process the 

siblings of the current tree node in the order of their proximity to it.

There are many other spatial problems that may be efficiently solved with this 

approach. One thing to note is that the described procedures require the tree to store, in 

the leaf nodes, references to every point contained in their rectangles.

 Takeaways
So balancing a tree isn’t such a unique and interesting task. On the contrary, it’s quite 

simple yet boring due to the number of edge cases you have to account for. Yet, we have 

just scratched the surface of the general topic of trees. It is vast: the Wikipedia section 

for tree data structures contains almost 100 of them, and it’s, definitely, not complete. 

Moreover, new tree variants will surely be invented in the future. But you will hardly 

deal with more than just a few variants during the course of your career, spending the 

majority of time with the simple “unconstrained” trees. And we have seen, in action, the 

basic principles of tree operation that will be helpful in the process.

There are a couple of other general observations about programming algorithms we 

can draw from this chapter:

 1. Trees are very versatile data structures that are a default choice 

when you need to represent some hierarchy. They are also one of 

a few data structures for which recursive processing is not only 

admissible but also natural and efficient.

 2. Visualization is key to efficient debugging of complex data 

structures. Unfortunately, it’s hard to show in the book how I have 

spent several hours on the code for the splay tree, but without an 

efficient way to display the trees coupled with dynamic tracing, I 

would probably have spent twice as much. And both the print-

function for individual node and pprint-bst were helpful here.

Chapter 9  trees



191
© Vsevolod Domkin 2021 
V. Domkin, Programming Algorithms in Lisp, https://doi.org/10.1007/978-1-4842-6428-7_10

CHAPTER 10

Graphs
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Graphs have already been mentioned several times in the book, in quite diverse 

contexts. Actually, if you are familiar with graphs, you can spot opportunities to use 

them in quite different areas for problems that aren’t explicitly formulated with graphs in 

mind. So, in this chapter, we’ll discuss how to handle graphs to develop such intuition to 

some degree.

But first, let’s list the most prominent examples of the direct graph applications, 

some of which we’ll see here in action:

• Pathfinding

• Network analysis

• Dependency analysis in planning, compilers, and so on

• Various optimization problems

• Distributing and optimizing computations

• Knowledge representation and reasoning with it

• Meaning representation in natural language processing

Graphs may be thought of as a generalization of trees: indeed, trees are, as we said 

earlier, connected directed acyclic graphs (DAGs). But there’s an important distinction in 

the patterns of the usage of graphs and trees. Graphs, much more frequently than trees, 

have weights associated with the edges, which adds a whole new dimension both to 
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algorithms for processing them and to possible data that can be represented in the graph 

form. So, while the main application of trees is reflecting some hierarchy, for graphs, it is 

often more about determining connectedness and its magnitude, based on the weights.

 Graph Representations
A graph is, basically, a set of nodes (called “vertices,” V) and an enumeration of 

connections between two nodes (“edges,” E). The edges may be directed or undirected 

(i.e., bidirectional) and also weighted or unweighted. There are many ways that may be 

used to represent these sets, which have varied utility for different situations. Here are 

the most common ones:

• As a linked structure: (defstruct node data links) where links 

may be either a list of other nodes, possibly paired with weights, or 

a list of edge structures represented as (defsturct edge source 

destination weight). For directed graphs, this representation 

will be similar to a singly linked list, but for undirected, to a heavier 

doubly linked one.

• As an adjacency matrix (V x V): This matrix is indexed by vertices 

and has zeroes when there’s no connection between them and 

some nonzero number for the weight (1—in the case of unweighted 

graphs) when there is a connection. Undirected graphs have a 

symmetric adjacency matrix and so need to store only the above 

diagonal half of it.

• As an adjacency list that enumerates for each vertex the other vertices 

it’s connected to and the weights of connections.

• As an incidence matrix (V x E): This matrix is similar to the 

adjacency list representation but with much more wasted space. 

The adjacency list may be thought of as a sparse representation of 

the incidence matrix. The matrix representation may be more useful 

for hypergraphs (that have more than two vertices for each edge), 

though.

• Just as a list of edges.
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 Topological Sort
Graphs may be divided into several kinds according to the different properties they have 

and specific algorithms which work on them:

• Disjoint (with several unconnected subgraphs), connected, and fully 

connected (every vertex is linked to all the others)

• Cyclic and acyclic, including directed acyclic (DAG)

• Bipartite, when there are two groups of vertices and each vertex from 

one group is connected only to the vertices from the other

In practice, directed acyclic graphs are quite important. These are directed graphs, 

in which there’s no vertex that you can start a path from and return back to it. They find 

applications in optimizing scheduling and computation, determining historical and 

other types of dependencies (e.g., in dataflow programming and even spreadsheets), and 

so on. In particular, every compiler would use one, and even make will when building the 

operational plan. The basic algorithm on DAGs is topological sort. It creates a partial 

ordering of the vertices of the graph which ensures that every child vertex is always 

preceding all of its ancestors.

Here is an example. This is a DAG:

 

And these are the variants of its topological ordering:

6 4 5 3 2 1 8 7

6 4 5 2 3 1 8 7

8 7 6 4 5 3 2 1

8 7 6 4 5 2 3 1
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There are several variants as the graph is disjoint, and also the order in which the 

vertices are traversed is not fully deterministic. There are two common approaches to 

topological sort: the Kahn’s algorithm and the DFS-based one. Here is the DFS version:

 1. Choose an arbitrary vertex and perform the DFS from it  

until a vertex is found without children that wasn’t visited  

during the DFS.

 2. While performing the DFS, add each vertex to the set of visited 

ones. Also check that the vertex hasn’t been visited already,  

or else the graph is not acyclic.

 3. Then, add the vertex we have found to the resulting sorted array.

 4. Return to the previous vertex and repeat searching for the next 

descendant that doesn’t have children and add it.

 5. Finally, when all of the current vertex’s children are visited,  

add it to the result array.

 6. Repeat this for the next unvisited vertex until no unvisited  

ones remain.

Why does the algorithm satisfy the desired constraints? First of all, it is obvious that 

it will visit all the vertices. Next, when we add the vertex, we have already added all of 

its descendants—satisfying the main requirement. Finally, there’s a consistency check 

during the execution of the algorithm that ensures there are no cycles.

Before proceeding to the implementation, as with other graph algorithms, it makes 

sense to ponder what representation will work the best for this problem. The default 

one—a linked structure—suits it quite well as we’ll have to iterate all the outgoing edges 

of each node. If we had to traverse by incoming edges, then it wouldn’t have worked, but 

a matrix one would have:

(defstruct node

  id edges)

(defstruct edge

  src dst label)

(defstruct (graph (:conc-name nil) (:print-object pprint-graph))

  (nodes (make-hash-table)))  ; mapping of node ids to nodes
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As usual, we’ll need a more visual way to display the graph than the default print- 

function. But that is pretty tricky considering that graphs may have an arbitrary structure 

with possibly intersecting edges. The simplest approach for small graphs would be to 

just draw the adjacency matrix. We’ll utilize it for our examples (relying on the fact that 

we have control over the set of node ids):

(defun pprint-graph (graph stream)

  (let ((ids (sort (rtl:keys (nodes graph)) '<)))

    (format stream "~{    ~A~}~%" ids)  ; here, Tab is used for space

    (dolist (id1 ids)

      (let ((node (rtl:? graph 'nodes id1)))

        (format stream "~A" id1)

        (dolist (id2 ids)

          (format stream "    ~:[~;x~]"   ; here, Tab as well

                  (find id2 (rtl:? node 'edges) :key 'edge-dst)))

        (terpri stream)))))

Also, let’s create a function to simplify graph initialization:

(defun init-graph (edges)

  (rtl:with ((rez (make-graph))

             (nodes (nodes rez)))

    (loop :for (src dst) :in edges :do

      (let ((src-node (rtl:getsethash src nodes (make-node :id src))))

        (rtl:getset# dst nodes (make-node :id dst))

        (push (make-edge :src src :dst dst)

              (rtl:? src-node 'edges))))

    rez))

CL-USER> (init-graph '((7 8)

                       (1 3)

                       (1 2)

                       (3 4)

                       (3 5)

                       (2 4)

                       (2 5)
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                       (5 4)

                       (5 6)

                       (4 6)))

    1   2   3   4   5   6   7   8

1       x   x

2               x   x

3               x   x

4                       x

5               x       x

6

7                                     x

8

So we already see in action three different ways of graph representation: linked, 

matrix, and edge lists. Now, we can implement and test topological sort:

(defun topo-sort (graph)

  (let ((nodes (nodes graph))

        (visited (make-hash-table))

        (rez (rtl:vec)))

    (rtl:dokv (id node nodes)

      (unless (gethash id visited)

        (visit node nodes visited rez)))

    rez))

(defun visit (node nodes visited rez)

  (dolist (edge (node-edges node))

    (rtl:with ((id (edge-dst edge))

               (child (elt nodes id)))

      (unless (find id rez)

        (assert (not (gethash id visited)) nil

                "The graph isn't acyclic for vertex: ~A" id)

        (setf (gethash id visited) t)

        (visit child nodes visited rez))))

  (vector-push-extend (node-id node) rez)

  rez)
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CL-USER> (topo-sort (init-graph '((7 8)

                                  (1 3)

                                  (1 2)

                                  (3 4)

                                  (3 5)

                                  (2 4)

                                  (2 5)

                                  (5 4)

                                  (5 6)

                                  (4 6))))

#(8 7 6 4 5 2 3 1)

This technique of tracking the visited nodes is used in almost every graph algorithm. 

As noted previously, it can be implemented either by using an additional hash-table (like 

in the example) or by adding a Boolean flag to the vertex/edge structure itself.

 MST
Now, we can move to algorithms that work with weighted graphs. They represent the 

majority of the interesting graph-based solutions. One of the most basic of them is 

determining the minimum spanning tree. Its purpose is to select only those graph edges 

that form a tree with the lowest total sum of weights. Spanning trees play an important 

role in network routing where there are a number of protocols that directly use them: 

STP (Spanning Tree Protocol), RSTP (Rapid STP), MSTP (Multiple STP), and so on.

If we consider the graph from the previous picture, its MST will include the edges 

1-2, 1-3, 3-4, 3-5, 5-6, and 7-8. Its total weight will be 24.

Although there are quite a few MST algorithms, the most well-known are Prim’s and 

Kruskal’s. Both of them rely on some interesting solutions and are worth studying.

 Prim’s Algorithm
Prim’s algorithm grows the tree one edge at a time, starting from an arbitrary vertex. 

At each step, the least-weight edge that has one of the vertices already in the MST and 

the other one outside is added to the tree. This algorithm always has an MST of the 

already processed subgraph, and when all the vertices are visited, the MST of the whole 
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graph is completed. The most interesting property of Prim’s algorithm is that its time 

complexity depends on the choice of the data structure for ordering the edges by weight. 

The straightforward approach that searches for the shortest edge will have O(V^2) 

complexity, but if we use a priority queue, it can be reduced to O(E logV) with a binary 

heap or even O(E + V logV) with a Fibonacci heap. Obviously, V logV is significantly 

smaller than E logV for the majority of graphs: up to E = V^2 for fully connected graphs.

Here’s the implementation of Prim’s algorithm with an abstract heap:

(defvar *heap-indices*)

(defun prim-mst (graph)

  (let ((initial-weights (list))

        (mst (list))

        (total 0)

        (*heap-indices* (make-hash-table))

        weights

        edges

        cur)

    (rtl:dokv (id node (nodes graph))

      (if cur

          (push (rtl:pair id (or (elt edges id)

                                 ;; a standard constant that is

                                 ;; a good enough substitute for infinity

                                 most-positive-fixnum))

                initial-weights)

          (setf cur id

                edges (node-edges node))))

    (setf weights (heapify initial-weights))

    (loop

      (rtl:with (((id weight) (heap-pop weights)))

        (unless id (return))

        (when (elt edges id)

          ;; if not, we have moved to the new connected component

          ;; so there's no edge connecting it to the previous one

          (push (rtl:pair cur id) mst)

          (incf total weight))
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        (rtl:dokv (id w edges)

          (when (< w weight)

            (heap-decrease-key weights id w)))

        (setf cur id

              edges (rtl:? graph 'nodes id 'edges))))

    (values mst

            total)))

To make it work, we need to perform several modifications:

• First of all, the list of all node edges should be changed to a  

hash- table to ensure O(1) access by child id.

• We need to implement another fundamental heap operation heap- 

decrease- key, which we haven’t mentioned in the previous chapter. 

For the binary heap, it’s actually just a matter of executing heap-up 

after the value of a particular key is decremented. The tricky part is 

that it requires an initial search for the key in the heap. To ensure 

constant-time search and subsequently O(log n) total complexity, 

we need to store the pointers to heap elements in a separate hash- 

table. This is where a special variable heap-indices comes into play. 

All the heap operations will need to update the key positions tracked 

in it. Using a special variable may be very handy in such situations 

when we need to extend an existing API without breaking all the 

code that is already using it. Surely, we could also define a new set of 

heap operations (let’s call them heapify-with-tracking, heap-pop- 

with-tracking, etc.) with an updated argument list, and we’ll have 

to pass the tracking hash-table around with each call. That is a more 

standard and “proper” solution. Yet, sometimes it is not possible 

to do that, and in such situations, special variables provide a viable 

solution for retrofitting your code with new features. I won’t list 

here the updated code for all the heap operations that uses the new 

variable (you can develop it on your own as an exercise); instead, 

we’ll just take a look at the new version of the essential heap-down 

and heap-up, as well as the newly defined decrease-key operation:
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(defun heap-down (vec beg &optional (end (length vec)))

      (let ((l (hlt beg))

            (r (hrt beg)))

        (when (< l end)

          (let ((child (if (or (>= r end)

                               (> (aref vec l)

                                  (aref vec r)))

                           l r)))

            (when (> (aref vec child)

                     (aref vec beg))

              (rotatef (gethash (aref vec beg) *heap-indices*)

                       (gethash (aref vec child) *heap-indices*))

              (rotatef (aref vec beg)

                       (aref vec child))

              (heap-down vec child end)))))

      vec)

    (defun heap-up (vec i)

      (let ((parent (hparent i)))

        (when (> (aref vec i)

                 (aref vec parent))

          (rotatef (gethash (aref vec i) *heap-indices*)

                   (gethash (aref vec parent) *heap-indices*)))

          (rotatef (aref vec i)

                   (aref vec parent))

        (heap-up vec parent))

      vec)

    (defun heap-decrease-key (vec key decrement)

      (let ((i (gethash key *heap-indices*)))

        (unless i (error "No key ~A found in the heap: ~A" key vec))

        (remhash key *heap-indices*)

        (setf (gethash (- key decrement) *heap-indices*) i)

        (decf (aref vec i) decrement)

        (heap-up vec i)))
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Wait a minute. This may look fine except that we forgot to account 

for the possibility of duplicate keys in the heap! The hash-table 

will not support such duplicates out of the box. What can be 

done to rescue our approach? A straightforward solution (which 

will uglify our code even more, but that’s a reality of the practical 

implementation of nicely looking theoretical ideas that we have 

to accept) is to keep a stack of indices for each key in the heap-

indices. We don’t really care what item we’d like to retrieve as 

long as it has the proper key. Here is the updated version of our 

functions:

(defun heap-decrease-key (vec key decrement)

      (let ((i (pop (gethash key *heap-indices*))))

        (unless i (error "No key ~A found in the heap: ~A" key vec))

        (when (null (gethash key *heap-indices*))

          (remhash key *heap-indices*))

        (push i (gethash (- key decrement) *heap-indices*))

        (decf (aref vec i) decrement)

        (heap-up vec i)))

    (defun heap-up (vec i)

      (rtl:with ((i-key (aref vec i))

                 (parent (hparent i))

                 (parent-key (aref vec parent)))

        (when (> i-key parent-key)

          (rtl:removef i (gethash i-key *heap-indices*))

          (rtl:removef parent (gethash parent-key *heap-indices*))

          (push i (gethash parent-key *heap-indices*))

          (push parent (gethash i-key *heap-indices*))

          (rotatef (aref vec i)

                   (aref vec parent))

        (heap-up vec parent))

      vec)

    ;; and so on and so forth
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• The heap should store not only the keys but also values: another 

trivial but rather tedious change that will further complicate the code 

as, this time, we’ll have to pass around a pair or a struct instead of an 

index and remember to always access the key of an item instead of 

the item itself. Something along these lines:

(defstruct heap-item

      key val)

(defun heap-up (vec i)

      (rtl:with ((i-key (heap-item-key (aref vec i)))

                 (parent (hparent i))

                 (parent-key (heap-item-key (aref vec parent))))

        (when (> i-key parent-key)

          (rtl:removef i (gethash i-key *heap-indices*))

          (rtl:removef parent (gethash parent-key *heap-indices*))

          (push i (gethash parent-key *heap-indices*))

          (push parent (gethash i-key *heap-indices*))

          (rotatef (aref vec i)

                   (aref vec parent))

        (heap-up vec parent))

      vec)

Let’s confirm the stated complexity of this implementation. First, the outer loop 

operates for each vertex, so it has V iterations. Each iteration has an inner loop that 

involves a heap-pop (O(log V)) and a heap-update (also O(log V)) for a number of 

vertices, plus a small number of constant-time operations. heap-pop will be invoked 

exactly once per vertex, so it will need O(V logV) total operations, and heap-update will 

be called at most once for each edge (O(E logV)). Considering that E is usually greater 

than V, this is how we can arrive at the final complexity estimate.

Also, it’s worth noting that adding the index-bookkeeping operations to each 

fundamental heap reordering doesn’t change its basic logarithmic execution complexity, 

although it increases the hidden constant factor. Hash-table accesses are O(1); and, 

although rtl:removef performs a linear scan, we can be sure that the number of duplicate 

keys over the whole execution of the algorithm will not be comparable to the number of all 

keys as we’re constantly performing the decrease-key operation, so even when a batch of 

duplicates stochastically accumulate, such state will not persist for a long time.
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The Fibonacci heap may be used to further improve the complexity characteristics 

of this algorithm. Its decrease-key operation is O(1) instead of O(log V), so we are 

left with just O(V logV) for heap-pops and E heap-decrease-keys. Unlike the binary 

heap, the Fibonacci one is not just a single tree but a set of trees. And this property is 

used in decrease-key: instead of popping an item up the heap and rearranging the 

vector in the process, a new tree rooted at this element is cut from the current one. 

This is not always possible in constant time as there are some invariants that might 

be violated, which will in turn trigger some updates to the newly created two trees. 

Yet, using amortized cost analysis, it is possible to prove that the average operation 

complexity is still O(1).

Here’s a brief description of the principle behind the Fibonacci heap adapted from 

Wikipedia:

A Fibonacci heap is a collection of heaps. The trees do not have a prescribed 
shape and, in the extreme case, every element may be its own separate tree. 
This flexibility allows some operations to be executed in a lazy manner, 
postponing the work for later operations. For example, merging heaps is 
done simply by concatenating the two lists of trees, and operation decrease 
key sometimes cuts a node from its parent and forms a new tree. However, 
at some point order needs to be introduced to the heap to achieve the desired 
running time. In particular, every node can have at most O(log n) children 
and the size of a subtree rooted in a node with k children is at least F(k+2), 
where F(k) is the k-th Fibonacci number. This is achieved by the rule that 
we can cut at most one child of each non-root node. When a second child is 
cut, the node itself needs to be cut from its parent and becomes the root of a 
new tree. The number of trees is decreased in the operation delete mini-
mum, where trees are linked together.

Here’s an example Fibonacci heap that consists of three trees:

6  2      1 <- minimum

   |    / | \

   5   3  4  7

             |

             8

             |

             9
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 Kruskal’s Algorithm
Kruskal’s algorithm operates not from the point of view of vertices but of edges. 

At each step, it adds to the tree the current smallest edge unless it will produce 

a cycle. Obviously, the biggest challenge here is to efficiently find the cycle. Yet, 

the good news is that, like with the Prim’s algorithm, we also have already access 

to an efficient solution for this problem—Union-Find. Isn’t it great that we have 

already built a library of techniques that may be reused in creating more advanced 

algorithms? Actually, this is the goal of developing as an algorithm programmer—to 

be able to see a way to reduce the problem, at least partially, to some already known 

and proven solution.

Like Prim’s algorithm, Kruskal’s approach also has O(E logV) complexity: for each 

vertex, it needs to find the minimum edge not forming a cycle with the already built 

partial MST. With Union-Find, this search requires O(logE), but, as E is at most V^2, logE 

is at most logV^2 that is equal to 2 logV. Unlike Prim’s algorithm, the partial MST built 

by Kruskal’s algorithm isn’t necessarily a tree for the already processed part of the graph.

The implementation of the algorithm, using the existing code for Union-Find, is 

trivial and left as an exercise to the reader.

 Pathfinding
So far, we have only looked at problems with unweighted graphs. Now, we can move to 

weighted ones. Pathfinding in graphs is a huge topic that is crucial in many domains: 

maps, games, networks, and so on. Usually, the goal is to find the shortest path between 

two nodes in a directed weighted graph. Yet, there may be variations like finding shortest 

paths from a selected node to all other nodes, finding the shortest path in a maze (which 

may be represented as a grid graph with all edges of weight 1), and so on.

Once again, there are two classic pathfinding algorithms, each one with a certain 

feature that makes it interesting and notable. Dijkstra’s algorithm (DA) is a classic 

example of greedy algorithms as its alternative name suggests—shortest path first 

(SPF). The A* builds upon it by adding the notion of a heuristic. Dijkstra’s approach 

is the basis of many computer network routing algorithms, such as IS-IS and OSPF, 

while A* and modifications are often used in games, as well as in pathfinding on the 

maps.
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 Dijkstra’s Algorithm
The idea of Dijkstra’s pathfinding is to perform a limited BFS on the graph only looking 

at the edges that don’t lead us “away” from the target. Dijkstra’s approach is very similar 

to Prim’s MST algorithm: it also uses a heap (binary or Fibonacci) to store the shortest 

paths from the origin to each node with their weights (lengths). At each step, it selects 

the minimum from the heap, expands it to the neighbor nodes, and updates the weights 

of the neighbors if they become smaller (the weights start from infinity).

For our SPF implementation, we’ll need to use the same trick that was shown in the 

Union-Find implementation—extend the node structure to hold its weight and the path 

leading to it:

(defstruct (spf-node (:include node))

  (weight most-positive-fixnum)

  (path (list)))

Here is the main algorithm:

(defun spf (graph src dst)

  (rtl:with ((nodes (graph-nodes graph))

             (spf (list))

             ;; the following code should express initialize the heap

             ;; with a single node of weight 0 and all other nodes

             ;; of weight MOST-POSITIVE-FIXNUM

             ;; (instead of running a O(n*log n) HEAPIFY)

             (weights (init-weights-heap nodes src)))

    (loop

      (rtl:with (((id weight) (heap-pop weights)))

        (cond ((eql id dst)

               (let ((dst (elt nodes dst)))

                 ;; we return two values: the path and its length

                 (return (values (cons dst (spf-node-path dst))

                                 (spf-node-weight dst)))))

              ((= most-positive-fixnum weight)

               (return))) ; no path exists
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        (dolist (edge (rtl:? nodes id 'edges))

          (rtl:with ((cur (edge-dst edge))

                     (node (elt nodes cur))

                     (w (+ weight (spf-node-weight cur))))

            (when (< w (spf-node-weight node))

              (heap-decrease-key weights cur w)

              (setf (spf-node-weight node) w

                    (spf-node-path node) (cons (rtl:? nodes id)

                                                (rtl:? nodes id 

'path))))))))))

 A* Algorithm
There are many ways to improve the vanilla SPF. One of them is to move in parallel from 

both sides: the source and the destination.

A* algorithm (also called best-first search) improves upon Dijkstra’s method by 

changing how the weight of the path is estimated. Initially, it was just the distance 

we’ve already traveled in the search, which is known exactly. But we don’t know for 

sure the length of the remaining part. However, in Euclidian and similar spaces, where 

the triangle inequality holds (that the direct distance between two points is not greater 

than the distance between them through any other point), it’s not an unreasonable 

assumption that the direct path will be shorter than the circuitous ones. This premise 

does not always hold as there may be obstacles, but quite often it does. So we add a 

second term to the weight, which is the direct distance between the current node and 

the destination. This simple idea underpins the A* search and allows it to perform much 

faster in many real-world scenarios, although its theoretical complexity is the same as for 

simple SPF. The exact guesstimate of the remaining distance is called the heuristic of the 

algorithm and should be specified for each domain separately: for maps, it is the linear 

distance, but there are clever ways to invent similar estimates where distances can’t be 

calculated directly.

Overall, this algorithm is one of the simplest examples of the heuristic approach. 

Basically, the idea of heuristics lies in finding patterns that may significantly improve 

the performance of the algorithm for the common cases, although their efficiency 
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can’t be proven for the general case. Isn’t it the same approach as, for example, hash- 

tables or splay trees that also don’t guarantee the same optimal performance for each 

operation? The difference is that, although those techniques have possible local cases 

of suboptimality, they provide global probabilistic guarantees. For heuristic algorithms, 

usually, even such estimations are not available, although they may be performed for 

some of them. For instance, the performance of A* algorithm will suffer if there is an 

“obstacle” on the direct path to the destination, and it’s not possible to predict, for the 

general case, what will be the configuration of the graph and where the obstacles will be. 

Yet, even in the worst case, A* will still have at least the same speed as the basic SPF.

The changes to the SPF algorithm needed for A* are the following:

• init-weights-heap will use the value of the heuristic instead of 

most-positive-fixnum as the initial weight. This approach will also 

require us to change the loop termination criteria from (= most- 

positive- fixnum weight) by adding some notion of visited nodes.

• There will be an additional term added to the weight of the node 

formula: (+ weight (spf-node-weight node) (heuristic node)).

A good comparison of the benefits A* brings over simple SPF may be shown with 

this picture of pathfinding on a rectangular grid without diagonal connections, where 

each node is labeled with its 2D coordinates. To find the path from node (0 0) to (2 2) 

(length 4) using Dijkstra’s algorithm, we’ll need to visit all of the points in the grid:

  0 1 2

0 + .

1 .

2

  0 1 2

0 + . .

1 . .

2 .

  0 1 2

0 + . .

1 . . .

2 . .
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  0 1 2

0 + > v

1 . . v

2 . . +

With A*, however, we’ll move straight to the point:

  0 1 2

0 + .

1 .

2

  0 1 2

0 + .

1 . .

2

  0 1 2

0 + .

1 . . .

2   .

  0 1 2

0 + v

1 . > v

2   . +

The final path, in these pictures, is selected by the rule to always open the left 

neighbor first.

 Maximum Flow
Weighted directed graphs are often used to represent different kinds of networks. 

And one of the main tasks on such networks is efficient capacity planning. The main 

algorithm for that is maximum flow calculation. It works on so-called transport networks 

containing three kinds of vertices: a source, a sink, and intermediate nodes. The source 

has only outgoing edges, the sink has only incoming, and all the other nodes obey the 
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balance condition: the total weights (flow) of all incoming and outgoing edges are equal. 

The task of determining maximum flow is to estimate the largest amount that can flow 

through the whole net from the source to the sink. Besides knowing the actual capacity 

of the network, it also allows finding the bottlenecks and edges that are not fully utilized. 

From this point of view, the problem is called minimum cut estimation.

 

There are many approaches to solving this problem. The most direct and intuitive of 

them is the Ford-Fulkerson method. Once again, it is a greedy algorithm that computes 

the maximum flow by trying all the paths from source to sink until there is some residual 

capacity available. These paths are called “augmented paths” as they augment the 

network flow. And, to track the residual capacity, a copy of the initial weight graph called 

the “residual graph” is maintained. With each new path added to the total flow, its flow 

is subtracted from the weights of all of its edges in the residual graph. Besides—and this 

is the key point in the algorithm that allows it to be optimal despite its greediness—the 

same amount is added to the backward edges in the residual graph. The backward edges 

don’t exist in the original graph, and they are added to the residual graph in order to let 

the subsequent iterations reduce the flow along some edge, but not below zero. Why 

may this restriction be necessary? Each graph node has a maximum input and output 

capacity. It is possible to saturate the output capacity by different input edges, and the 

optimal edge to use depends on the whole graph, so, in a single greedy step, it’s not 

possible to determine over which edges more incoming flow should be directed. The 

backward edges virtually increase the output capacity by the value of the seized input 

capacity, thus allowing the algorithm to redistribute the flow later on if necessary.

We’ll implement the Ford-Fulkerson algorithm using the matrix graph 

representation—first of all, to show it in action and also as it’s easy to deal with backward 

edges in a matrix as they are already present, just with zero initial capacity. However, as 

this matrix will be sparse in the majority of the cases, to achieve optimal efficiency, just 
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like with most other graph algorithms, we’ll need to use a better way to store the edges: 

for instance, an edge list. With it, we could implement the addition of backward edges 

directly but lazily during the processing of each augmented path:

(defstruct mf-edge

  beg end capacity)

(defun max-flow (g)

  (let ((rg (copy-array g))  ; residual graph

        (rez 0))

    (loop :for path := (aug-path rg) :while path :do

      (let ((flow most-positive-fixnum))

        ;;  the flow along the path is the residual capacity of the thinnest 

edge

        (dolist (edge path)

          (let ((cap (mf-edge-capacity edge)))

            (when (< (abs cap) flow)

              (setf flow (abs cap)))))

        (dolist (edge path)

          (with-slots (beg end) edge

            (decf (aref rg beg end) flow)

            (incf (aref rg end beg) flow)))

        (incf rez flow)))

    rez))

(defun aug-path (g)

  (rtl:with ((sink (1- (array-dimension g 0)))

             (visited (make-array (1+ sink) :initial-element nil)))

    (labels ((dfs (g i)

               (if (zerop (aref g i sink))

                   (dotimes (j sink)

                     (unless (or (zerop (aref g i j))

                                 (aref visited j))

                       (rtl:when-it (dfs g j)

                         (setf (aref visited j) t)

                         (return (cons (make-mf-edge

                                        :beg i :end j
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                                        :capacity (aref g i j))

                                      rtl:it)))))

                   (list (make-mf-edge

                          :beg i :end sink

                          :capacity (aref g i sink))))))

      (dfs g 0))))

CL-USER> (max-flow #2A((0 4 4 0 0 0)

                       (0 0 0 4 2 0)

                       (0 0 0 1 2 0)

                       (0 0 0 0 0 3)

                       (0 0 0 0 0 5))))

7

So, as you can see from the code, to find an augmented path, we need to perform 

DFS on the graph from the source, sequentially examining the edges with some residual 

capacity to find a path to the sink.

A peculiarity of this algorithm is that there is no certainty that we’ll eventually 

reach the state when there will be no augmented paths left. The FFA works correctly 

for integer and rational weights, but when they are irrational, it is not guaranteed 

to terminate. (The Lisp numeric tower provides the programmer with a chance to 

use rational-only arithmetic in place of floating-point numbers, therefore ensuring 

algorithm termination.) When the capacities are integers, the runtime of Ford-Fulkerson 

is bounded by O(E f) where f is the maximum flow in the graph. This is because each 

augmented path can be found in O(E) time, and it increases the flow by an integer 

amount of at least 1. A variation of the Ford-Fulkerson algorithm with guaranteed 

termination and a runtime independent of the maximum flow value is the Edmonds- 

Karp algorithm, which runs in O(V E^2).

 Graphs in Action: PageRank
Another important set of problems from the field of network analysis is determining 

“centers of influence,” densely and sparsely populated parts, and “cliques.” PageRank is 

the well-known algorithm for ranking the nodes in terms of influence (i.e., the number 

and weight of incoming connections they have), which was the secret sauce behind 

Google’s initial success as a search engine. It will be the last of the graph algorithms we’ll 
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discuss in this chapter, so many more will remain untouched. We’ll be returning to some 

of them in the following chapters, and you’ll be seeing them in many problems once you 

develop an eye for spotting the graphs hidden in many domains.

The PageRank algorithm outputs a probability distribution of the likelihood that a 

person randomly clicking links will arrive at any particular page. This distribution ranks 

the relative importance of all pages. The probability is expressed as a numeric value 

between 0 and 1, but Google used to multiply it by 10 and round to the greater integer, so 

PR of 10 corresponded to the probability of 0.9 and more and PR of 1 to the interval from 

0 to 0.1. In the context of PageRank, all web pages are the nodes in the so-called web 

graph, and the links between them are the edges, originally, weighted equally.

PageRank is an iterative algorithm that may be considered an instance of the very popular, 

in unsupervised optimization and machine learning, expectation- maximization (EM) 

approach. The general idea of EM is to randomly initialize the quantities that we want to 

estimate and then iteratively recalculate each quantity, using the information from the 

neighbors, to “move” it closer to the value that ensures optimality of the target function. 

Epochs (an iteration that spans the whole dataset using each node at most once) of such 

recalculation should continue until either the whole epoch doesn’t produce a significant 

change of the loss function we’re optimizing, that is, we have reached the stationary point, or 

a satisfactory number of iterations was performed. Sometimes a stationary point either can’t 

be reached or will take too long to reach, but, according to Pareto’s principle, 20% of effort 

might have brought us 80% to the goal.

In each epoch, we recalculate the PageRank of all nodes by transferring weights from 

a node equally to all of its neighbors. The neighbors with more inbound connections 

will thus receive more weight. However, the PageRank concept adds a condition that 

an imaginary surfer who is randomly clicking links will eventually stop clicking. The 

probability that the transfer will continue is called a damping factor d. Various studies 

have tested different damping factors, but it is generally assumed that the damping 

factor for the web graph will be set around 0.85. The damping factor is subtracted 

from 1 (and in some variations of the algorithm, the result is divided by the number of 

documents in the collection), and this term is then added to the product of the damping 

factor and the sum of the incoming PageRank scores. The damping factor is subtracted 

from 1 (and in some variations of the algorithm, the result is divided by the number 

of documents (N) in the collection), and this term is then added to the product of the 

damping factor and the sum of the incoming PageRank scores. So the PageRank of a 

page is mostly derived from the PageRanks of other pages. The damping factor adjusts 

the derived value downward.

Chapter 10  Graphs



213

 Implementation
Actually, PageRank can be computed both iteratively and algebraically. In algebraic 

form, each PageRank iteration may be expressed simply as

(setf pr (+ (* d (mat* g pr))

            (/ (- 1 d) n)))

where g is the graph incidence matrix and pr is the vector of PageRank for each node.

However, the definitive property of PageRank is that it is estimated for huge 

graphs. That is, directly representing them as matrices isn’t possible, nor is performing 

the matrix operations on them. The iterative algorithm gives more control, as well 

as distribution of the computation, so it is usually preferred in practice not only for 

PageRank but also for most other optimization techniques. So PageRank should be 

viewed primarily as a distributed algorithm. The need to implement it on a large 

cluster triggered the development by Google of the influential MapReduce distributed 

computation framework.

Here is a simplified PageRank implementation of the iterative method:

(defun pagerank (g &key (d 0.85) (repeat 100))

  (rtl:with ((n (length (nodes g)))

             (pr (make-array n :initial-element (/ 1 n))))

    (loop :repeat repeat :do

      (let ((pr2 (map 'vector (lambda (x) (- 1 (/ d n)))

                      pr)))

        (dokv (i node nodes)

          (let ((p (aref pr i))

                (m (length (node-children node))))

            (rtl:dokv (j child (node-children node)))

              (incf (aref pr2 j) (* d (/ p m)))))

        (setf pr pr2)))

     pr))

We use the same graph representation as previously and perform the update 

“backward”: not by gathering all incoming edges, which will require us to add another 

layer of data that is both not necessary and hard to maintain, but transferring the PR 

value over outgoing edges one by one. Such an approach also makes the computation 

trivial to distribute as we can split the whole graph into arbitrary sets of nodes and the 
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computation for each set can be performed in parallel: we’ll just need to maintain a local 

copy of the pr2 vector and merge it at the end of each iteration by simple summation. 

This method naturally fits the MapReduce framework that was invented at Google 

to perform PageRank and other similar calculations distributed over thousands of 

machines. The inner node loop constitutes the essence of the map step, while the reduce 

step consists in merging of the vectors obtained from each mapper. To see that, let’s 

refactor the preceding code:

;; this function will be executed by mapper workers

(defun pr1 (node n p &key (d 0.85))

  (let ((pr (make-array n :initial-element 0))

        (m (hash-table-count (node-children node))))

    (rtl:dokv (j child (node-children node))

      (setf (aref pr j) (* d (/ p m))))

    pr))

(defun pagerank-mr (g &key (d 0.85) (repeat 100))

  (rtl:with ((n (length (nodes g)))

             (pr (make-array n :initial-element (/ 1 n))))

    (loop :repeat repeat :do

      (setf pr (map 'vector (lambda (x)

                              (- 1 (/ d n)))

                    (reduce 'vec+ (map 'vector (lambda (node p)

                                                 (pr1 node n p :d d))

                                       (nodes g)

                                       pr)))))

    pr))

Here, we have used the standard Lisp map and reduce functions, but a MapReduce 

framework will provide replacement functions which, behind the scenes, will orchestrate 

parallel execution of the provided code. We will talk a bit more about MapReduce and 

see such framework in Chapter 15 of this book.

One more thing to note is that the latter approach differs from the original version 

in that each mapper operates independently on an isolated version of the pr vector 

and thus the execution of PageRank on the subsequent nodes during a single iteration 

will see an older input value p. However, since the algorithm is stochastic and the order 

of calculations is not deterministic, this is acceptable: it may impact only the speed of 

convergence (and hence the number of iterations needed) but not the final result.
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 Takeaways

 1. The more we progress into advanced topics of this book, the more 

apparent will be the tendency to reuse the approaches, tools, and 

technologies we have developed previously. Graph algorithms 

are good demonstrations of new features and qualities that can 

be obtained by a smart combination and reuse of existing data 

structures.

 2. Many graph algorithms are greedy, which means that they use 

the locally optimal solution trying to arrive at a global one. This 

phenomenon is conditioned by the structure—or rather lack 

of structure—of graphs that don’t have a specific hierarchy to 

guide the optimal solution. The greediness, however, shouldn’t 

mean suboptimality. In many greedy algorithms, like FFA, there 

is a way to play back the wrong solution. Others provide a way 

to trade off execution speed and optimality. A good example of 

the latter approach is beam search that has a configurable beam 

size parameter that allows the programmer to choose speed or 

optimality of the end result.

 3. In A*, we had a first glimpse of heuristic algorithms—an area that 

may be quite appealing to many programmers who are used to 

solving the problem primarily optimizing for its main scenarios. 

This approach may lack some mathematical rigor, but it also has 

its place; and we’ll see other heuristic algorithms in the following 

chapters that are, like A*, the best practical solution in their 

domains, for instance, the Monte Carlo tree search (MCTS).

 4. Another thing that becomes more apparent in the progress of 

this book is how small the percentage of the domain we can 

cover in detail in each chapter. This is true for graphs: we have 

just scratched the surface and outlined the main approaches 

to handling them. We’ll see more of graph-related stuff in the 
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following chapters, as well. Graph algorithms may be quite useful 

in a great variety of areas that do not necessarily have a direct 

formulation as graph problems (like maps or networks do), and so 

developing an intuition to recognize the hidden graph structure 

may help the programmer reuse the existing elegant techniques 

instead of having to deal with their own cumbersome ad hoc 

solutions.
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CHAPTER 11

Strings
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It may not be immediately obvious why the whole chapter is dedicated to strings. Aren’t 

they just glorified arrays? There are several answers to these challenges:

• Indeed, strings are not just arrays or, rather, not only arrays: in 

different contexts, other representations, such as trees or complex 

combinations of arrays, may be used. And, besides, there are 

additional properties that are important for strings even when they 

are represented as arrays.

• There are a lot of string-specific algorithms that deserve their own 

chapter.

• Finally, strings play a significant role in almost every program, so 

they have specific handling: in the OS, the standard library, and even, 

sometimes, your application framework.

In the base case, a string is, indeed, an array. As we already know, this array may 

either store its length or be a 0-terminated security catastrophe, like in C (see buffer 

overflow). So, to iterate, strings should store their length. Netstrings are a notable take 
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on the idea of the length-aware strings. It’s a simple external format that serializes a 

string as a tuple of length and contents, separated by a colon and ending with a comma: 

3:foo, is the netstring for the string foo.

More generally, a string is a sequence of characters. The characters themselves may 

be single bytes as well as fixed or variable-length byte sequences. The latter character 

encoding poses a challenging question of what to prefer, correctness or speed. With 

variable-length Unicode code points, the simplest and fastest string variant, a byte 

array, breaks, for it will incorrectly report its length (in bytes, not in characters) and 

fail to retrieve the character by index. Different language ecosystems address this issue 

differently, and the majority is, unfortunately, broken in one aspect or another. Overall, 

two approaches are possible:

• The first one is to use a fixed-length representation and pad shorter 

characters to full length. Generally, such representation will be 32- 

bit UTF-32 resulting in up to 75% storage space waste for the most 

common 1-byte ASCII characters.

• The alternative approach lies in utilizing a more advanced data 

structure. The naive variant is a list, which implies an unacceptable 

slowdown of character access operation to O(n). A more balanced 

approach would combine minimal additional space requirements 

with acceptable speed. One of the solutions may be to utilize the 

classic bitmap trick: use a bit array indicating, for each byte, whether 

it’s the start of a character (only a 12% overhead). Determining 

the character position with a bitmap may be performed in a small 

number of steps with the help of an infamous, in close circles, 

operation—population count a.k.a. Hamming weight. This 

hardware instruction calculates the number of 1-bits in an integer 

and is accessible via logcount Lisp standard library routine. Behind 

the scenes, it is also called for bit arrays if you invoke count 1 on 

them. At least this is the case for SBCL:

CL-USER> (disassemble (lambda (x)

                        (declare (type (simple-array bit) x))

                        (count 1 x)))
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; disassembly for (LAMBDA (X))

; Size: 267 bytes. Origin: #x100FC9FD1A

...

; DA2:       F3480FB8FA       POPCNT RDI, RDX

The indexing function implementation may be quite tricky, but the general idea 

is to try to jump ahead n characters and calculate the popcount of the substring from 

the previous position to the current that will tell us the number of characters we have 

skipped. For the base case of a 1-byte string, we will get exactly where we wanted in just 

one jump and one popcount. However, if there were multibyte characters in the string, 

the first jump would have skipped less than n characters. If the difference is sufficiently 

small (say, below 10), we can just perform a quick linear scan of the remainder and 

find the position of the desired character. If it’s larger than n/2, we can jump ahead n 

characters again (this will repeat at most three times as the maximum byte length of a 

character is 4), and if it’s below n/2, we can jump n/2 characters. And if we overshoot, we 

can reverse the direction of the next jump or search. You can see where it’s heading: if at 

each step (or, at least, at each fourth step) we are constantly half dividing our numbers, 

this means O(log n) complexity. That’s the worst performance for this function we can 

get, and it will very efficiently handle the cases when the character length doesn’t vary: 

be it 1 byte—just two operations—or 4 bytes—eight ops.

Here is the prototype of the char-index operation implemented according to the 

described algorithm (without the implementation of the mb-linear-char-index that 

performs the final linear scan):

(defstruct (mb-string (:conc-name mbs-))

  bytes

  bitmap)

(defparameter *mb-threshold* 10)

(defun mb-char-index (string i)

  (let ((off 0))

    (loop

      (rtl:with ((cnt (count 1 (mbs-bitmap string)

                             :start off :end (+ off i))))

                 (diff (- i cnt)))

        (cond
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         ((= cnt i)

          (return (+ off i)))

         ((< diff *mb-threshold*)

          (return (mb-linear-char-index string diff off)))

         ((< cnt (floor i 2))

          (incf off i)

          (decf i cnt))

         (t

          (incf off (floor i 2))

          (decf i cnt)))))))

The length of such a string may be calculated by performing the popcount on the 

whole bitmap:

(defun mb-length (string)

  (count 1 (mbs-bitmap string)))

It’s also worth taking into account that there exists a set of rules assembled under 

the umbrella of the Unicode collation algorithm that specifies how to order strings 

containing Unicode code points.

 Basic String-Related Optimizations
Strings are often subject to subsequencing, so an efficient implementation may use 

structure sharing. As we remember, in Lisp, this is accessible via the displaced array 

mechanism (and a convenience RUTILS function slice that we have already used in 

the preceding code). Yet, structure sharing should be utilized with care as it opens a 

possibility for action-at-a-distance bugs if the derived string is modified, which results 

in parallel modification of the original. However, strings are rarely modified in-place, 

so, even in its basic form (without mandatory immutability), the approach works well. 

Moreover, some programming language environments make strings immutable by 

default. In such cases, to perform on-the-fly string modification (or, rather, creation), 

such patterns as the Java StringBuilder are used, which create the string from parts 

by first accumulating them in a list and then, when necessary, concatenating the list’s 

contents into a single final string. An alternative approach is string formatting (the 

format function in Lisp) that is a higher-level interface, which still needs to utilize some 

underlying mutation/combination mechanism.
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Another important string-related technology is interning. It is a space-saving 

measure to avoid duplicating the same strings over and over again, which operates by 

putting a string in a table and using its index afterward. This approach also enables 

efficient equality comparison. Interning is performed by the compiler implicitly for 

all constant strings (in the special segment of the program’s memory called “string 

table”/strtab) and also may be used explicitly. In Lisp, there’s a standard function 

intern that performs a similar action although in a more dynamic way. Lisp symbols 

use interned strings as their names. Another variant of interning is string pooling. The 

difference is that interning uses a global string table, while the pools may be local.

 Strings in the Editor
Now, let’s consider situations in which representing strings as arrays doesn’t work. The 

primary one is in the editor, that is, when constant random modification is the norm. 

There’s another not so obvious requirement related to editing: handle potentially 

arbitrary long strings that still need to be dynamically modified. Have you tried opening 

a hundred-megabyte text document in your favorite editor? You’d better not unless 

you’re a vim user. :) Finally, an additional limitation of handling the strings in the editor 

is posed when we allow concurrent modification. This we’ll discuss in Chapter 15.

So why does an array as a string back end not work well in the editor? Because 

of content relocation required by all edit operations. O(n) editing is, obviously, not 

acceptable. What to do? There are several more advanced approaches:

 1. The simplest change will be, once again, to use an array of arrays, 

for example, for each line. This will not change the general 

complexity of O(n) but, at least, will reduce n significantly. The 

issue is that, still, it will depend on the length of the line, so, for a 

not so rare degraded case, when there are few or no linebreaks, 

the performance will seriously deteriorate. And, moreover, having 

observable performance differences between editing different 

paragraphs of the text is not user-friendly at all.

 2. A more advanced approach would be to use trees, reducing access 

time to O(log n). There are many different kinds of trees, and, 

in fact, only a few may work as efficient string representations. 

Among them a popular data structure, for representing strings, is 

a rope. It’s a binary tree where each leaf holds a substring and its 
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length and each intermediate node further holds the sum of the 

lengths of all the leaves in its left subtree. It’s a more-or-less classic 

application of binary trees to a storage problem, so we won’t 

spend more time on it here. Suffice to say that it has the expected 

binary tree performance of O(log n) for all operations, provided 

that we keep it balanced. It’s an OK alternative to a simple array, 

but, for such a specialized problem, we can do better with a 

custom solution.

 3. And the custom solution is to return to arrays. There’s one clever 

way to use them that works very well for dynamic strings. It is 

called a gap buffer. This structure is an array (buffer) with a 

gap in the middle. That is, let’s imagine that we have a text of 

n characters. The gap buffer will have a length of n + k where 

k is the gap size—some value, derived from practice, that may 

fluctuate in the process of string modification. You can recognize 

this gap as the position of the cursor in the text. Insertion 

operation in the editor is performed exactly at this place, so it’s 

O(1). Just afterward, the gap will shrink by one character, so 

we’ll have to resize the array, at some point, if there are too many 

insertions and the gap shrinks below some minimum size (maybe, 

below 1). The deletion operation will act exactly the opposite by 

growing the gap at one of the sides. The gap buffer is an approach 

that is especially suited for normal editing—a process that has 

its own pace. It also allows the system to represent multiple 

cursors by maintaining several gaps. Also, it may be a good idea to 

represent each paragraph as a gap buffer and use an array of them 

for the whole text. The gap buffer is a special case of the zipper 

pattern that we’ll discuss in Chapter 15.

 Substring Search
One of the most common string operations is substring search. For ordinary sequences, 

we, usually, search for a single element, but strings, on the contrary, more often need 

subsequence search, which is more complex. A naive approach will start by looking 

for the first character and then trying to match the next character and the next, until 
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either something ends or there’s a mismatch. Unlike with hash-tables, the Lisp standard 

library has good support for string processing, including such operations as search and 

mismatch that compare two strings from a chosen side and return the position at which 

they start to diverge (both of these operations, actually, operate on any sequence).

If we were to implement our own string-specific search, the most basic version 

would, probably, look like this:

(defun naive-match (pat str)

  (dotimes (i (- (1+ (length str)) (length pat)))

    (when (= (mismatch pat (rtl:slice str i))

             (length pat))

      (return-from naive-match i))))

If the strings had been random, the probability that we are correctly matching each 

subsequent character would have dropped to 0 very fast. Even if we consider just the 

English alphabet, the probability of the first character being the same in two random 

strings is 1/26, the first and second 1/676, and so on. And if we assume that the whole 

charset may be used, we’ll have to substitute 26 with 256 or a greater value. So, in theory, 

such naive approach has almost O(n) complexity, where n is the length of the string. 

Yet, the worst case has O(n * m), where m is the length of the pattern. Why? If we try to 

match a pattern a..ab against a string aa.....ab, at each position, we’ll have to check 

the whole pattern until the last character mismatches. This may seem like an artificial 

example, and, indeed, it rarely occurs. But, still, real-world strings are not so random and 

are much closer to the uniform corner case than to the random one. So researchers have 

come up with a number of ways to improve subsequence matching performance. These 

include the four well-known inventor-glorifying substring search algorithms: Knuth- 

Morris- Pratt (KMP), Boyer-Moore (BM), Rabin-Karp (RK), and Aho-Corasick (AC). Let’s 

discuss each one of them and try to determine their interesting properties.

 Knuth-Morris-Pratt (KMP)
Knuth-Morris-Pratt is the most basic of these algorithms. Prior to performing the 

search, it examines the pattern to find repeated subsequences in it and creates a table 

containing, for each character of the pattern, the length of the prefix of the pattern that 

can be skipped if we have reached this character and failed the search at it. This table 
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is also called the “failure function.” The number in the table is calculated as the length 

of the proper suffix1 of the pattern substring ending before the current character that 

matches the start of the pattern.

I’ll repeat here the example provided in Wikipedia that explains the details of the 

table-building algorithm, as it’s somewhat tricky.

Let’s build the table for the pattern abdcabd. We set the table entry for the first char 

a to -1. To find the entry for b, we must discover a proper suffix of a which is also a prefix 

of the pattern. But there are no proper suffixes of a, so we set this entry to 0. To find the 

entry with index 2, we see that the substring ab has a proper suffix b. However, b is not a 

prefix of the pattern. Therefore, we also set this entry to 0.

For the next entry, we first check the proper suffix of length 1, and it fails like in the 

previous case. Should we also check longer suffixes? No. We can formulate a shortcut 

rule: at each stage, we need to consider checking suffixes of a given size (1+ n) only if 

a valid suffix of size n was found at the previous stage and should not bother checking 

longer lengths. So we set the table entry for c to 0 also.

We pass to the subsequent character a. The same logic shows that the longest 

substring we need to consider has length 1, and as in the previous case, it fails since d 

is not a prefix. But instead of setting the table entry to 0, we can do better by noting that 

a is also the first character of the pattern and also that the corresponding character of 

the string can’t be a (as we’re calculating for the mismatch case). Thus, there is no point 

in trying to match the pattern for this character again—we should begin one character 

ahead. This means that we may shift the pattern by match length plus one character, so 

we set the table entry to -1.

Considering now the next character b: though by inspection the longest substring 

would appear to be a, we still set the table entry to 0. The reasoning is similar to the 

previous case. b itself extends the prefix match begun with a, and we can assume that 

the corresponding character in the string is not b. So backtracking before it is pointless, 

but that character may still be a; hence, we set the entry not to -1, but to 0, which means 

shifting the pattern by one character to the left and trying to match again.

Finally, for the last character d, the rule of the proper suffix matching the prefix 

applies, so we set the table entry to 2.

1 A proper suffix is a suffix that is at least one character shorter than the string itself. For example, 
in the string abc, the proper suffices are bc and c.
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The resulting table is

    a    b   c   d   a   b   d

   -1    0   0   0  -1   0   2

Here’s the implementation of the table-building routine:

(defun kmp-table (pat)

  (let ((rez (make-array (length pat)))

        (i 0))  ; prefix length

    (setf (aref rez 0) -1)

    (loop :for j :from 1 :below (length pat) :do

      (if (char= (char pat i) (char pat j))

          (setf (aref rez j) (aref rez i))

          (progn ;; we have to use parallel version of setf here

                 (psetf (aref rez j) i

                        i (aref rez i))

                 (loop :while (and (>= i 0)

                                   (not (char= (char pat i)

                                               (char pat j))))

                       :do (setf i (aref rez i)))))

      (incf i))

    rez))

It can be proven that it runs in O(m). We won’t show it here, so coming up with 

proper calculations is left as an exercise to the reader.

Now, the question is: How shall we use this table? Let’s look at the code:

(defun kmp-match (pat str)

  (let ((s 0)

        (p 0)

        (ff (kmp-table pat))

    (loop :while (< s (length str)) :do

      (if (char= (char pat p) (char str s))

          ;; if the current chars match

          (if (= (1+ p) (length pat)))

              ;; if we reached the end of the pattern - success

              (return (- s p))
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              ;; otherwise, match the subsequent chars

              (setf p (1+ p)

                    s (1+ s)))

          ;; if the characters don't match

          (if (= -1 (aref ff p))

              ;; shift the pattern for the whole length

              (setf p 0

                    ;; and skip to the next char in the string

                    s (1+ s))

              ;; try matching the current char again,

              ;; shifting the pattern to align the prefix

              ;; with the already matched part

              (setf p (aref ff p)))))))

As we see, the index in the string (s) is incremented at each iteration except when the 

entry in the table is positive. In the latter case, we may examine the same character more 

than once but not more than we have advanced in the pattern. And the advancement in 

the pattern meant the same advancement in the string (as the match is required for the 

advancement). In other words, we can backtrack not more than n times over the whole 

algorithm runtime, so the worst-case number of operations in kmp-search is 2n, while 

the best-case is just n. Thus, the total complexity is O(n + m).

And what will happen in our aa..ab example? The failure function for it will look like 

the following: -1 -1 -1 -1 (- m 2). Once we reach the first mismatch, we’ll need to 

backtrack by one character; perform the comparison, which will mismatch; advance by 

one character (to b); mismatch again; again backtrack by one character; and so on until 

the end of the string. So this case will have almost the abovementioned 2n runtime.

To conclude, the optimization of KMP lies in excluding unnecessary repetition of 

the same operations by memoizing the results of partial computations—both in table- 

building and matching parts. The next chapter of the book will be almost exclusively 

dedicated to studying this approach in algorithm design.

 Boyer-Moore (BM)
Boyer-Moore algorithm is conceptually similar to KMP, but it matches from the end of 

the pattern. It also builds a table, or rather three tables, but using a different set of rules, 

which also involve the characters in the string we search. More precisely, there are two 

Chapter 11  StringS



227

basic rules instead of one for KMP. Besides, there’s another rule, called the Galil rule, 

that is required to ensure the linear complexity of the algorithm. Overall, BM is pretty 

complex in the implementation details and also requires more preprocessing than KMP, 

so its utility outweighs these factors only when the search is repeated multiple times for 

the same pattern.

Overall, BM may be faster with normal text (and the longer the pattern, the faster), 

while KMP will work the best with strings that have a short alphabet (like DNA). 

However, I would choose KMP as the default due to its relative simplicity and much 

better space utilization.

 Rabin-Karp (RK)
Now, let’s talk about alternative approaches that rely on techniques other than pattern 

preprocessing. They are usually used to find matches of multiple patterns in one go as, 

for the base case, their performance will be worse than that of the previous algorithms.

Rabin-Karp algorithm uses an idea of the rolling hash. It is a hash-function that can 

be calculated incrementally. The RK hash is calculated for each substring of the length 

of the pattern. If we were to calculate a normal hash-function like FNV-1, we’d need to 

use each character for the calculation—resulting in O(n * m) complexity of the whole 

procedure. The rolling hash is different as it requires, at each step of the algorithm, to 

perform just two operations: as the “sliding window” moves over the string, subtract the 

part of the hash corresponding to the character that is no longer part of the substring and 

add the new value for the character that has just become the part of the substring.

Here is the skeleton of the RK algorithm:

(defun rk-match (pat str)

  (let ((len (length pat))

        (phash (rk-hash pat)))

    (loop :for i :from len :to (length str)

          :for beg := (- i len)

          :for shash := (rk-hash (rtl:slice str 0 len))

            :then (rk-rehash len shash

                             (char str beg) (char str i))

          :when (and (= phash shash)

                     (string= pat (rtl:slice str beg len))

          :collect beg)))
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A trivial rk-hash function would be just

(defun rk-hash (str)

  (loop :for ch :across str :sum (char-code ch)))

But it is, obviously, not a good hash-function as it doesn’t ensure the equal 

distribution of hashes. Still, in this case, we need a reversible hash-function. Usually, 

such hashes add position information into the mix. An original hash-function for the RK 

algorithm is the Rabin fingerprint that uses random irreducible polynomials over Galois 

fields of order 2. The mathematical background needed to explain it is somewhat beyond 

the scope of this book. However, there are simpler alternatives such as the following:

(defun rk-hash (str)

  (assert (> (length str) 0))

  (let ((rez (char-code (char str 0))))

    (loop :for ch :across (rtl:slice str 1) :do

      (setf rez (+ (rem (* rez 256) 101)

                   (char-code ch))))

    (rem rez 101))

Its basic idea is to treat the partial values of the hash as the coefficients of some 

polynomial. The implementation of rk-rehash for this function will look like this:

(defun rk-rehash (hash len ch1 ch2)

  (rem (+ (* (+ hash 101

                (- (rem (* (char-code ch1)

                           (expt 256 (1- len)))

                        101)))

             256)

          (char-code ch2))

       101))

Our rk-match could be used to find many matches of a single pattern. To adapt it for 

operating on multiple patterns at once, we’ll just need to pre-calculate the hashes for all 

patterns and look up the current rk-hash value in this set. Additional optimization of this 

lookup may be performed with the help of a Bloom filter—a stochastic data structure 

we’ll discuss in more detail later.
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Finally, it’s worth noting that there are other similar approaches to the rolling hash 

concept that trade some of the uniqueness properties of the hash-function for the ability 

to produce hashes incrementally or have similar hashes for similar sequences. For 

instance, the perceptual hash (phash) is used to find near-match images.

 Aho-Corasick (AC)
Aho-Corasick is another algorithm that allows matching multiple strings at once. The 

preprocessing step of the algorithm constructs a finite-state machine (FSM) that 

resembles a trie with additional links between the various internal nodes. The FSM is a 

graph data structure that encodes possible states of the system and actions needed to 

transfer it from one state to the other.

The AC FSM is constructed in the following manner:

 1. Build a trie of all the words in the set of search patterns (the search 

dictionary). This trie represents the possible flows of the program 

when there’s a successful character match at the current position. 

Add a loop edge for the root node.

 2. Add backlinks transforming the trie into a graph. The backlinks 

are used when a failed match occurs. These backlinks are pointing 

either to the root of the trie or, if there are some prefixes that 

correspond to the part of the currently matched path, to the end of 

the longest prefix. The longest prefix is found using BFS of the trie. 

This approach is, basically, the same idea used in KMP and BM 

to avoid reexamining the already matched parts. So backlinks to 

the previous parts of the same word are also possible. Here is the 

example FSM for the search dictionary '("the" "this" "that" 

"it" "his"):
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Basically, it’s just a trie with some backlinks to account for already processed 

prefixes. One more detail missing for this graph to be a complete FSM is an implicit 

backlink from all nodes without an explicit backlink that don’t have backlinks to the 

root node.

The main loop of the algorithm is rather straightforward: examine each character 

and then

• Either follow one of the transitions (direct edge) if the character of the 

edge matches.

• Or follow the backlink if it exists.

• Or reset the FSM state—go to root.

• If the transition leads us to a terminal node, record the match(es) and 

return to root as well.

As we see from the description, the complexity of the main loop is linear in the 

length of the string: at most, two matches are performed, for each character. The FSM 

construction is also linear in the total length of all the words in the search dictionary.
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The algorithm is often used in antivirus software to perform an efficient search 

for code signatures against a database of known viruses. It also formed the basis of 

the original Unix command fgrep. And, from my point of view, it’s the simplest to 

understand yet pretty powerful and versatile substring search algorithm that may be a 

default choice if you ever have to implement one yourself.

 Regular Expressions
Searching is, probably, the most important advanced string operation. Besides, it is not 

limited to mere substring search—matching of more complex patterns is even in higher 

demand. These patterns, which are called “regular expressions” or, simply, regexes, may 

include optional characters, repetition, alternatives, backreferences, and so on. Regexes 

play an important role in the history of the Unix command line, being the principal 

technology of the infamous grep utility and then the cornerstone of Perl. All modern 

programming languages support them either in the standard library or, as Lisp, with 

high-quality third-party add-ons (cl- ppcre).

One of my favorite programming books, Beautiful Code, has a chapter on 

implementing simple regex matching from Brian Kernighan with code written by Rob 

Pike. It shows how easy it is to perform basic matching of the following patterns:

c    matches any literal character c

.    matches any single character

^    matches the beginning of the input string

$    matches the end of the input string

*    matches zero or more occurrences of the previous character

In the following, the C code from the book is translated into an equivalent Lisp 

version:

(defun match (regex text)

  "Search for REGEX anywhere in TEXT."

  (if (rtl:starts-with "^" regex)

      (match-here (rtl:slice regex 1) text)

      (dotimes (i (length text))

        (when (match-here regex (rtl:slice text i))

          (return t)))))

Chapter 11  StringS

http://edicl.github.io/cl-ppcre/


232

(defun match-here (regex text)

  "Search for REGEX at beginning of TEXT."

  (cond ((= 0 (length regex))

         t)

        ((and (> (length regex) 1)

              (char= #\* (char regex 1)))

         (match-star (char regex 1) (rtl:slice regex 2) text))

        ((string= "$" regex)

         (= 0 (length text)))

        ((and (> (length text) 0)

              (member (char text 0) (list #\. (char text 0)))

         (match-here (rtl:slice regex 1) (rtl:slice text 1)))))

(defun match-star (c regex text)

  "Search for C*REGEX at beginning of TEXT."

  (loop

    (when (match-here regex text) (return t))

    (setf text (rtl:slice text 1))

    (unless (and (> (length text) 0)

                 (member c (list #\. (char text 0))))

      (return)))

This is a greedy linear algorithm. However, modern regexes are much more 

advanced than this naive version. They include such features as register groups (to 

record the spans of text that match a particular subpattern), backreferences, non-greedy 

repetition, and so on and so forth. Implementing those will require changing the simple 

linear algorithm to a backtracking one. And incorporating all of them would quickly 

transform the preceding code into a horrible unmaintainable mess: not even due to the 

number of cases that have to be supported but due to the need of accounting for the 

complex interdependencies between them.

And, what’s worse, soon there will arise a need to resort to backtracking. Yet, a 

backtracking approach has a critical performance flaw: potential exponential runtime 

for certain input patterns. For instance, the Perl regex engine (PCRE) requires over 60 

seconds to match a 30-character string aa..a against the pattern a? {15}a{15}  
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(on standard hardware), while the alternative approach, which we’ll discuss next, requires 

just 20 microseconds—a million times faster. And it handles a 100-character string of a 

similar kind in under 200 microseconds, while Perl would require over 1015 years.2

This issue is quite severe and has even prompted Google to release their own regex 

library with strict linear performance guarantees—RE2. The goal of the library is not to 

be faster than all other engines under all circumstances. Although RE2 guarantees linear-

time performance, the linear-time constant varies depending on the overhead entailed 

by its way of handling of the regular expression. In a sense, RE2 behaves pessimistically, 

whereas backtracking engines behave optimistically, so it can be outperformed in 

various situations. Also, its goal is not to implement all of the features offered by PCRE 

and other engines. As a matter of principle, RE2 does not support constructs for which 

only backtracking solutions are known to exist. Thus, backreferences and look-around 

assertions are not supported.

The preceding figures are taken from a seminal article by Russ Cox. He goes on to add:

Historically, regular expressions are one of computer science’s shining 
examples of how using good theory leads to good programs. They were  
originally developed by theorists as a simple computational model, but Ken 
Thompson introduced them to programmers in his implementation of  
the text editor QED for CTSS. Dennis Ritchie followed suit in his own imple-
mentation of QED, for GE-TSS.  Thompson and Ritchie would go on to  
create Unix, and they brought regular expressions with them. By the late 
1970s, regular expressions were a key feature of the Unix landscape, in tools 
such as ed, sed, grep, egrep, awk, and lex. Today, regular expressions have 
also become a shining example of how ignoring good theory leads to  
bad programs. The regular expression implementations used by today’s 
popular tools are significantly slower than the ones used in many of those 
thirty- year- old Unix tools.

The linear-time approach to regex matching relies on a similar technique to the 

one in the Aho-Corasick algorithm—the FSM. Actually, if by regular expressions we 

mean a set of languages that abide by the rules of the regular grammars in the Chomsky 

hierarchy of languages, the FSM is their exact theoretical computation model. Here is 

how an FSM for a simple regex a*b$ might look like:

2 Perl is only the most conspicuous example of a large number of popular programs that use the 
same algorithm; the same applies to Python or PHP or Ruby or many other languages.
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Such FSM is called an NFA (Nondeterministic Finite Automaton) as some states have 

more than one alternative successor. Another type of automata are DFAs (Deterministic 

Finite Automata) that permit transitions to at most one state for each state. The method 

to transform the regex into an NFA is called Thompson’s construction. And an NFA 

can be made into a DFA by the powerset construction and then be minimized to get an 

optimal automaton. DFAs are more efficient to execute than NFAs, because DFAs are 

only ever in one state at a time: they never have a choice of multiple next states. But the 

construction takes additional time. Anyway, both NFAs and DFAs guarantee linear-time 

execution.

Thompson’s algorithm builds the NFA up from partial NFAs for each subexpression, 

with a different construction for each operator. The partial NFAs have no matching 

states: instead, they have one or more dangling arrows, pointing to nothing. The 

construction process will finish by connecting these arrows to a matching state:

• The NFA for matching a single character e is a single node with a slot 

for an incoming arrow and a pending outgoing arrow labeled with e.

• The NFA for the concatenation e1e2 connects the outgoing arrow of 

the e1 machine to the incoming arrow of the e2 machine.

• The NFA for the alternation e1|e2 adds a new start state with a choice 

of either the e1 machine or the e2 machine.

• The NFA for e? alternates the e machine with an empty path.

• The NFA for e* uses the same alternation but loops a matching e 

machine back to the start.

• The NFA for e+ also creates a loop, but one that requires passing 

through e at least once.

Counting the states in the preceding constructions, we can see that this technique 

creates exactly one state per character or metacharacter in the regular expression. 

The only exception is the construct c{n} or c{n,m} which requires to duplicate the 
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single character automaton n or m times, respectively, but it is still a constant number. 

Therefore, the number of states in the final NFA is at most equal to the length of the 

original regular expression plus some constant.

 Implementation of Thompson’s Construction
The core of the algorithm could be implemented very transparently with the help of the 

Lisp generic functions. However, to enable their application, we’d first need to transform 

the raw expression into a sexp (tree-based) form. Such representation is supported, for 

example, in the CL-PPCRE library:

PPCRE> (parse-string "ab[0-9]+c$")

(:SEQUENCE "ab"

           (:GREEDY-REPETITION 1 NIL (:RANGE #\0 #\9))

           #\c

           :END-ANCHOR)

Parsing is a whole separate topic that will be discussed next. But once we have 

performed it, we gain a possibility to straightforwardly implement Thompson’s 

construction by traversing the parse tree and emitting, for each state, the corresponding 

part of the automaton. The Lisp generic functions are a great tool for implementing such 

transformation as they allow to define methods that are selected based on either the type 

or the identity of the arguments. And those methods can be added independently, so the 

implementation is clear and extensible. We will define two generic functions: one to emit 

the automaton fragment (th-part) and another to help in transition selection  

(th- match).

First, let’s define the state node of the FSM. We will use a linked graph representation 

for the automaton. So a variable for the FSM in the code will point to its start node, and 

it will, in turn, reference the other nodes. There will also be a special node that will be 

responsible for recording the matches (*matched-state*):

(defstruct th-state

  transitions)

(defparameter *initial-state* nil)

(defparameter *matched-state* (make-th-state))
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(defun th-state (&rest transitions)

  "A small convenience function to construct TH-STATE structs."

   (make-th-state :transitions (loop :for (cond state) :on transitions :by 'cddr

                                    :collect (rtl:pair cond state))))

And now, we can define the generic function that will emit the nodes:

(define-condition check-start-anchor () ())

(defgeneric th-part (next-state kind &rest args)

  (:documentation

   "Emit the TH-STATE structure of a certain KIND

    (which may be a keyword or a raw string)

    using the other ARGS and pointing to NEXT-STATE struct.")

  (:method (next-state (kind (eql :sequence)) &rest args)

    (apply 'th-part (if (rest args)

                        (apply 'th-part :sequence (rest args))

                        next-state)

           (first args)))

  (:method (next-state (kind (eql :greedy-repetition)) &rest args)

    ;; this method can handle *, +, {n}, and {n,m} regex modifiers

    ;; in any case, there's a prefix sequence of fixed nonnegative length

    ;; of identical elements that should unconditionally match,

    ;; followed by a bounded or unbounded sequence that,

    ;; in case of a failed match, transitions to the next state

    (apply 'th-part

           (let ((*initial-state* next-state))

             (apply 'th-part next-state :sequence

                    (loop :repeat (or (second args) 1)

                          :collect (rtl:mklist (third args)))))

           :sequence (loop :repeat (first args)

                           :collect (rtl:mklist (third args)))))

  (:method (next-state (kind character) &rest args)

    (th-state kind next-state

              ;; Usually, *initial-state* will be null,

              ;; i.e. further computations along this path will be aborted,
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              ;; but, for some variants (? or *), they will just continue

              ;; normally to the next state.

              ;; The special variable controls this setting,

              ;; as you can see in the method for :greedy-repetition

              t *initial-state*))

  (:method (next-state (kind (eql :end-anchor)) &rest args)

    (th-state nil *matched-state*

              t *initial-state*))

  (:method (next-state (kind (eql :start-anchor)) &rest args)

    ;;  This part is unique as all the other parts consume the next

    ;; character (we're not implementing lookahead here),

    ;; but this one shouldn't.

    ;; To implement such behavior without the additional complexity

    ;; of passing the search string to this function (which we'll still

    ;; probably need to do later on, but were able to avoid so far),

    ;; we can resort to a cool Lisp technique of signaling a condition

    ;; that can be handled specially in the top-level code

    (signal 'check-start-anchor)

    next-state))

Here, we have defined some of the methods of th-part that are specialized for the 

following patterns: the basic :sequence of expressions, :greedy-repetition (regexes 

* and + ), a single character, and single symbols :start-anchor and :end-anchor 

(regexes ^ and $). As you can see, some of them dispatch (are chosen based) on the 

identity of the first argument (using eql specializers), while the character-related 

method specializes on the class of the arg. As we develop this facility, we could add 

more methods with defmethod. Running th- part on the whole parse tree will produce 

the complete automaton; we don’t need to do anything else!

To use the constructed FSM, we run it with the string as input. NFAs are endowed 

with the ability to guess perfectly when faced with a choice of next state: to run the NFA 

on a real computer, we must find a way to simulate this guessing. One way to do that is to 

guess one option, and if that doesn’t work, try the other. A more efficient way to simulate 

perfect guessing is to follow all admissible paths simultaneously. In this approach, the 

simulation allows the machine to be in multiple states at once. To process each letter, it 

advances all the states along all the arrows that match the letter. In the worst case, the 

NFA might be in every state at each step, but this results in at worst a constant amount 

Chapter 11  StringS



238

of work independent of the length of the string, so arbitrarily large input strings can be 

processed in linear time. The efficiency comes from tracking the set of reachable states 

but not which paths were used to reach them. In an NFA with n nodes, there can only be 

n reachable states at any step:

(defun run-nfa (nfa str)

  (let ((i 0)

        (start 0)

        (matches (list))

        (states (list nfa)))

    ;; this is the counterpart for the start-anchor signal

    (handler-bind ((check-start-anchor

                     ;; there's no sense to proceed matching

                     ;; a ^... regex if the string is not

                     ;; at its start

                     (lambda (c)

                       (when (> i 0) (return-from run-nfa)))))

      (dovec (char (concatenate 'vector str

                                #(nil)))  ; end-anchor

        (let ((new-states (list)))

          (dolist (state states)

            (dolist (tr (th-state-transitions state))

              (when (th-match tr char)

                (case (rtl:rt tr)

                  (*matched-state* (push start matches))

                  ((nil) )  ; ignore it

                  (t (pushnew (rtl:rt tr) new-states)))

                (return))))

           (if new-states

               (setf states new-states)

               (setf states (list nfa)

                     start nil)))

        (incf i)

        (unless start (setf start i))))

    matches))

Chapter 11  StringS



239

The th-match function may have methods to match a single char and a character 

range, as well as a particular predicate. Its implementation is trivial and left as an 

exercise to the reader.

Overall, interpreting an automaton is a simple and robust approach, yet if we want to 

squeeze all the possible performance, we can compile it directly to machine code. This is 

much easier to do with the DFA as it has at most two possible transitions from each state, 

so the automaton can be compiled to a multilevel conditional and even a jump-table.

 Grammars
Regexes are called “regular” for a reason: there’s a corresponding mathematical 

formalism “regular languages” that originates from the hierarchy of grammars compiled 

by Noam Chomsky. This hierarchy has four levels, each one allowing strictly more 

complex languages to be expressed with it. And for each level, there’s an equivalent 

computation model:

• Type 0: Recursively enumerable (or universal) grammars—Turing 

machine

• Type 1: Context-dependent (or context-sensitive) grammars—a linear 

bounded automaton

• Type 2: Context-free grammars—pushdown automaton

• Type 3: Regular grammars—FSM

We have already discussed the bottom layer of the hierarchy. Regular languages are 

the most limited (and thus the simplest to implement): for example, you can write a 

regex a{15}b{15}, but you won’t be able to express a{n}b{n} for an arbitrary n, that is, 

ensure that b is repeated the same number of times as a. The top layer corresponds to 

all programs, and so all the programming science and lore, in general, is applicable to it. 

Now, let’s talk about context-free grammars which are another type that is heavily used 

in practice and even has a dedicated set of algorithms. Such grammars can be used not 

only for simple matching but also for parsing and generation. Parsing, as we have seen 

in the preceding text, is the process of transforming a text that is assumed to follow the 

rules of a certain grammar into the structured form that corresponds to the particular 
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rules that can be applied to this text. And generation is the reverse process: apply the 

rules and obtain the text. This topic is huge, and there’s a lot of literature on it including 

the famous Dragon Book.

Parsing is used for processing both artificial (including programming) and natural 

languages. And, although different sets of rules may be used, as well as different 

approaches for selecting a particular rule, the resulting structure will be a tree. In fact, 

formally, each grammar consists of four items:

• The set of terminals (leaves of the parse tree) or tokens of the 

text: These could be words or characters for the natural language; 

keywords, identifiers, and literals for the programming language; and 

so on.

• The set of nonterminals—symbols used to name different items in 

the rules and in the resulting parse tree, the non-leaf nodes of the 

tree. These symbols are abstract and not encountered in the actual 

text. The examples of nonterminals could be VB (verb) or NP (noun 

phrase) in natural language parsing and if-section or template- 

argument in parsing of C++ code.

• The root symbol (which should be one of the nonterminals).

• The set of production rules that have two sides—a left-hand (lhs) 

and a right-hand (rhs) one: On the left-hand side, there should be 

at least one nonterminal, which is substituted with a number of 

other terminals or nonterminals on the right-hand side. During 

generation, the rule allows the algorithm to select a particular surface 

form for an abstract nonterminal (e.g., turn a nonterminal VB into 

a word do). During parsing, which is a reverse process, it allows the 

program, when it’s looking at a particular substring, to replace it 

with a nonterminal and expand the tree structure. When the parsing 

process reaches the root symbol by performing such substitution and 

expansion, it is considered terminated.

Each compiler has to use parsing as a step in transforming the source into executable 

code. Also, parsing may be applied for any data format (for instance, JSON) to transform 

it into machine data. In natural language processing, parsing is used to build the various 

tree representations of the sentence, which encode linguistic rules and structure.
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There are many different types of parsers that differ in the additional constraints they 

impose on the structure of the production rules of the grammar. The generic context-

free constraint is that in each production rule, the left-hand side may only be a single 

nonterminal. The most widespread of context-free grammars are LL(k) (in particular, 

LL(1)) and LR (LR(1), SLR, LALR, GLR, etc.). For example, LL(1) parser (one of the 

easiest to build) parses the input from left to right, performing leftmost derivation of the 

sentence, and it is allowed to look ahead at most one character. Not all combinations 

of derivation rules allow the algorithm to build a parser that will be able to perform 

unambiguous rule selection under such constraints. But, as the LL(1) parsing is simple 

and efficient, some authors of grammars specifically target their language to be LL(1)-

parseable. For example, Pascal and other programming languages created by Niklaus 

Wirth fall into this category.

There are also two principal approaches to implementing the parser: a top-down 

and a bottom-up one. In a top-down approach, the parser tries to build the tree from the 

root, while, in a bottom-up one, it tries to find the rules that apply to groups of terminal 

symbols and then combine those until the root symbol is reached. Obviously, we can’t 

enumerate all parsing algorithms here, so we’ll study only a single approach, which is 

one of the most widespread, efficient, and flexible ones—shift-reduce parsing. It’s a 

bottom-up linear algorithm that can be considered one of the instances of the pushdown 

automaton approach—a theoretical computational model for context-free grammars.

A shift-reduce parser operates on a queue of tokens of the original sentence. It also 

has access to a stack. At each step, the algorithm can perform

• Either a shift operation: Take the token from the queue and push it 

onto the stack.

• Or a reduce operation: Take the top items from the stack, select a 

matching rule from the grammar, and add the corresponding subtree 

to the partial parse tree, in the process removing the items from the 

stack.

Thus, for each token, it will perform exactly two “movement” operations: push it 

onto the stack and pop from the stack. Plus, it will perform rule lookup, which requires 

a constant number of operations (maximum length of the rhs of any rule) if an efficient 

structure is used for storing the rules. A hash-table indexed by the rhs’s and a trie are 

good choices for that.
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Here’s a small example from the domain of NLP syntactic parsing. Let’s consider a 

toy grammar:

S -> NP VP .

NP -> DET ADJ NOUN

NP -> PRP$ NOUN  ; PRP$ is a possessive pronoun

VP -> VERB VP

VP -> VERB NP

and the following vocabulary:

DET -> a|an|the

NOUN -> elephant|pyjamas

ADJ -> large|small

VERB -> is|wearing

PRP$ -> my

No, let’s parse the sentence (already tokenized): A large elephant is wearing 

my pyjamas. First, we’ll need to perform part-of-speech (POS) tagging, which, in this 

example, is a matter of looking up the appropriate nonterminals from the vocabulary 

grammar. This will result in the following:

DET ADJ    NOUN  VERB  VERB PRP$  NOUN  .

 |   |      |      |    |     |    |    |

 A large elephant is wearing my pyjamas .

This POS tags will serve the role of terminals for our parsing grammar. Now, the shift- 

reduce process itself begins:

1. Initial queue: (DET ADJ NOUN VERB VERB PRP$ NOUN .)

   Initial stack: ()

   Operation: shift

2. Queue: (ADJ NOUN VERB VERB PRP$ NOUN .)

   Stack: (DET)

   Operation: shift (as there are no rules with the rhs DET)

3. Queue: (NOUN VERB VERB PRP$ NOUN .)

   Stack: (ADJ DET)

   Operation: shift
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4. Queue: (VERB VERB PRP$ NOUN .)

   Stack: (NOUN ADJ DET)

   Operation: reduce (rule NP -> DET ADJ NOUN)

   ; we match the rules in reverse to the stack

5. Queue: (VERB VERB PRP$ NOUN .)

   Stack: (NP)

   Operation: shift

6. Queue: (VERB PRP$ NOUN .)

   Stack: (VERB NP)

   Operation: shift

7. Queue: (PRP$ NOUN .)

   Stack: (VERB VERB NP)

   Operation: shift

8. Queue: (NOUN .)

   Stack: (PRP$ VERB VERB NP)

   Operation: shift

9. Queue: (.)

   Stack: (NOUN PRP$ VERB VERB NP)

   Operation: reduce (rule: NP -> PRP$ NOUN)

10. Queue: (.)

    Stack: (NP VERB VERB NP)

    Operation: reduce (rule: VP -> VERB NP)

11. Queue: (.)

    Stack: (VP VERB NP)

    Operation: reduce (rule: VP -> VERB VP)

12. Queue: (.)

    Stack: (VP NP)

    Operation: shift

11. Queue: ()

    Stack: (. VP NP)

    Operation: reduce (rule: S -> NP VP .)
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12. Reached root symbol - end.

    The resulting parse tree is:

           __________S___________

          /              \       \

         /             __VP__     \

        /             /      \     \

       /             /     __VP_    \

      /             /     /     \    \

  ___NP_____       /     /     _NP_   \

 /   |      \     /     /     /    \   \

DET ADJ    NOUN  VERB  VERB PRP$  NOUN  .

 |   |      |      |    |     |    |    |

 A large elephant is wearing my pyjamas .

The implementation of the basic algorithm is very simple:

(defstruct grammar

  rules

  max-length)

(defmacro grammar (&rest rules)

  `(make-grammar

    :rules (pairs->ht (mapcar (lambda (rule)

                                (rtl:pair (nthcdr 2 rule) (first rule)))

                              ',rules))

    :max-length

    (let ((max 0))

      (dolist (rule ',rules)

        ;; Here, #1= and #1# are reader-macros for capturing

        ;; a form and re-evaluating it again

        (when (> #1=(length (nthcdr 2 rule)) max)

          (setf max #1#)))

      max)))

(defun parse (grammar queue)

  (let ((stack (list)))
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    (loop :while queue :do

      (print stack)  ; diagnostic output

      (rtl:if-it (find-rule stack grammar)

                 ;; reduce

                 (dotimes (i (length (cdr rtl:it))

                             (push rtl:it stack))

                   (pop stack))

                 ;; shift

                 (push (pop queue) stack))

      :finally (return (find-rule stack grammar)))))

(defun find-rule (stack grammar)

  (let (prefix)

    (loop :for item in stack

          :repeat (grammar-max-length grammar) :do

          (push (first (rtl:mklist item)) prefix)

          (rtl:when-it (rtl:? grammar 'rules prefix)

            ;; otherwise parsing will fail with a stack

            ;; containing a number of partial subtrees

             (return (cons rtl:it (reverse (subseq stack 0 

                                                  (length prefix)))))))))

CL-USER> (parse (print (grammar (S -> NP VP |.|)

                                (NP -> DET ADJ NOUN)

                                (NP -> PRP$ NOUN)

                                (VP -> VERB VP)

                                (VP -> VERB NP)))

                 '(DET ADJ NOUN VERB VERB PRP$ NOUN |.|))

#S(GRAMMAR

   :RULES #{

            '(NP VP |.|) S

            '(DET ADJ NOUN) NP

            '(PRP$ NOUN) NP

            '(VERB VP) VP

            '(VERB NP) VP

           }

   :MAX-LENGTH 3)
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NIL

(DET)

(ADJ DET)

(NOUN ADJ DET)

((NP DET ADJ NOUN))

(VERB (NP DET ADJ NOUN))

(VERB VERB (NP DET ADJ NOUN))

(PRP$ VERB VERB (NP DET ADJ NOUN))

(NOUN PRP$ VERB VERB (NP DET ADJ NOUN))

((NP PRP$ NOUN) VERB VERB (NP DET ADJ NOUN))

((VP VERB (NP PRP$ NOUN)) VERB (NP DET ADJ NOUN))

((VP VERB (VP VERB (NP PRP$ NOUN))) (NP DET ADJ NOUN))

(S (NP DET ADJ NOUN) (VP VERB (VP VERB (NP PRP$ NOUN))) |.|)

However, the additional level of complexity of the algorithm arises when the 

grammar becomes ambiguous, that is, there may be situations when several rules 

apply. Shift- reduce is a greedy algorithm, so, in its basic form, it will select some 

rule (for instance, with the shortest rhs or just the first match), and it cannot 

backtrack. This may result in a parsing failure. If some form of rule weights is added, 

the greedy selection may produce a suboptimal parse. Anyway, there’s no option 

of backtracking to correct a parsing error. In the NLP domain, the peculiarity of 

shift-reduce parsing application is that the number of rules is quite significant (it 

can reach thousands) and, certainly, there’s ambiguity. In this setting, shift-reduce 

parsing is paired with machine learning techniques, which perform a “soft” selection 

of the action to take at each step, as reduce is applicable almost always, so a naive 

greedy technique becomes pointless.

Actually, shift-reduce would better be called something like stack-queue parsing, 

as different parsers may not limit the implementation to just the shift and reduce 

operations. For example, an NLP parser that allows the construction of non-projective 

trees (those where the arrows may cross, that is, subsequent words may not always 

belong to a single or subsequent upper-level categories) adds a swap operation. A more 

advanced NLP parser that produces a graph structure called an AMR (abstract meaning 

representation) has nine different operations.
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Shift-reduce parsing is implemented in many of the parser generator tools, which 

generate a parser program from a set of production rules. For instance, the popular Unix 

tool yacc is a LALR parser generator that uses shift-reduce. Another popular tool ANTLR 

is a parser generator for LL(k) languages that uses a non-shift-reduce direct pushdown 

automaton-based implementation.

Besides shift-reduce and similar automaton-based parsers, there are many other 

parsing techniques used in practice. For example, CYK probabilistic parsing was popular 

in NLP for some time, but it’s a O(n^3) algorithm, so it gradually fell from grace and 

lost to machine learning–enhanced shift-reduce variants. Another approach is packrat 

parsing (based on PEG—parsing expression grammars) that has a great Lisp parser 

generator library esrap. Packrat is a more powerful top-down parsing approach with 

backtracking and unlimited lookahead that nevertheless guarantees linear parse time. 

Any language defined by an LL(k) or LR(k) grammar can be recognized by a packrat 

parser, in addition to many languages that conventional linear-time algorithms do not 

support. This additional power simplifies the handling of common syntactic idioms such 

as the widespread but troublesome longest-match rule, enables the use of sophisticated 

disambiguation strategies such as syntactic and semantic predicates, provides better 

grammar composition properties, and allows lexical analysis to be integrated seamlessly 

into parsing. The last feature makes packrat very appealing to the programmers as 

they don’t have to define separate tools for lexical analysis (tokenization and token 

categorization) and parsing. Moreover, the rules for tokens use the same syntax, which 

is also quite similar to regular expression syntax. For example, here’s a portion of the 

esrap rules for parsing tables in Markdown documents. The Markdown table may look 

something like this:

| Left-Aligned  | Center Aligned  | Right Aligned |

| :------------ |:---------------:|         -----:|

| col 3 is      | some wordy text |         $1600 |

| col 2 is      | centered        |           $12 |

| zebra stripes | are neat        |            $1 |

You can see that the code is quite self-explanatory: each defrule form consists 

of a rule name (lhs), its rhs, and a transformation of the rhs into a data structure. For 

instance, in the rule table-row, the rhs is (and (& #\|) (+ table-cell) #\| sp 

newline). The row should start with a | char followed by one or more table-cells 
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(a separate rule) and ended by | with some space characters and a newline. And the 

transformation (:destructure (_ cells &rest) ... only cares about the content, that 

is, the table cells:

(defrule sp (* space-char)

  (:text t))

(defrule table-cell (and #\|

                         sp

                         (* (and (! (or (and sp #\|) endline)) inline))

                         sp

                         (& #\|))

  (:destructure (_ __ content &rest ___)

    (mapcar 'second content)))

(defrule table-row (and (& #\|) (+ table-cell) #\| sp newline)

  (:destructure (_ cells &rest __)

    (mapcar (lambda (a) (cons :plain a))

            cells)))

(defrule table-align-cell (and sp (? #\:) (+ #\-) (? #\:) sp #\|)

  (:destructure (_ left __ right &rest ___)

    (if right (if left 'center 'right) (when left 'left))))

(defrule table-align-row (and #\| (+ table-align-cell) sp newline)

  (:destructure (_ aligns &rest __)

    aligns))

(defrule table-head (and table-row table-align-row))

To conclude the topic of parsing, I wanted to pose a question: Can it be used to 

match the regular expressions? And the answer, of course, is that it can, as we are 

operating in a more powerful paradigm that includes the regexes as a subdomain. 

However, the critical showstopper of applying parsing to this problem is the need to 

define the grammar instead of writing a compact and more or less intuitive regex…
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 String Search in Action: Plagiarism Detection
Plagiarism detection is a very challenging problem that doesn’t have an exact solution. 

The reason is that there’s no exact definition of what can be considered plagiarism and 

what can’t; the boundary is rather blurry. Obviously, if the text or its part is just copy- 

pasted, everything is clear. But, usually (and especially when they know that plagiarism 

detection is at play), people will apply their creativity to alter the text in some slight 

or even significant ways. However, over the years, researchers have come up with 

numerous algorithms of plagiarism detection, with quality good enough to be used in 

our educational institutions. The problem is very popular, and there are even shared 

task challenges dedicated to improving plagiarism catchers. It’s somewhat an arms race 

between the plagiarists and the detection systems.

One of the earliest but, still, quite effective ways of implementing plagiarism 

detection is the Shingle algorithm. It is also based on the idea of using hashes and some 

basic statistical sampling techniques. The algorithm operates in the following stages:

 1. Text normalization (this may include case normalization, 

reduction of the words to basic forms, error correction, cleanup of 

punctuation, stopwords, etc.)

 2. Selection of the shingles and calculation of their hashes

 3. Sampling the shingles from the text at question

 4. Comparison of the hashes of the original shingles to the sampled 

hashes and evaluation

The single shingle is a contiguous sequence of words from the normalized text 

(another name for this object, in NLP, is ngram). The original text will give us (1-n) 

shingles, where n is the number of words. The hashes of the shingles are normal string 

hashes (like FNV-1).

The text, which is analyzed for plagiarism, is also split into shingles, but not all of 

them are used—just a random sample of m. The sampling theorem can give a good 

estimate of the number that can be trusted with a high degree of confidence. For 

efficient comparison, all the original hashes can be stored in a hash-set. If the number 

of overlapping shingles exceeds some threshold, the text can be considered plagiarized. 

The other take on the result of the algorithm application may be to return the plagiarism 

degree, which will be the percentage of the overlapping shingles. The complexity of the 

algorithm is O(n + m).
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In a sense, the Shingle algorithm may be viewed as an instance of massive string 

search, where the outcome we’re interested in is not so much the positions of the 

patterns in the text (although those may also be used to indicate the parts of the text that 

are plagiarism-suspicious) as the fact that they are present in it.

 Takeaways
Strings are peculiar objects: initially, it may seem that they are just arrays. But, beyond 

this simple understanding, due to the main usage patterns, a much more interesting 

picture can be seen. Advanced string representations and algorithms are examples of 

special-purpose optimization applied to general-purpose data structures. This is another 

reason why strings are presented at the end of the part on derived data structures: string 

algorithms make heavy use of the material we have covered previously, such as trees and 

graphs.

We have also discussed the FSM—a powerful data structure that can be used to 

reliably implement complex workflows. FSMs may be used not only for string matching 

but also for implementing protocol handling (e.g., in the HTTP server), complex user 

interactions, and so on. The Erlang programming language even has a standard library 

behavior gen_fsm (replaced by the newer gen_statem) that is a framework for easy 

implementation of FSMs—as many Erlang applications are mass service systems that 

have state machine–like operation.

P.S. Originally, I anticipated this chapter to be one of the shortest in the book, but it 

turned out to be the longest one. Strings are not so simple as they might seem… ;)
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CHAPTER 12

Dynamic Programming

 

This chapter opens the final part of the book. In it, we’re going to apply the knowledge 

from the previous chapters in analyzing a selection of important problems that 

are mostly application-independent and find usages in many applied domains: 

optimization, synchronization, compression, and similar.

We will start with a single approach that is arguably the most powerful algorithmic 

technique in use. If we managed to reduce the problem to dynamic programming (DP), 

in most of the cases, we can consider it solved. The fact that we progressed so far in this 

book without mentioning DP is quite amazing. Actually, we could have already talked 

about it several times, especially in Chapter 11, but I wanted to contain this topic to its 

own chapter, so I deliberately didn’t start the exposition earlier. Indeed, strings are one of 

the domains where dynamic programming is used quite heavily, but the technique finds 

application in almost every area.

Also, DP is one of the first marketing terms in CS. When Bellman had invented it, 

he wanted to use the then hyped term “programming” to promote his idea. This has, 

probably, caused more confusion over the years than benefit. In fact, a good although 

unsexy name for this technique could be simply “filling the table” as the essence of 

https://doi.org/10.1007/978-1-4842-6428-7_12#DOI
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the approach is an exhaustive evaluation of all variants with memoization of partial 

results (in a table) to avoid repetition of redundant computations. Obviously, it will have 

any benefits only when there are redundant computations, which is not the case, for 

example, with combinatorial optimization. To determine if a problem may be solved 

with DP, we need to validate that it has the optimal substructure property:

A problem has optimal substructure if when we take its subproblem 

an optimal solution to the whole problem includes an optimal 

solution to this subproblem.

An example of the optimal substructure is the shortest path problem. If the shortest 

path from point A to point B passes through some point C and there are multiple paths 

from C to B, the one included in the shortest path A–B should be the shortest of them. 

In fact, the shortest path is an archetypical DP problem which we’ll discuss later in this 

chapter. A counterexample is a Travelling Salesman Problem (TSP): if it had optimal 

substructure, the subpath between any two nodes in the result path should have been 

the shortest possible path between these nodes. But it isn’t true for all nodes because it 

can’t be guaranteed that the edges of the path will form a cycle with all the other shortest 

paths.

 Fibonacci Numbers
So, as we said, the essence of DP is filling a table. This table, though, may have a different 

number of dimensions for different problems. Let’s start with a 1D case. What book 

on algorithms can omit discussing the Fibonacci numbers? Usually, they are used to 

illustrate recursion, yet they are also a great showcase for the power of memoization. 

Besides, recursion is, conceptually, also an integral part of DP.

A naive approach to calculating the i-th number will be directly coding the 

Fibonacci formula:

(defun naive-fib (i)

  (check-type i (integer 0))

  (if (< i 2) 1

      (+ (naive-fib (- i 1))

         (naive-fib (- i 2)))))
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However, applying it will result in an exponential growth of the number of 

computations: each call to naive-fib results in two more calls. So the number of calls 

needed for the n-th number, with this approach, is O(2^n):

CL-USER> (time (naive-fib 40))

Evaluation took: 3.390 seconds of real time

165580141

CL-USER> (time (naive-fib 42))

Evaluation took: 7.827 seconds of real time

433494437

Yet, we can see here a direct manifestation of an optimal substructure property: the 

i-th number calculation uses the result of the (1- i)-th one. To utilize this recurrence, 

we’ll need to store the previous results and reuse them. It may be achieved by changing 

the function call to the table access. Actually, from the point of view of math, tables and 

functions are, basically, the same thing:

(let ((fib (vec 1 1)))  ; our table will be an adjustable vector

  (defun fib (i)

    (when (< (length fib) i)

      (vector-push-extend (fib (- i 1)) fib))

    (+ (aref fib (- i 1))

       (aref fib (- i 2)))))

What we’ve done here is added a layer of memoization to our function that uses 

an array fib that is filled with the consecutive Fibonacci numbers. The array is hidden 

inside the closure of the fib procedure, so it will persist between the calls to it and 

accumulate the numbers as they are requested. There will also be no way to clear 

it, apart from redefining the function, as the closed-over variables of this kind are 

not accessible outside of the function. The consecutive property is ensured by the 

arrangement of the recursive calls: the table is filled on the recursive ascent starting from 

the lowest yet unknown number. This approach guarantees that each Fibonacci number 

is calculated exactly once and reduces our dreaded O(2^n) running time to a mere O(n)!

Such a calculation is the simplest example of top-down DP that is performed using 

recursion. Despite its natural elegance, it suffers from a minor problem that may turn 

significant, in some cases: extra space consumption by each recursive call. It’s not only 
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O(n) in time but also in space. The alternative strategy that gets rid of redundant space 

usage is called bottom-up DP and is based on loops instead of recursion. Switching to it 

is quite trivial, in this case:

(let ((fib (vec 1 1)))

  (defun bottom-up-fib (i)

    (let ((off (length fib)))

      (adjust-array fib (1+ i) :fill-pointer t)

      (dotimes (j (- (1+ i) off))

        (let ((j (+ j off)))

          (setf (aref fib j)

                (+ (aref fib (- j 1))

                   (aref fib (- j 2)))))))

    (aref fib i)))

CL-USER> (time (bottom-up-fib 42))

Evaluation took: 0.000 seconds of real time

CL-USER> (time (bottom-up-fib 4200))

Evaluation took: 0.004 seconds of real time

40512746637826407679504078155833145442086707013857032517543...

;; the last number is a Lisp bignum (a number that has unbounded size)

Funny enough, a real-word-ready implementation of Fibonacci numbers ends up 

not using recursion at all…

 String Segmentation
Let’s consider another 1D problem: suppose we have a dictionary of words and a string 

consisting of those words that somehow lost the spaces between them—the words 

got glued together. We need to restore the original string with spaces or, to phrase it 

differently, split the string into words. This is one of the instances of string segmentation 

problems, and if you’re wondering how and where such a situation could occur for real, 

consider a Chinese text that doesn’t have to contain spaces. Every Chinese language 

processing system needs to solve a similar task.
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Here’s an example input:1

String: thisisatest

Dictionary: a, i, s, at, is, hi, ate, his, sat, test, this

Expected output: this is a test

It is clear that even with such a small dictionary, there are multiple ways we 

could segment the string. The straightforward and naive approach is to use a greedy 

algorithm. For instance, a shortest-first solution will try to find the shortest word from 

the dictionary starting at the current position and then split it (as a prefix) from the 

string. It will result in the following split: this i sat est. But the last part est isn’t 

in the dictionary, so the algorithm has failed to produce some of the possible correct 

splits (although, by chance, if the initial conditions were different, it could have 

succeeded). Another version—the longest-first approach—could look for the longest 

words instead of the shortest. This would result in: this is ate st. Once again the 

final token is not a word. It is pretty obvious that these simple takes are not correct and 

we need a more nuanced solution.

As a common next step in developing such brute-force approaches, a developer 

would resort to backtracking: when the computation reaches the position in the string, 

from which no word in the dictionary may be recovered, it unwinds to the position of the 

previous successful split and tries a different word. This procedure may have to return 

multiple steps back—possibly to the very beginning. As a result, in the worst case, to find 

a correct split, we may need to exhaustively try all possible combinations of words that fit 

into the string.

Here’s an illustration of the recursive shortest-first greedy algorithm operation:

(defun shortest-first-restore-spaces (dict str)

  (dotimes (i (length str))

    (let ((word (rtl:slice str 0 (1+ i))))

      (when (rtl:? dict word)

        (return (rtl:cond-it

                  ((= (1+ i) (length str))

                   word)

1 If you wonder, s is a word that is usually present in English programmatic dictionaries because 
when it’s and friends are tokenized, they’re split into two tokens, and the apostrophe may be 
missing sometimes. Also, our dictionary is case-insensitive.
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                  ((shortest-first-restore-spaces dict (rtl:slice str (1+ i)))

                   (format nil "~A ~A" word rtl:it))))))))

CL-USER> (defparameter *dict* (rtl:hash-set 'equal "a" "i" "at" "is" "hi" "ate"

                                                    "his" "sat" "test" "this"))

CL-USER> (trace shortest-first-restore-spaces)

CL-USER> (shortest-first-restore-spaces *dict* "thisisatest")

  0: (SHORTEST-FIRST-RESTORE-SPACES #<HASH-TABLE :COUNT 10> "thisisatest")

    1: (SHORTEST-FIRST-RESTORE-SPACES #<HASH-TABLE :COUNT 10> "isatest")

      2: (SHORTEST-FIRST-RESTORE-SPACES #<HASH-TABLE :COUNT 10> "satest")

        3: (SHORTEST-FIRST-RESTORE-SPACES #<HASH-TABLE :COUNT 10> "est")

        3: SHORTEST-FIRST-RESTORE-SPACES returned NIL

      2: SHORTEST-FIRST-RESTORE-SPACES returned NIL

    1: SHORTEST-FIRST-RESTORE-SPACES returned NIL

  0: SHORTEST-FIRST-RESTORE-SPACES returned NIL

NIL

To add backtracking into the picture, we need to avoid returning in the case of the 

failure of the recursive call:

(defun bt-shortest-first-restore-spaces (dict str)

  (dotimes (i (length str))

    (let ((word (rtl:slice str 0 (1+ i))))

      (when (rtl:in# word dict)

        (when (= (1+ i) (length str))

          (return word))

        (rtl:when-it (bt-shortest-first-restore-spaces

                      dict (slice str (1+ i)))

          (return (format nil "~A ~A" word rtl:it)))))))

CL-USER> (trace shortest-first-restore-spaces)

CL-USER> (bt-best-first-restore-spaces *dict* "thisisatest")

  0:  (BT-SHORTEST-FIRST-RESTORE-SPACES #<HASH-TABLE :COUNT 10> 

"thisisatest")

    1: (BT-SHORTEST-FIRST-RESTORE-SPACES #<HASH-TABLE :COUNT 10> "isatest")
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      2:  (BT-SHORTEST-FIRST-RESTORE-SPACES #<HASH-TABLE :COUNT 10> 

"satest")

        3: (BT-SHORTEST-FIRST-RESTORE-SPACES #<HASH-TABLE :COUNT 10> "est")

        3: BT-SHORTEST-FIRST-RESTORE-SPACES returned NIL

      2: BT-SHORTEST-FIRST-RESTORE-SPACES returned NIL

      ;; backtracking kicks in here

      2: (BT-SHORTEST-FIRST-RESTORE-SPACES #<HASH-TABLE :COUNT 10> "atest")

        3:  (BT-SHORTEST-FIRST-RESTORE-SPACES #<HASH-TABLE :COUNT 10> 

"test")

        3: BT-SHORTEST-FIRST-RESTORE-SPACES returned "test"

      2: BT-SHORTEST-FIRST-RESTORE-SPACES returned "a test"

    1: BT-SHORTEST-FIRST-RESTORE-SPACES returned "is a test"

  0: BT-SHORTEST-FIRST-RESTORE-SPACES returned "this is a test"

"this is a test"

Lisp trace is an invaluable tool to understand the behavior of recursive functions. 

Unfortunately, it doesn’t work for loops, with which one has to resort to debug printing.

Realizing that this is brute force, we could just as well use another approach: 

generate all combinations of words from the dictionary of the total number of characters 

(n) and choose the ones that match the current string. The exact complexity of this 

scheme is O(2^n).2 In other words, our solution leads to a combinatorial explosion in 

the number of possible variants—a clear no-go for every algorithmic developer.

So we need to come up with something different, and, as you might have guessed, 

DP fits in perfectly as the problem has the optimal substructure: a complete word in the 

substring of the string remains a complete word in the whole string as well. Based on 

this understanding, let’s reframe the task in a way that lends itself to DP better: find each 

character in the string that ends a complete word so that all the words combined cover 

the whole string and do not intersect.3

Here is an implementation of the DP-based procedure. Apart from calculating the 

maximum length of a word in the dictionary, which usually may be done offline, it 

requires single forward and backward passes. The forward pass is a linear scan of the 

2 The intuition for it is the following: in the worst case, every character has two choices—either to 
be the last letter of the previous word or the first one of the next word, hence the branching factor 
is 2.

3 Actually, the condition of complete string coverage may be lifted, which will allow to use almost 
the same algorithm but skip over “undictionary” words like misspellings.
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string that at each character tries to find all the words starting at it and matching the 

string. The complexity of this pass is O(n * w), where w is the constant length of the 

longest word in the dictionary, that is, it is, actually, O(n). The backward pass (called, 

in the context of DP, decoding) restores the spaces using the so-called backpointers 

stored in the dp array. In the following is a simplistic implementation that returns a 

single match. A recursive variant is possible with or without a backward pass that will 

accumulate all the possible variants:

(defun dp-restore-spaces (dict str)

  (let ((dp (make-array (1+ (length str)) :initial-element nil))

        ;; in the production implementation, the following calculation

        ;; should be performed at the pre-processing stage

        (w (reduce 'max (mapcar 'length (keys dict))))

        (begs (list))

        (rez (list)))

    ;; the outer loop tries to find the next word

    ;; only starting from the ends of the words that were found previously

    (do ((i 0 (pop begs)))

        ((or (null i)

             (= i (length str))))

      ;; the inner loop checks all substrings of length 1..w

      (do ((j (1+ i) (1+ j)))

          ((>= j (1+ (min (length str)

                          (+ w i)))))

        (when (rtl:? dict (rtl:slice str i j))

          (setf (aref dp j) i)

          (push j begs)))

      (setf begs (reverse begs)))

    ;; the backward pass

    (do ((i (length str) (aref dp i)))

        ((null (aref dp i)))

      (push (rtl:slice str (aref dp i) i) rez))

    (strjoin #\Space rez)))

CL-USER> (dp-restore-spaces *dict* "thisisatest")

"this is a test"
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Similarly to the Fibonacci numbers, the solution to this problem doesn’t use any 

additional information to choose between several variants of a split; it just takes the first 

one. However, if we wanted to find the variant that is most plausible to the human reader, 

we’d need to add some measure of plausibility. One idea might be to use a frequency 

dictionary, that is, prefer the words that have a higher frequency of occurrence in the 

language. Such an approach, unfortunately, also has drawbacks: it overemphasizes short 

and frequent words, such as determiners, and also doesn’t account for how words are 

combined in context. A more advanced option would be to use a frequency dictionary 

not just of words but of separate phrases (ngrams). The longer the phrases used, the 

better from the standpoint of linguistics, but also the worse from the engineering point of 

view: more storage space needed and more data to process if we want to collect reliable 

statistics for all the possible variants. And, once again, with the rise of the number of 

words in an ngram, we will be facing the issue of combinatorial explosion pretty soon. 

The optimal point for this particular task might be bigrams or trigrams, that is, phrases of 

two or three words. Using them, we’d have to supply another dictionary to our procedure 

and track the measure of plausibility of the current split as a product of the frequencies 

of the selected ngrams. Formulated this way, our exercise becomes not merely an 

algorithmic task but an optimization problem. And DP is also suited to solving such 

problems. In fact, that was the primary purpose it was intended for, in the Operations 

Research community.4 We’ll see it in action with our next problem—text justification. 

Then you’ll be able to apply the same approach to create a smarter procedure (let’s call it 

restore-spaces-plausibly).

 Text Justification
The task of text justification is relevant to both editing and reading software: given 

a text, consisting of paragraphs, split each paragraph into lines that contain whole 

words only with a given line length limit so that the variance of line lengths is the 

smallest. Its solution may be used, for example, to display text in HTML blocks with an 

align=justify property.

4 See, for example, Stuart Dreyfus’ “Richard Bellman on the Birth of Dynamic Programming.”
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A more formal task description would be the following:

• The algorithm is given a text string and a line length limit (say, 80 

characters).

• There’s a plausibility formula that specifies the penalty for each line 

being shorter than the length limit. A usual formula is this:

(defun penalty (limit length) 

  (if (<= length limit) 

      (expt (- limit length) 3) 

      most-positive-fixnum))

• The result should be a list of strings.

As we are discussing this problem in the context of DP, first, we need to determine 

what is its optimal substructure. Superficially, we could claim that lines in the optimal 

solution should contain only the lines that have the smallest penalty, according to 

the formula. However, this doesn’t work as some of the potential lines that have the 

best plausibility (length closest to 80 characters) may overlap, that is, the optimal 

split may not be able to include all of them. What we can reliably claim is that, if 

the text is already justified from position 0 to i, we can still justify the remainder 

optimally regardless of how the prefix is split into lines. This is, basically, the same as 

with string segmentation where we didn’t care how the string was segmented before 

position i. And it’s a common theme in DP problems: the key feature that allows us 

to save on redundant computation is that we only remember the optimal result of the 

computation that led to a particular partial solution, but we don’t care about what 

particular path was taken to obtain it (except we care to restore the path, but that’s 

what the backpointers are for—it doesn’t impact the forward pass of the algorithm). 

So the optimal substructure property of text justification is that if the best split of the 

whole string includes the consecutive indices x and y, then the best split from 0 to y 

should include x.

Let’s justify the following text with a line limit of 50 chars:

Common Lisp is the modern, multi-paradigm, high-performance, compiled,

ANSI-standardized, most prominent descendant of the long-running family

of Lisp programming languages.

Chapter 12  DynamiC programming



261

Suppose we’ve already justified the first 104 characters. This leaves us with a 

suffix that has a length of 69: descendant of the long-running family of Lisp 

programming languages. As its length is above 50 chars, but below 100, we can 

conclude that it requires exactly one split. This split may be performed after the first 

token, second, third, and so on. Let’s calculate the total plausibility of each candidate:

after "the": 5832 + 0 = 5832

after "long-running": 6859 + 2197 = 9056

after "family": 1728 + 8000 = 9728

after "of": 729 + 12167 = 12896

after "Lisp": 64 + 21952 = 22016

So the optimal split starting at index 1055 is into strings: "descendant of the" 

and "long-running family of Lisp programming languages." Now, we haven’t 

guaranteed that index 105 will be, in fact, the point in the optimal split of the whole 

string, but, if it were, we would have already known how to continue. This is the key 

idea of the DP-based justification algorithm: starting from the end, calculate the cost of 

justifying the remaining suffix after each token using the results of previous calculations. 

At first, while suffix length is below line limit, it is trivially computed by a single call to 

the plausibility function. After exceeding the line limit, the calculation will consist of two 

parts: the plausibility penalty and the previously calculated value.

(defun justify (limit str)

  (rtl:with ((toks (reverse (split #\Space str)))

             (n (length toks))

             (penalties (make-array n))

             (backptrs (make-array n))

             (lengths (make-array n)))

    ;; forward pass (from the end of the string)

    (rtl:doindex (i tok toks)

       (let ((len (+ (length tok) (max 0 (aref lengths (1- i))))))

         (setf (aref lengths i) (1+ len))

         (if (<= len limit)

             (setf (aref penalties i) (penalty len limit)

                   (aref backptrs i) -1)

5 A space at the end of the line is discarded.
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           ;; minimization loop

           (let ((min most-positive-fixnum)

                 arg)

             (dotimes (j i)

               (rtl:with ((j (- i j 1))

                          (len (- (aref lengths i)

                                  (aref lengths j)))

                          (penalty (+ (penalty len limit)

                                      (aref penalties j))))

                 (cond ((> len limit) (return))

                       ((< penalty min) (setf min penalty

                                              arg j)))))

             (setf (aref penalties i) min

                   (aref backptrs  i) arg)))))

    ;; backward pass (decoding)

    (loop :for end := (1- n) :then beg

          :for beg := (aref backptrs end)

          :do (fmt "~A~%"

                   (rtl:strjoin #\Space (reverse (subseq toks

                                                         (1+ beg)

                                                         (1+ end)))))

          :until (= -1 beg))))

CL-USER> (justify 50 "Common Lisp is the modern, multi-paradigm, high- 

performance, compiled, ANSI-standardized, most prominent descendant of the 

long-running family of Lisp programming languages.")

Common Lisp is the modern, multi-paradigm,

high-performance, compiled, ANSI-standardized,

most prominent descendant of the long-running

family of Lisp programming languages.

This function is somewhat longer, but, conceptually, it is pretty simple. The 

only insight I needed to implement it efficiently was the additional array for storing 

the lengths of all the string suffixes we have examined so far. This way, we apply 

memoization twice—to prevent recalculation of both the penalties and the suffix 
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lengths—and all of the ones we have examined so far are used at each iteration. If we 

were to store the suffixes themselves, we would have had to perform an additional O(n)-

length calculation at each iteration.

The algorithm performs two passes. In the forward pass (which is, in fact, performed 

from the end), it fills the slots of the DP arrays using the minimum joint penalty for the 

potential current line and the remaining suffix, the penalty for which was calculated 

during one of the previous iterations of the algorithm. In the backward pass, the resulting 

lines are extracted by traversing the backpointers starting from the last index.

The key difference from the previous DP example are these lines:

(setf (aref penalties i) min

      (aref backptrs  i) arg)

Adding them (alongside the whole minimization loop) turns DP into an optimization 

framework that, in this case, is used to minimize the penalty. The backptrs array, as we 

said, is used to restore the steps which have led to the optimal solution. As, eventually 

(and this is true for the majority of the DP optimization problems), we care about this 

sequence and not the optimization result itself.

As we can see, for the optimization problems, the optimal substructure property is 

manifested as a mathematical formula called the recurrence relation. It is the basis for 

the selection of a particular substructure among several variants that may be available 

for the current step of the algorithm. The relation involves an already memoized partial 

solution and the cost of the next part we consider adding to it. For text justification, the 

formula is the sum of the current penalty and the penalty of the newly split suffix. Each 

DP optimization task is based on a recurrence relation of a similar kind.

Now, let’s look at this problem from a different perspective. We can represent our 

decision space as a directed acyclic graph. Its leftmost node (the “source”) will be 

index 0, and it will have several direct descendants: nodes with those indices in the 

string, at which we can potentially split it not exceeding the 50-character line limit or, 

alternatively, each substring that spans from index 0 to the end of some token and is not 

longer than 50 characters. Next, we’ll connect each descendant node in a similar manner 

with all nodes that are “reachable” from it, that is, they have a higher value of associated 

string position and the difference between their index and this node is below 50. The 

final node of the graph (“sink”) will have the value of the length of the string. The cost of 

each edge is the value of the penalty function. Now, the task is to find the shortest path 

from source to sink.
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Here is the DAG for the example string with the nodes labeled with the indices of the 

potential string splits. As you can see, even for such a simple string, it’s already quite big. 

What to speak of real texts. But it can provide some sense of the number of variants that 

an algorithm has to evaluate.

 

What is the complexity of this algorithm? On the surface, it may seem to be O(m^2) 

where m is the token count, as there are two loops: over all tokens and over the tail. 

However, the line (when (> len limit) (return)) limits the inner loop to only the part 

of the string that can fit into limit chars, effectively reducing it to a constant number of 

operations (not more than limit , but, in practice, an order of magnitude less). Thus, the 

actual complexity is O(m).6

 Pathfinding Revisited
In fact, any DP problem may be reduced to pathfinding in the graph: the shortest path, 

if optimization is involved, or just any path otherwise. The nodes in this graph are the 

intermediate states (for instance, a split at index x or an i-th Fibonacci number) and the 

edges are possible transitions that may bear an associated cost (as in text justification) 

6 Provided all the length calculations are implemented efficiently. For simplicity, I have used plain 
lists here with a linear length complexity, but a separate variable may be added to avoid the 
extra cost.
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or not (as in string segmentation). And the classic DP algorithm to solve the problem is 

called the Bellman-Ford (BF) algorithm. Not incidentally, one of its authors, Bellman, is 

the “official” inventor of DP:

(defun bf-shortest-path (g)
  (rtl:with ((n (array-dimension g 0))
             (edges (edges-table g))
             (dists (make-array n :initial-element most-positive-fixnum))
             (backptrs (make-array n))
             (path (list)))
    (setf (aref dists (1- n)) 0)
    (dotimes (v (vertices g))
      (dotimes (e (? edges v))
        (rtl:with ((u (src e))
                   (dist (+ (dist e)
                            (aref dists u))))
          (when (< dist (aref dists u))
            (setf (aref dists u) dist
                  (aref backptrs u) v)))))
    (loop :for v := (1- n) :then (aref backptrs v) :do
      (push v path))
    (values path
            (aref dists (1- n)))))

The code for the algorithm is very straightforward, provided that our graph 

representation already has the vertices and edges as a data structure in convenient 

format or implements such operations (in the worst case, the overall complexity 

should be not greater than O(V * E) ). For the edges, we need a kv indexed by the edge 

destination—an opposite to the usual representation that groups them by their sources.7

Compared to text justification, this function looks simpler as we don’t have to 

perform task-specific processing that accounts for character limit and spaces between 

words. However, if we were to use bf-shortest-path, we’d have to first create the graph 

data structure from the original text. So all that complexity would go into the graph 

creation routine. However, from the architectural points of view, such split may be 

beneficial as the pathfinding procedure could be reused for other problems.

7 However, if we think of it, we could reuse the already proven linked representation just putting 
the incoming edges into the node structure instead of the outgoing ones.
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One might ask a reasonable question: How does Bellman-Ford fare against 

Dijkstra’s algorithm (DA)? As we have already learned, Dijkstra’s is a greedy and 

optimal solution to pathfinding, so why consider yet another approach? Both 

algorithms operate by relaxation, in which approximations to the correct distance 

are replaced by better ones until the final result is reached. And in both of them, 

the approximate distance to each vertex is always an overestimate of the true 

distance, and it is replaced by the minimum of its old value and the length of a newly 

found path. Turns out that DA is also a DP-based approach, but with additional 

optimizations! It uses the same optimal substructure property and recurrence 

relations. The advantage of DA is the utilization of the priority queue to effectively 

select the closest vertex that has not yet been processed. Then it performs the 

relaxation process on all of its outgoing edges, while the Bellman- Ford algorithm 

relaxes all the edges. This method allows BF to calculate the shortest paths not 

to a single node but to all of them (which is also possible for DA but will make its 

runtime, basically, the same as for BF). So Bellman-Ford complexity is O(V * E) 

compared to O(E + V logV) for the optimal implementation of DA. Besides, BF can 

account for negative edge weights, which will break DA.

So DA remains the algorithm of choice for the standard shortest path problem, and 

it’s worth keeping in mind that it can also be applied as a solver for some DP problems 

if they are decomposed into graph construction + pathfinding. However, some DP 

problems have additional constraints that make using DA for them pointless. For 

example, in text justification, the number of edges to consider at each step is limited by 

a constant factor, so the complexity of the exhaustive search is, in fact, O(V). Proving that 

for our implementation of justify is left as an exercise to the reader…

 LCS and Diff
Let’s return to strings and the application of DP to them. The ultimate DP-related string 

problem is string alignment. It manifests in many formulations. The basic one is the 

Longest Common Subsequence (LCS) task: determine the length of the common part 

among two input strings. Solving it, however, provides enough data to go beyond that—it 

enables determining the best alignment of the strings, as well as enumerating the edit 

operations needed to transform one string into another. The edit operations, which are 

usually considered in the context of LCS, are
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• Insertion of a character

• Deletion of a character

• Substitution of a character

Based on the number of those operations, we can calculate a metric of commonality 

between two strings that is called the Levenshtein distance. It is one of the examples 

of the so-called edit distances. The identical strings have a Levenshtein distance of 

0 and strings foobar and baz of 4 (three deletion operations for the prefix foo and a 

substitution operation of r into z). There are also other variants of edit distances. For 

instance, the Damerau-Levenshtein distance that is better suited to compare texts with 

misspellings produced by humans adds another modification operation: swap, which 

reduces the edit distance in the case of two adjacent characters being swapped to 1 

instead of 2 for the Levenshtein (one deletion and one insertion).

The Levenshtein distance, basically, gives us for free the DP recurrence relations: 

when we consider the i-th character of the first string and the j-th one of the second, 

the edit distance between the prefixes 0,i and 0,j is either the same as for the pair of 

chars (1- i) and (1- j), respectively, if the current characters are the same, or 1+, the 

minimum of the edit distances of the pairs i (1- j), (1- i) (1- j), and (1-i) j.

We can encode this calculation as a function that uses a matrix for memoization. 

Basically, this is the DP solution to the LCS problem: now, you just have to subtract the 

length of the string and the bottom-right element of the matrix, which will give you the 

measure of the difference between the strings:

(defun lev-dist (s1 s2 &optional

                         (i1 (1- (length s1)))

                         (i2 (1- (length s2)))

                         (ld (make-array (list (1+ (length s1))

                                               (1+ (length s2)))

                                         :initial-element nil)

                             ldp))  ; a flag indicating that the argument

                                    ; was supplied

  ;; initialization of the 0-th column and row

  (unless ldp

    (dotimes (k (1+ (length s1))) (setf (aref ld k 0) K))

    (dotimes (k (1+ (length s2))) (setf (aref ld 0 k) K)))
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  (values (or (aref ld (1+ i1) (1+ i2))

              (setf (aref ld (1+ i1) (1+ i2))

                    (if (eql (aref s1 i1) (aref s2 i2))

                        (lev-dist s1 s2 (1- i1) (1- i2) ld)

                        (1+ (min (lev-dist s1 s2 (1- i1) (1- i2) ld)

                                 (lev-dist s1 s2 i1 (1- i2) ld)

                                 (lev-dist s1 s2 (1- i1) i2 ld))))))

          ld))

However, if we want to also use this information to align the sequences, we’ll have to 

make a reverse pass:8

(defun align (s1 s2)

  (rtl:with ((i1 (length s1))

             (i2 (length s2))

             ;;  our Levenshtein distance procedure returns

             ;; the whole DP matrix as a second value

             (ld (nth-value 1 (lev-dist s1 s2)))

             (rez (list)))

    (loop

      (let ((min (min (aref ld (1- i1) (1- i2))

                      (aref ld     i1  (1- i2))

                      (aref ld (1- i1)     i2))))

        (cond ((= min (aref ld (1- i1) (1- i2)))

               (push (rtl:pair (char s1 (1- i1))

                               (char s2 (1- i2)))

                     rez)

               (decf i1)

               (decf i2))

              ((= min (aref ld (1- i1) i2))

               (push (rtl:pair (char s1 (1- i1)) nil)

                     rez)

               (decf i1))

8 Here, a separate backpointers array isn’t necessary as we can infer the direction by reversing the 
distance formula.
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              ((= min (aref ld i1 (1- i2)))

               (push (rtl:pair nil (char s2 (1- i2)))

                     rez)

               (decf i2))))

      (when (= 0 i1)

        (loop :for j :from (1- i2) :downto 0 :do

          (push (rtl:pair #\* (char s2 j)) rez))

        (return))

      (when (= 0 i2)

        (loop :for j :from (1- i1) :downto 0 :do

          (push (rtl:pair (char s1 j) nil) rez))

        (return)))

    ;; pretty output formatting

    (with-output-to-string (s1)

      (with-output-to-string (s2)

        (with-output-to-string (s3)

          (loop :for (c1 c2) :in rez :do

            (format s1 "~C " (or c1 #\.))

            (format s2 "~C " (cond ((null c1) #\↓)
                                   ((null c2) #\↑)
                                   ((char= c1 c2) #\|)

                                   (t #\x)))

            (format s3 "~C " (or c2 #\.)))

          (format t "~A~%~A~%~A~%"

                  (get-output-stream-string s1)

                  (get-output-stream-string s2)

                  (get-output-stream-string s3)))))

  rez))

CL-USER> (align "democracy" "remorse")

d e m o c r a c y

x | | | ↑ | ↑ x x
r e m o . r . s e

CL-USER> (lev-dist "democracy" "remorse")

5
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#2A((0 1 2 3 4 5 6 7)

    (1 1 2 3 4 5 6 7)

    (2 2 1 2 3 4 5 6)

    (3 3 2 1 2 3 4 5)

    (4 4 3 2 1 2 3 4)

    (5 5 4 3 2 2 3 4)

    (6 5 5 4 3 2 3 4)

    (7 6 6 5 4 3 3 4)

    (8 7 7 6 5 4 4 4)

    (9 8 8 7 6 5 5 5))

It should be pretty clear how we can also extract the edit operations during the 

backward pass: depending on the direction of the movement, horizontal, vertical, or 

diagonal, it’s an insertion, deletion, or substitution. The same operations may be also 

grouped to reduce noise. The alignment task is an example of a 2D DP problem. Hence, 

the diff computation has a complexity of O(n^2). There are other notable algorithms, 

such as CYK parsing or the Viterbi algorithm, that also use a 2D array, although they may 

have higher complexity than just O(n^2). For instance, the CYK parsing is O(n^3), which 

is very slow compared to the greedy O(n) shift-reduce algorithm.

However, the diff we will obtain from the basic LCS computation will still be 

pretty basic. There are many small improvements that are made by production diff 

implementation both on the UX and performance sides. Besides, the complexity of 

the algorithm is O(n^2), which is quite high, so many practical variants perform many 

additional optimizations to reduce the actual number of operations, at least, for the 

common cases.

The simplest improvement is a preprocessing step that is warranted by the fact that, 

in many applications, the diff is performed on texts that are usually mostly identical and 

have a small number of differences between them localized in an even smaller number 

of places. For instance, consider source code management, where diff plays an essential 

role: the programmers don’t tend to rewrite whole files too often; on the contrary, such 

practice is discouraged due to programmer collaboration considerations.
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So some heuristics may be used in the library diff implementations to speed up such 

common cases:

• Check that the texts are identical.

• Identify common prefix/suffix and perform the diff only on the 

remaining part.

• Detect situations when there’s just a single or two edits.

A perfect diff algorithm will report the minimum number of edits required to convert 

one text into the other. However, sometimes the result is too perfect and not very good 

for human consumption. People will expect operations parts to be separated at token 

boundaries when possible; also larger contiguous parts are preferred to an alteration of 

small changes. All these and other diff ergonomic issues may be addressed by various 

postprocessing tweaks.

But, besides these simple tricks, are global optimizations to the algorithm possible? 

After all, O(n^2) space and time requirements are still pretty significant. Originally, diff 

was developed for Unix by Hunt and McIlroy. Their approach computes matches in the 

whole file and indexes them into the so-called k-candidates, k being the LCS length. The 

LCS is augmented progressively by finding matches that fall within proper ordinates 

(following a rule explained in their paper). While doing this, each path is memoized. 

The problem with the approach is that it performs more computation than necessary: it 

memoizes all the paths, which requires O(n^2) memory in the worst case and O(n^2 log n) 

for the time complexity!

The current standard approach is the divide-and-conquer Myers algorithm. It works 

by finding recursively the central match of two sequences with the smallest edit script. 

Once this is done, only the match is memoized, and the two subsequences preceding 

and following it are compared again recursively by the same procedure until there is 

nothing more to compare. Finding the central match is done by matching the ends of 

subsequences as far as possible and, any time it is not possible, augmenting the edit 

script by one operation, scanning each furthest position attained up to there for each 

diagonal, and checking how far the match can expand. If two matches merge, the 

algorithm has just found the central match. This approach has the advantage of using 

only O(n) memory and executes in O(n * d), where d is the edit script complexity 

(d is less than n, usually much less). The Myers algorithm wins because it does not 

memoize the paths while working and does not need to “foresee” where to go. So it 

can concentrate only on the furthest positions it could reach with an edit script of the 
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smallest complexity. The smallest complexity constraint ensures that what is found in 

the LCS. Unlike the Hunt-McIlroy algorithm, the Myers one doesn’t have to memoize 

the paths. In a sense, the Myers algorithm compared to the vanilla DP diff, like Dijkstra’s 

one vs. Bellman-Ford, cuts down on the calculation of the edit distances between 

the substrings that don’t contribute to the optimal alignment, while solving LCS and 

building the whole edit distance matrix performs the computation for all substrings.

The diff tool is a prominent example of a transition from quite an abstract algorithm 

to a practical utility that is an essential part of many ubiquitous software products and 

the additional work needed to ensure that the final result is not only theoretically sane 

but also usable.

P.S. Ever wondered how GitHub, when displaying the diff, not only shows the 

changed line but also highlights the exact changes? It runs diff twice: first, at the line 

level (using each line as a single unit/token) and then at the character level, as you 

would normally expect. Then the results are just combined.

 DP in Action: Backprop
As we said in the beginning, DP has applications in many areas: from machine learning 

to graphics to source code management. Literally, you can find an algorithm that uses 

DP in every specialized domain, and if you don’t, this means you, probably, can still 

advance this domain and create something useful by applying DP to it. Deep learning is 

the fastest developing area of the machine learning domain, in recent years. At its core, 

the discipline is about training huge multilayer optimization functions called “neural 

networks.” And the principal approach to doing that, which, practically speaking, has 

enabled the rapid development of machine learning techniques that we see today, is the 

backpropagation (backprop) optimization algorithm.

As pointed out by Christopher Olah, for modern neural networks, it can make 

training with gradient descent as much as ten million times faster, relative to a naive 

implementation. That’s the difference between a model taking a week to train and taking 

200,000 years. Beyond its use in deep learning, backprop is a computational tool that 

may be applied in many other areas, ranging from weather forecasting to analyzing 

numerical stability—it just goes by different names there. In fact, the algorithm has 

been reinvented at least dozens of times in different fields. The general, application- 

independent name for it is reverse-mode differentiation. Essentially, it’s a technique for 

calculating partial derivatives quickly using DP on computational graphs.
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Computational graphs are a nice way to think about mathematical expressions. 

For example, consider the expression (setf e (* (+ a b) (1+ b))). There are four 

operations: two additions, one multiplication, and an assignment. Let’s arrange those 

computations in the same way they would be performed on the computer:

(let ((c (+ a b))

      (d (1+ b)))

  (setf e (* c d)))

To create a computational graph, we make each of these operations, along with the 

input variables, into nodes. When the outcome of one expression is an input to another 

one, a link points from one node to another:

 

We can evaluate the expression by setting the values in the input nodes (a and b) 

to certain values and computing nodes in the graph along the dependency paths. For 

example, let’s set a to 2 and b to 1: the result in node e will be, obviously, 6.

The derivatives in a computational graph can be thought of as edge labels. If a 

directly affects c, then we can write a partial derivative ∂c/∂a along the edge from a to c.

Here is the computational graph with all the derivatives for the evaluation with the 

values of a and b set to 2 and 1:
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But what if we want to understand how nodes that aren’t directly connected affect 

each other? Let’s consider how e is affected by a. If we change a at a speed of 1, c also 

changes at a speed of 1. In turn, c changing at a speed of 1 causes e to change at a speed 

of 2. So e changes at a rate of (* 1 2) with respect to a. The general rule is to sum over 

all possible paths from one node to the other, multiplying the derivatives on each edge of 

the path together. We can see that this graph is, basically, the same as the graph we used 

to calculate the shortest path.

This is where forward-mode differentiation and reverse-mode differentiation come 

in. They’re algorithms for efficiently computing the sum by factoring the paths. Instead 

of summing over all of the paths explicitly, they compute the same sum more efficiently 

by merging paths back together at every node. In fact, both algorithms touch each edge 

exactly once. Forward-mode differentiation starts at the input to the graph and moves 

toward the output node. At every node, it sums all the paths feeding in. Each of those 

paths represents one way in which the input affects that node. By adding them up, we get 

the total derivative. Reverse-mode differentiation, on the other hand, starts at the output 

of the graph and moves toward the input nodes. At each node, it merges all paths which 

originated at that node. Forward-mode differentiation tracks how one input affects every 

node. Reverse-mode differentiation tracks how every node affects one output.

So what if we do reverse-mode differentiation from e down? This gives us the 

derivative of e with respect to every node. Forward-mode differentiation gave us the 

derivative of our output with respect to a single input, but reverse-mode differentiation 

gives us all of the derivatives we need for gradient descent in one go. When training 

neural networks, the cost is a function of the weights of each edge. And using reverse- 

mode differentiation (a.k.a. backprop), we can calculate the derivatives of the cost with 

respect to all the weights in a single pass through the graph. As there are millions and 

tens of millions of weights, in a neural network, reverse-mode differentiation results in a 

speedup of the same factor!
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Backprop is an example of simple memoization DP. No selection of the optimal 

variant is needed; it’s just a proper arrangement of the operations to avoid redundant 

computations.

 Takeaways
DP-based algorithms may operate on one of these three levels:

• Just systematic memoization, when every intermediate result is 

cached and used to compute subsequent results for larger problems 

(Fibonacci numbers, backprop)

• Memoization + backpointers that allow for the reconstruction of the 

sequence of actions that lead to the final solution (text segmentation)

• Memoization + backpointers + a target function that selects the best 

intermediate solution (text justification, diff, shortest path)

If we want to apply DP to some task, we need to find its optimal substructure, 

that is, verify that an optimal solution to a subproblem will remain a part of the 

optimal solution to the whole problem. Next, if we deal with an optimization task, 

we may have to formulate the recurrence relations. After that, it’s just a matter of 

technique: those relations may be programmed either directly as a recursive or 

iterative procedure (like in LCS) or indirectly using the method of consecutive 

approximations (like in Bellman- Ford).

Ultimately, all DP problems may be reduced to pathfinding in the graph, but 

it doesn’t always make sense to have this graph explicitly as a data structure in the 

program. If it does, however, remember that Dijkstra’s algorithm is the optimal algorithm 

to find a single shortest path in it.

DP, usually, is a reasonable next thing to think about after the naive greedy approach 

(which, let’s be frank, everyone tends to take initially) stumbles over backtracking. 

However, we saw that DP and greedy approaches do not contradict each other: in fact, 

they can be combined as demonstrated by Dijkstra’s algorithm. Yet, an optimal greedy 

algorithm is more of an exception than a rule. However, there are a number of problems 

for which a top-n greedy solution (the so-called beam search) can be a near-optimal 

solution that is good enough.
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Also, DP doesn’t necessarily mean optimal. A vanilla dynamic programming 

algorithm exhaustively explores the decision space, which may be excessive in many 

cases. It is demonstrated by the examples of Dijkstra’s and Myers algorithms that 

improve on the DP solution by cutting down some of the corners.

P.S. We have also discussed, the first time in this book, the value of heuristic pre- 

and postprocessing. From the theoretical standpoint, it is not something you have 

to pay attention to, but, in practice, that’s a very important aspect of the production 

implementation of many algorithms and, thus, shouldn’t be frowned upon or neglected. 

In an ideal world, an algorithmic procedure should have both optimal worst-case 

complexity and the fastest operation in the common cases.
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CHAPTER 13

Approximation

Local
minimum

Global
minimum  

This chapter will be a collection of stuff from somewhat related but still distinct 

domains. What unites it is that all the algorithms we will discuss are, after all, targeted 

at calculating approximations to some mathematical functions. There are no advanced 

data structures involved, neither is the aim to find a clever way to improve the runtime of 

some common operations. No, these algorithms are about calculations and computing 

an acceptable result within the allocated time budget.

 Combinatorial Optimization
Dynamic programming is a framework that can be used for finding the optimal value 

of some loss function when there are multiple configurations of the problem space that 

result in different values. Such search is an example of discrete optimization for there is 

a countable number of states of the system and a distinct value of the cost function we’re 

optimizing corresponding to each state. There are also similar problems that have an 

unlimited and uncountable number of states, but there is still a way to find a global or 

local optimum of the cost function for them. They comprise the continuous optimization 

domain. Why is optimization not just a specialized area relevant to a few practitioners 
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but a toolbox that every senior programmer should know how to utilize? The primary 

reason is that it is applicable in almost any domain: the problem just needs to be large 

enough to rule out simple brute force. You can optimize how the data is stored or how 

the packets are routed, how the blueprint is laid out or how the servers are loaded. Many 

people are just not used to looking at their problems this way. Also, understanding 

optimization is an important prerequisite for having a good grasp of machine learning, 

which is revolutionizing the programming world.

DP is an efficient and, overall, great optimization approach, but it can’t succeed if the 

problem doesn’t have an optimal substructure. Combinatorial optimization approaches 

deal with finding a near optimum for the problems where an exhaustive search requires 

O(2^n) computations. Such problems are called NP-hard, and a classic example of these 

is the Travelling Salesman Problem (TSP). The task is to find an optimal order of edges in 

a cycle spanning all vertices of a fully connected weighted graph. As we saw previously, 

this problem doesn’t have an optimal substructure, that is, an optimal partial solution 

isn’t necessarily a part of the best overall one and so taking the shortest edge doesn’t 

allow the search procedure to narrow down the search space when looking at the next 

vertex. A direct naive approach to TSP will enumerate all the possible variants and select 

the one with a minimal cost. However, the number of variants is n!, so this approach 

becomes intractable very fast. A toy example of visiting all the capitals of the 50 US states 

has 10^64 variants. This is where quantum computers promise to overturn the situation, 

but while we’re waiting for them to mature, the only feasible approach is developing 

approximation methods that will get us a good enough solution in polynomial (ideally, 

linear) time. TSP may look like a purely theoretical problem, but it has some real-world 

applications. Besides vehicle routing, automated drilling and soldering in electronics is 

another example. Yet, even more important is that there are many other combinatorial 

optimization problems, but, in essence, the approaches to solving one of them apply 

to all the other NP-hard problems. That is, like with shortest path, coming up with an 

efficient solution to TSP allows one to unlock the option to efficiently solve a very broad 

range of problems over a variety of domains.

So let’s write down the code for the basic TSP solution. As usual, we have to select 

the appropriate graph representation. From one point of view, we’re dealing with a fully 

connected graph, so every representation will work and a matrix one will be the most 

convenient. However, storing an n^2-sized array is not the best option, especially for a 

large n. A better “distributed” representation might be useful here. Yet, for the TSP graph, 

an even better approach would be to do the opposite of our usual optimization trick: 

Chapter 13  approximation



279

trade computation for storage space. When the graph is fully connected, usually, there 

exists some kind of an underlying metric space that contains all the vertices. A common 

example is a Euclidian space, in which each vertex has a coordinate (e.g., the latitude 

and longitude). Anyway, whichever way to represent the vertex position is used, the 

critical requirement is the existence of the metric that may be calculated at any time (and 

fast). Under such conditions, we don’t have to store the edges at all. So our graph will be 

just a list of vertices.

Let’s use the example with the US state capitals. Each vertex will be represented as a 

pair of floats (lat and lon). We can retrieve the raw data from the Wikipedia article about 

the US capitols (with an “o”) and extract the values we need with the following code 

snippet,1 which cuts a few corners:

(defstruct city

  name lat lon)

(defparameter *wp-link* "https://en.wikipedia.org/w/index.

php?title=List_of_state_and_territorial_capitols_in_the_United_

States&action=edit&section=1")

(defparameter *cs*

  (rtl:with ((raw (drakma:http-request *wp-link*))

             (coords-regex (ppcre:create-scanner

                            "\\{\\{coord\\|(\\d+)\\|(\\

d+)\\|([.\\d]+)\\|.\\|(\\d+)\\|(\\d+)\\|([.\\d]+)\\|.\\|type"))

             (capitals (list)))

    (flet ((dms->rad (vec off)

             (* (/ pi 180)

                (+     (aref vec (+ off 0))

                    (/ (aref vec (+ off 1)) 60)

                    (/ (aref vec (+ off 2)) 3600)))))

      (dolist (line (rtl:split

                     #\Newline

                     (rtl:slice raw

                                (search "{| class=\"wikitable sortable\""

                                        raw)

1 It uses the popular drakma HTTP client and cl-ppcre regex library.
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                                 (search "</textarea><div 

class='editOptions'>"

                                        raw))))

        (when (and (rtl:starts-with "|" line)

                   (search "{{coord" line))

          (rtl:with ((_ coords (ppcre:scan-to-strings coords-regex line))

                     (coords (rtl:map* 'read-from-string coords)))

            (push (make-city

                   :name (slice line (position-if 'alpha-char-p line)

                                (position-if (lambda (ch)

                                               (member ch '(#\] #\|)))

                                             line :start 1))

                   :lat (dms->rad coords 0)

                   :lon (dms->rad coords 3))

                capitals)))))

    (coerce capitals 'vector)))

CL-USER> (length *cs*)

50

We also need to define the metric. The calculation of distances on Earth, though, 

is not so straightforward as on a plain. Usually, as a first approximation, the haversine 

formula is used that provides the estimate of the shortest distance over the surface “as 

the crow flies” (ignoring the relief):

(defun earth-dist (c1 c2)

  (rtl:with ((lat1 (city-lat c1))

             (lat2 (ciyte-lat c2))

             (a (+ (expt (sin (/ (- lat2 lat1) 2))

                         2)

                   (* (cos lat1)

                      (cos lat2)

                      (expt (sin (/ (- (city-lon c2) (city-lon c1)) 2))

                            2)))))

    (* 1.2742e7  ; Earth diameter

       (atan (sqrt a) (sqrt (- 1 a))))))
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With the metric at our disposal, let’s define the function that will calculate the 

length of the whole path and use it for a number of random paths (we’ll use the RUTILS 

function shuffle to produce a random path):

(defun path-length (path)

  (let ((rez (earth-dist (aref path 0) (aref path -1))))

    (dotimes (i (1- (length path)))

      (incf rez (earth-dist (aref path i) (aref path (1+ i)))))

    rez))

CL-USER> (path-length *cs*)

9.451802301259182d7

CL-USER> (path-length (rtl:shuffle *cs*))

9.964776273250546d7

CL-USER> (path-length (rtl:shuffle *cs*))

1.009761841183094d8

We can see that an average path may have a length of around 10000 kilometers. 

However, we don’t know anything about the shortest or the longest one, and to find out 

reliably, we’ll have to evaluate 50! Paths… Yet, as we accept the sad fact that it is not 

possible to do with our current technology, it’s not time to give up yet. Yes, we may not 

be able to find the absolute best path, but at least we can try to improve on the random 

one. Already, the three previous calculations had a variance of 5%. So, if we’re lucky, 

maybe we could hit a better path purely by chance. Let’s try a thousand paths using our 

usual argmin pattern:

(defun random-search (path n)

  (let ((min (path-length path))

        (arg path))

    (loop :repeat n :do

      (rtl:with ((path (rtl:shuffle path))

                 (len (path-length path)))

        (when (< len min)

          (setf min len

                arg path))))

    (values arg

            min)))
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CL-USER> (setf *print-length* 2)

2

CL-USER> (random-search *cs* 1000)

(#S(CITY :NAME "Atlanta" :LAT 0.5890359059538811d0 ...)

 #S(CITY :NAME "Montpelier, Vermont" :LAT 0.772521512027179d0 ...) ...)

7.756170773802838d7

OK, we’ve got a sizable 20% improvement. What about 1,000,000 combinations?

CL-USER> (time (random-search *cs* 1000000))

Evaluation took:

  31.338 seconds of real time

...

(#S(CITY :NAME "Boise, Idaho" :LAT 0.7612723873453388d0 ...)

 #S(CITY :NAME "Helena, Montana" :LAT 0.813073800024579d0 ...) ...)

6.746660953705506d7

Cool, another 15%. Should we continue increasing the size of the sample? Maybe, 

after a day of computations, we could get the path length down by another 20–30%. 

And that’s already a good gain. Surely, we could also parallelize the algorithm or use a 

supercomputer in order to analyze many more variants. But there should be something 

smarter than simple brute force, right?

 Local Search
Local search is the “dumbest” of these smart approaches, built upon the following idea: 

if we had a way to systematically improve our solution, instead of performing purely 

random sampling, we could arrive at better variants much faster. The local search 

procedure starts from a random path and continues improving it until the optimum is 

reached. This optimum will be a local one (hence the name), but it will still be better 

than what we have started with. Besides, we could run the optimization procedure 

many times from a different initial point, basically, getting the benefits of the brute-force 

approach. We can think of the repeated local search as sampling + optimization:

(defun local-search (path improve-fn)

  (let ((min (path-length path))

        (cc 0))  ; iteration count
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    (loop

      (incf cc)

      (rtl:if-it (funcall improve-fn path)

                 (setf min (path-length rtl:it)

                       path rtl:it)

                 (return (values path

                                 min

                                 cc))))))

For this code to work, we also need to supply the improve-fn. Coming up with it is 

where the creativity of the algorithmic researcher needs to be channeled into. Different 

problems (and even a single problem) may allow for different approaches. For TSP, there 

are several improvement possibilities discovered so far. And all of them use the planar 

(2D) nature of the graph we’re processing. It is an additional constraint that has a useful 

consequence: if the paths between two pairs of nodes intersect, definitely, there are 

also shorter paths between them that are nonintersecting. So swapping the edges will 

improve the whole path. If we were to draw a picture of this swap, it would look like this 

(the edges A-D and C-B intersect, while A-B and C-D don’t, and hence their total length is 

shorter):

 - A   B -      - A - B -

     X      ==>

 - C   D -      - C - D -

This rule allows us to specify the so-called 2-opt improvement procedure:

(defun 2-opt (path)

  (loop :repeat (* 2 (length path)) :do

    (rtl:with ((len (length path))

               (v1 (random len))

               (v1* (if (= (1+ v1) len) 0 (1+ v1)))

               (v2 (loop :for v := (random len)

                         :when (and (/= v v1) (/= v (1- v1)))

                         :do (return v)))

               (v2* (if (= #2=(1+ v2) len) 0 #2#)))

      (when (< (+ (path-length (vec (aref path v1) (aref path v2)))

                  (path-length (vec (aref path v1*) (aref path v2*))))
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               (+ (path-length (vec (aref path v1) (aref path v1*)))

                  (path-length (vec (aref path v2) (aref path v2*)))))

        (let ((beg (min v1* v2*))

              (end (max v1* v2*)))

          (return (concatenate 'vector

                               (subseq path 0 beg)

                               (reverse (subseq path beg end))

                               (subseq path end))))))))

Note that we do not need to perform a complicated check for path intersection 

(which requires an algorithm of its own, and there are a number of papers dedicated to 

this task). In fact, we don’t care if there is an intersection: we just need to know that the 

new path, which consists of the newly replaced edges and a reversed part of the path 

between the two inner nodes of the old edges, is shorter. One more thing to notice is that 

this implementation doesn’t perform an exhaustive analysis of all possible edge swaps, 

which is suggested by the original 2-opt algorithm (a O(n^2) operation). Here, we select 

just a random pair. Both variants are acceptable, and ours is simpler to implement:

CL-USER> (local-search *cs* '2-opt)

#(#S(CITY :NAME "Jackson, Mississippi" :LAT 0.5638092223095238d0 ...)

  #S(CITY :NAME "Baton Rouge, Louisiana" :LAT 0.5315762080646039d0 ...) ...)

3.242702077795514d7

111

So, outright, we’ve got a 100% improvement on the random-search path obtained 

after a much larger number of iterations. Iteration counting was added to the code in 

order to estimate the work we had to do. To make a fair comparison, let’s run random- 

search with the same n (111):

CL-USER> (random-search *cs* 111)

#(#S(CITY :NAME "Boise, Idaho" :LAT 0.7612723873453388d0 ...)

  #S(CITY :NAME "Springfield, Illinois" :LAT 0.6946151297363367d0 ...) ...)

7.522044767585556d7

But this is still not 100% fair as we haven’t yet factored in the time needed for the 

2-opt call which is much heavier than the way random search operates. In my estimates, 

111 iterations of local-search took four times as long, so…
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CL-USER> (random-search *cs* 444)

#(#S(CITY :NAME "Lansing, Michigan" :LAT 0.745844229097319d0 ...)

  #S(CITY :NAME "Springfield, Illinois" :LAT 0.6946151297363367d0 ...) ...)

7.537249874357127d7

Now, the runtimes are the same, but there’s not really much improvement in the 

random search outcome. That’s expected for, as we have already observed, achieving 

a significant improvement in random-search results requires performing orders of 

magnitude more operations.

Finally, let’s define multi-local-search to leverage the power of random sampling:

(defun multi-local-search (path n)

  (let ((min (path-length path))

        (arg path))

    (loop :repeat n :do

      (rtl:with ((cur (local-search (rtl:shuffle path) '2-opt)))

        (when (< #1=(path-length cur) min)

          (setf min #1#

                arg cur))))

    (values arg

            min)))

CL-USER> (time (multi-local-search *cs* 1000))

Evaluation took:

  22.394 seconds of real time

...

#(#S(CITY :NAME "Atlanta" :LAT 0.5890359059538811d0 ...)

  #S(CITY :NAME "Montgomery, Alabama" :LAT 0.5650930224896327d0 ...) ...)

2.8086843039667137d7

Quite a good improvement that took only 20 seconds to achieve!

As a final touch, let’s draw the paths on the map. It’s always good to double-check the 

result using some visual approach when it’s available. Here is our original random path 

(Anchorage and Honolulu are a bit off due to the issues with the map projection):
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This is the result of random search with a million iterations:

 

And this is our multistart local search outcome. Looks nice, doesn’t it?
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2-opt is the simplest path-improving technique. There are more advanced ones like 

3-opt and Lin-Kernighan heuristic. Yet, the principle remains the same: for local search 

to work, we have to find a way to locally improve our current best solution.

Another direction of the development of the basic algorithm, besides better local 

improvement procedures and trying multiple times, is devising a way to avoid being 

stuck in local optima. Simulated annealing is the most well-known technique for that. 

The idea is to replace unconditional selection of a better variant (if it exists) with a 

probabilistic one. The name and inspiration for the technique come from the physical 

process of cooling molten materials down to the solid state. When molten steel is cooled 

too quickly, cracks and bubbles form, marring its surface and structural integrity. 

Annealing is a metallurgical technique that uses a disciplined cooling schedule to 

efficiently bring the steel to a low-energy, optimal state. The application of this idea to 

the optimization procedure introduces the temperature parameter T. At each step, a 

new state is produced from the current one. For instance, it can be achieved using 2-opt, 

although the algorithm doesn’t impose the limitation on the state to necessarily be 

better than the current one, so even such a simple thing as a random swap of vertices in 

the path is admissible. Next, unlike with local search, the transition to the candidate step 

doesn’t happen unconditionally, but with a probability proportional to (/ 1 T). Initially, 

we start with a high value of T and then decrease it following some annealing schedule. 
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Eventually, T falls to 0 toward the end of the allotted time budget. In this way, the system 

is expected to wander, at first, toward a broad region of the search space containing good 

solutions, ignoring small fluctuations; then the drift toward low-energy regions becomes 

narrower and narrower; and, finally, it transitions to ordinary local search according to 

the steepest descent heuristic.

 Evolutionary Algorithms
Local search is the simplest example of a family of approaches that are collectively called 

metaheuristics. All the algorithms from this family operate, in general, by sampling and 

evaluating a set of solutions which is too large to be completely evaluated. The difference 

is in the specific approach to sampling that is employed.

A prominent group of metaheuristic approaches is called evolutionary (and/or 

nature-inspired) algorithms. It includes such methods as genetic algorithms (GAs), ant 

colony and particle swarm optimization, and cellular and even grammatical evolution. 

The general idea is to perform optimization in parallel by maintaining the so-called 

population of states and alter this population using a set of rules that improve the 

aggregate quality of the whole set while permitting some outliers in hopes that they may 

lead to better solutions unexplored by the currently fittest part of the population.

We’ll take a brief glance at evolutionary approaches using the example of genetic 
algorithms, which are, probably, the most well-known technique among them. 

The genetic algorithm (GA) views each possible state of the system as an individual 

“genome” (encoded as a vector). GA is best viewed as a framework that requires 

specification of several procedures that operate on the genomes of the current 

population:

• The initialization procedure which creates the initial population. 

After it, the size of the population remains constant, but each 

individual may be replaced with another one obtained by applying 

the evolution procedures.

• The fitness function that evaluates the quality of the genome and 

assigns some weight to it. For TSP, the length of the path is the fitness 

function. For this problem, the smaller the value of the function, the 

better.
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• The selection procedure specifies which items from the population to 

use for generating new variants. In the simplest case, this procedure 

can use the whole population.

• The evolution operations which may be applied. The usual GA 

operations are mutation and crossover, although others can be 

devised also.

Mutation operates on a single genome and alters some of its slots according to a 

specified rule. 2-opt may be a valid mutation strategy, although even the generation of a 

random permutation of the TSP nodes may work if it is applied to a part of the genome 

and not to the whole. By controlling the magnitude of mutation (what portion of the 

genome is allowed to be involved in it), it is possible to choose the level of stochasticity 

in this process. But the key idea is that each change should retain at least some 

resemblance with the previous version, or we’ll just end up with stochastic search.

The crossbreeding operation isn’t, strictly speaking, necessary in the GA, but some 

of the implementations use it. This process transforms two partial solutions into two 

others by swapping some of the parts. Of course, it’s not possible to apply directly to TSP, 

as it would result in the violation of the main problem constraint of producing a loop that 

spans all the nodes. Instead, another procedure called the ordered crossover should be 

used. Without crossbreeding, GA may be considered a parallel version of local search.

Here is the basic GA skeleton. It requires definition of the procedures init- 

population, select-candidates, mutate, crossbread, and score-fitness:

(defun ga (population-size &key (n 100))

  (let ((genomes (init-population population-size)))

    (loop :repeat n :do

      (let ((candidates (select-candidates genomes)))

        (dolist (ex (mapcar 'mutate candidates))

          (push ex genomes))

        (dolist (ex (crossbread candidates))

          (push ex genomes)))

       (setf genomes (rtl:take population-size (sort genomes  

'score- fitness))))))

This template is not a gold standard; it can also be tweaked and altered, but you’ve 

got a general idea. The other evolutionary optimization methods also follow the same 

principles but define different ways to evolve the population. For example, particle 
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swarm optimization operates by moving candidate solutions (particles) around in 

the search space according to simple mathematical formulas over their position and 

velocity. The movement of each particle is influenced by its local best-known position, 

as well as guided toward the global best-known positions in the search space. And those 

are, in turn, updated as better positions are found by other particles. By the way, the 

same idea underlies the particle filter algorithm used in signal processing and statistical 

inference.

 Branch and Bound
Metaheuristics can be, in general, classified as local search optimization methods 

for they operate in a bottom-up manner by selecting a random solution and trying 

to improve it by gradual change. The opposite approach is global search that tries to 

systematically find the optimum by narrowing the whole problem space. We have 

already seen the same pattern of two alternative ways to approach the task—top-down 

and bottom-up—in parsing, and it also manifests in other domains that permit problem 

formulation as a search task.

How is a top-down systematic evaluation of the combinatorial search space even 

possible? Obviously, not in its entirety. However, there are methods that allow the 

algorithm to rule out significant chunks that certainly contain suboptimal solutions 

and narrow the search to only the relevant portions of the domain that may be much 

smaller in cardinality. If we manage to discard, this way, a large number of variants, we 

have more time to evaluate the other parts, thus achieving better results (e.g., with local 

search).

The classic global search is represented by the branch and bound (B&B) method. It 

views the set of all candidate solutions as a rooted tree with the full set being at the root. 

The algorithm explores branches of this tree, which represent subsets of the solution 

set. Before enumerating the candidate solutions of a branch, the branch is checked 

against upper and lower estimated bounds on the optimal solution and is discarded if 

it cannot produce a better solution than the best one found so far by the algorithm. The 

key feature of the algorithm is efficient bounds estimation. When it is not possible, the 

algorithm degenerates to an exhaustive search.

Here is a skeleton B&B implementation. Similar to the one for genetic algorithms, 

it relies on providing implementations of the key procedures separately for each search 

problem. For the case of TSP, the function will accept a graph, and all the permutations 
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of its vertices comprise the search space. We’ll use the branch struct to represent the 

subspace we’re dealing with. We can narrow down the search by pinning a particular 

subset of edges—this way, the subspace will contain only the variants originating from 

the possible permutations of the vertices that are not attached to those edges:

(defstruct branch

  (upper most-positive-fixnum)

  (lower 0)

  (edges (list))

The b&b procedure will operate on the graph g and will have an option to either work 

until the shortest path is found or terminate after n steps:

(defun b&b (g &key n)

  (rtl:with ((cur (vertices g))

             (min (cost cur)))

             (arg cur)

             (q (make-branch :upper min :lower (lower-bound g (list))))

    (loop :for i :from 0

          :for branch := (pop q) :while branch :do

      (when (eql i n) (return))

      (if (branchp branch)

          (dolist (item (branch-out branch))

            ;; we leave only the subbranches that can,

            ;; at least in theory, improve on the current solution

            (when (< (branch-lower item) upper)

              (push item q)))

          (let ((cost (branch-upper branch)))

            (when (< cost lower)

              (setf lower cost

                    arg branch)))))

    (values cur

            cost)))

Implementing the function branch-out is trivial: it needs to generate all the possible 

variants by expanding the current edge set with a single new edge, and it should also 

calculate the bounds for each variant by calling lower-bound on them.
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The most challenging part is figuring out the way to compute the lower-bound. The 

key insight here is the observation that each path in the graph is not shorter than half the 

sum of the shortest edges attached to each vertex. So the lower bound for a branch with 

pinned edges e1, e2, and e3 will be the sum of the lengths of these edges plus half the 

sum of the shortest edges attached to all the other vertices that the pinned edges don’t 

cover. It is the most straightforward and raw approximation that will allow the algorithm 

to operate:

(defun lower-bound (graph pinned-edges)

  (let ((cost 0)

        (forbidden-edges (apply 'rtl:hash-set 'eql pinned-edges)))

    (dolist (v (vertices graph))

      (let ((min1 most-positive-fixnum)

            (min2 most-positive-fixnum))

      (dolist (e (edges v))

        (unless (rtl:in# e forbidden-edges))

          (let ((len (edge-length e)))

            (cond ((< len min1) (setf min1 len))

                  ((< len min2) (setf min2 len))))))

      (incf cost (/ (+ min1 min2) 2)))

    (reduce '+ (mapcar 'edge-length pinned-edges)

            :initial-value cost)))

This implementation can be further improved both in terms of efficiency and finding 

smarter ways to estimate the lower bound. Devising ways to make it more precise and 

estimating if they are worth applying in terms of computational complexity is left as an 

exercise for the reader.

B&B may also use additional heuristics to further optimize its performance at the 

expense of producing a slightly more suboptimal solution. For example, one may wish 

to stop branching when the gap between the upper and lower bounds becomes smaller 

than a certain threshold. Another improvement may be to use a priority queue instead of 

a stack, in the example, in order to process the most promising branches first.

One more thing I wanted to mention in the context of global heuristic search is 

Monte Carlo tree search (MCTS), which, in my view, uses a very similar strategy to 

B&B. It is the currently dominant method for finding near-optimal paths in the decision 

tree for turn-based and other similar games (like go or chess). The difference between 
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B&B and MCTS is that, typically, B&B will use a conservative exact lower bound for 

determining which branches to skip. MCTS, instead, calculates the estimate of the 

potential of the branch to yield the optimal solution by performing the sampling of 

a number of random items from the branch and averaging their scores. So it can be 

considered a “softer” variant of B&B. The two approaches can be also combined, for 

example, to prioritize the branch in the B&B queue. The term “Monte Carlo,” by the way, 

is applied to many algorithms that use uniform random sampling as the basis of their 

operation.

 Gradient Descent
The key idea behind local search was to find a way to somehow improve the current best 

solution and change it in that direction. It can be similarly utilized when switching from 

discrete problems to continuous ones. And in this realm, the direction of improvement 

(actually, the best possible one) is called the gradient (or, rather, the opposite of 

the gradient). Gradient descent (GD) is the principal optimization approach, in the 

continuous space, that works in the same manner as local search: find the direction of 

improvement and progress alongside it. There’s also a vulgar name for this approach: hill 

climbing. It has a lot of variations and improvements that we’ll discuss in this chapter. 

But we’ll start with the code for the basic algorithm. Once again, it will be a template 

that can be filled in with specific implementation details for the particular problem. 

We see this “framework” pattern recurring over and over in optimization methods as 

most of them provide a general solution that can be applied in various domains and be 

appropriately adjusted for each one:

(defun gd (fn data &key n (learning-rate 0.1) (precision 1e-6))

  (let ((ws (init-weights fn))

        (cost (cost fn ws))

        (i 0))

    (loop

      (update-weights ws learning-rate

                      (grad fn ws data))

      (let ((prev cost))

        (setf cost (cost fn ws))
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        (when (or (< (abs (- cost prev)) precision)

                  (eql n (incf i)))

          (return))))

    (values ws

            cost))

This procedure optimizes the weights (ws) of some function fn. Moreover, whether 

we know or not the mathematical formula for fn doesn’t really matter: the key is to be 

able to compute grad, which may be done analytically (using a formula that is just coded) 

or in a purely data-driven fashion (what backprop, which we have seen in the previous 

chapter, does). ws will usually be a vector or a matrix, and grad will be an array of the same 

dimensions. In the simplest and not interesting toy case, both are just scalar numbers.

Besides, in this framework, we need to define the following procedures:

• init-weights sets the starting values in the ws vector according to fn. 

There are several popular ways to do that: the obvious one to set it to 

all zeroes, which doesn’t work in conjunction with backprop; sample 

from a uniform distribution with a small amplitude; and more 

advanced heuristics like Xavier initialization.

• update-weights has a simple mathematical formulation: 

(decf ws (* learning-rate gradient)). But as ws is usually a 

multidimensional structure, in Lisp, we can’t just use - and * on it as 

these operations are reserved for dealing with numbers.

• It is also important to be able to calculate the cost function (also often 

called “loss”). As you can see from the code, the GD procedure may 

terminate in two cases: either it has used the whole iteration budget 

assigned to it, or it has approached the optimum very closely, so that, 

at each new iteration, the change in the value of the cost function is 

negligible. Apart from this usage, tracking the cost function is also 

important to monitor the “learning” process (another name for the 

optimization procedure, popular in this domain). If GD is operating 

correctly, the cost should monotonically decrease at each step.

This template is the most basic one, and you can see a lot of ways of its further 

improvement and tuning. One important direction is controlling the learning rate: 

similar to simulated annealing, it may change over time according to some schedule or 

heuristics.
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Another set of issues that we won’t elaborate upon now are related to dealing 

with numeric precision, and they also include such problems as vanishing/exploding 

gradients.

 Improving GD
In the majority of interesting real-world optimization problems, the gradient can’t be 

computed analytically using a formula. Instead, it has to be recovered from the data, 

and this is a computationally intensive process: for each item in the dataset, we have 

to run the “forward” computation and then compute the gradient in the “backward” 

step. A diametrically opposite approach in terms of both computation speed and 

quality of the gradient would be to take just a single item and use the gradient for it 

as an approximation of the actual gradient. From the statistics point of view, after a 

long sequence of such samples, we have to converge to some optimum anyway. This 

technique, called stochastic gradient descent (SGD), can be considered a form of 

combining sampling with gradient descent. Yet, sampling could be also applied to the 

dataset directly. The latter approach is called batch gradient descent, and it combines 

the best of both worlds: decent performance and a much more predictable and close 

to the actual value of the gradient, which is more suitable for supporting the more 

advanced approaches, such as momentum.

In essence, momentum makes the gradient that is calculated on a batch of samples 

more straightforward and less prone to oscillation due to the random fluctuations of 

the batch samples. It is, basically, achieved by using the moving average of the gradient. 

Different momentum-based algorithms operate by combining the currently computed 

value of the update with the previous value. For example, the simple SGD with 

momentum will have the following update code:

(let ((dws 0))

  (loop

    (rtl:with ((batch (sample data batch-size))

               (g (calculate-gradient batch)))

      (setf dws (- (* decay-rate dws)

                   (* learning-rate g)))

      (incf ws dws))))
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An alternative variant is called the Nesterov accelerated gradient which uses the 

following update procedure:

(let ((dws 0))

  (loop

    (incf ws dws)

    (rtl:with ((batch (sample data batch-size))

               (g (- (* learning-rate (calculate-gradient batch)))))

      (setf dws (+ (* decay-rate dws) g))

      (incf ws g))))

That is, we first perform the update using the previous momentum and only then 

calculate the gradient and perform the gradient-based update. The motivation for 

it is the following: while the gradient term always points in the right direction, the 

momentum term may not. If the momentum term points in the wrong direction or 

overshoots, the gradient can still “go back” and correct it in the same update step.

Another direction of GD improvement is using the adaptive learning-rate. For 

instance, the famous Adam algorithm tracks per-cell learning rate for the ws matrix.

These are not all the ways in which plain gradient descent may be made more 

sophisticated—in order to converge faster. I won’t mention here second-order methods 

or conjugate gradients. Numerous papers exploring this space continue being published.

 Sampling
Speaking about sampling that we have mentioned several times throughout this book, I 

think this is a good place to mention a couple of simple sampling tricks that may prove 

useful in many different problems.

The sampling that is used in SGD is the simplest form of random selection that 

is executed by picking a random element from the set and repeating it the specified 

number of times. This sampling is called “with replacement.” The reason for this is 

that after picking an element, it is not removed from the set (i.e., it can be considered 

“replaced” by an equal element), and so it can be picked again. Such an approach is the 

simplest one to implement and reason about. There’s also the “without replacement” 

version that removes the element from the set after selecting it. It ensures that each 

element may be picked only once, but also causes the change in probabilities of picking 

elements on subsequent iterations.
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Here is an abstract (as we don’t specify the representation of the set and the 

related size, remove-item, and empty? procedures) implementation of these sampling 

methods:

(defun sample (n set &key (with-replacement t))

  (loop :repeat n

        :for i := (random (size set))

        :collect (rtl:? set i)

        :unless with-replacement :do

          (remove-item set i)

          (when (empty? set) (loop-finish)))

This simplest approach samples from a uniform probability distribution, that is, it 

assumes that the elements of the set have an equal chance of being selected. In many 

tasks, these probabilities have to be different. For such cases, a more general sampling 

implementation is needed:

(defun sample-from-dist (n dist)

  ;; here, DIST is a hash-table with keys being items

  ;; and values — their probabilities

  (let ((scale (reduce '+ (rtl:vals dist))))

    (loop :repeat n :collect

      (let ((r (* scale (random 1.0)))

            (acc 0))

        (rtl:dotable (k v dist)

          (incf acc v)

          (when (>= acc r)

            (return k)))))))

CL-USER> (sample-from-dist 10 #h(:foo 2 :quux 1 :baz 10))

(:BAZ :BAZ :BAZ :QUUX :BAZ :BAZ :BAZ :BAZ :BAZ :FOO)

I’m surprised how often I have to retell this simple sampling technique. In it, all the 

items are placed on a [0, 1) interval occupying the parts proportionate to their weight 

in the probability distribution (:baz will have 80% of the weight in the preceding 

distribution). Then we put a random point in this interval and determine in which part 

it falls.
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The final sampling approach I’d like to show here—quite a popular one for 

programming interviews—is reservoir sampling. It deals with uniform sampling from 

an infinite set. Well, how do you represent an infinite set? For practical purposes, it can be 

thought of as a stream. So the items are read sequentially from this stream, and we need to 

decide which ones to collect and which to skip. This is achieved by the following procedure:

(defun reservoir-sample (n stream)

  (let ((rez (make-array n :initial-element nil)))  ; reservoir

    (handler-case

        (loop :for item := (read stream)

              :for i :from 0

              :for r := (random (1+ i))

              :do (cond

                    ;; fill the reservoir with the first N items

                    ((< i n) (setf (aref rez i) item))

                    ;; replace the R-th item with probability

                    ;; proportionate to (- 1 (/ R N))

                    ((< r n) (setf (aref rez r) item))))

      ;; sampling stops when the stream is exhausted

      ;; we'll use an input stream and read items from it

      (end-of-file () rez))))

CL-USER> (with-input-from-string (in "foo foo foo foo bar bar baz")

           (reservoir-sample 3 in))

#(BAR BAZ FOO)

CL-USER> (with-input-from-string (in "foo foo foo foo bar bar baz")

           (reservoir-sample 3 in))

#(FOO FOO FOO)

CL-USER> (with-input-from-string (in "foo foo foo foo bar bar baz")

           (reservoir-sample 3 in))

#(BAZ FOO FOO)

CL-USER> (with-input-from-string (in (format nil "~{~A ~}"

                                             (loop :for i :from 0 :to 100

                                                   :collect i)))

           (reservoir-sample 10 in))

#(30 42 66 68 76 5 22 39 51 24)  ; note that 5 stayed at the same position

                                 ; where it was placed initially

Chapter 13  approximation



299

 Matrix Factorization
Matrix factorization is a decomposition of a matrix into a product of matrices. It has 

many different variants that find applications for particular classes of problems. 

Matrix factorization is a computationally intensive task that has many applications: 

from machine learning to information retrieval to data compression. Its use cases 

include background removal in images, topic modeling, collaborative filtering, CT scan 

reconstruction, and so on.

Among many factorization methods, the following two stand out as the most 

prominent: singular value decomposition (SVD) and non-negative matrix factorization/

non-negative sparse coding (NNSC). NNSC is interesting as it produces much sharper 

vectors that still remain sparse, that is, all the information is concentrated in the non- 

null slots.

 Singular Value Decomposition
SVD is the generalization of the eigendecomposition (which is defined only for square 

matrices) to any matrix. It is extremely important as the eigenvectors define the basis 

of the matrix, and the eigenvalues, the relative importance of the eigenvectors. Once 

SVD is performed, using the obtained vectors, we can immediately figure out a lot of 

useful properties of the dataset. Thus, SVD is behind such methods as PCA in statistical 

analysis, LSI topic modeling in NLP, and so on.

Formally, the singular value decomposition of an m x n matrix M is a factorization 

of the form (* U S V), where U is an m x m unitary matrix, V is an n x n unitary matrix, 

and S (usually, Greek sigma) is an m x n rectangular diagonal matrix with non-negative 

real numbers on the diagonal. The columns of U are left-singular vectors of M, the rows 

of V are right-singular vectors, and the diagonal elements of S are known as the singular 

values of M.

The singular value decomposition can be computed either analytically or via 

approximation methods. The analytic approach is not tractable for large matrices—the 

ones that occur in practice. Thus, approximation methods are used. One of the well- 

known algorithms is QuasiSVD that was developed as a result of the famous Netflix 

challenge in the 2000s. The idea behind QuasiSVD is, basically, gradient descent. The 

algorithm approximates the decomposition with random matrices and then iteratively 

improves it using the following formula:
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(defun svd-1 (u v rank training-data &key (learning-rate 0.001))

  (dotimes (f rank)

    (loop :for (i j val) :in training-data :do

      (let ((err (- val (predict rank u i v j))))

        (incf (aref u f i) (* learning-rate err (aref v f j)))

        (incf (aref v f j) (* learning-rate err (aref u f i))))))))

The described method is called QuasiSVD because the singular values are not 

explicit: the decomposition is into just two matrices of non-unit vectors. Another 

constraint of the algorithm is that the rank of the decomposition (the number of 

features) should be specified by the user. Yet, for practical purposes, this is often what 

is actually needed. Here is a brief description of the usage of the method for predicting 

movie reviews for the Netflix challenge:

For visualizing the problem, it makes sense to think of the data as a big 
sparsely filled matrix, with users across the top and movies down the side, 
and each cell in the matrix either contains an observed rating (1-5) for that 
movie (row) by that user (column) or is blank meaning you don’t know. 
This matrix would have about 8.5 billion entries (number of users times 
number of movies). Note also that this means you are only given values for 
one in 85 of the cells. The rest are all blank.

The assumption is that a user’s rating of a movie is composed of a sum of 
preferences about the various aspects of that movie. For example, imagine 
that we limit it to forty aspects, such that each movie is described only by 
forty values saying how much that movie exemplifies each aspect, and cor-
respondingly each user is described by forty values saying how much they 
prefer each aspect. To combine these all together into a rating, we just mul-
tiply each user preference by the corresponding movie aspect, and then add 
those forty leanings up into a final opinion of how much that user likes that 
movie. […] Such a model requires (* 40 (+ 17k 500k)) or about 20M val-
ues—400 times less than the original 8.5B .

Here is the function that approximates the rating. The QuasiSVD matrix u is user- 

features and v movie-features. As you see, we don’t need to further factor u and v into 

the matrix of singular values and the unit vectors’ matrices:

(defun predict-rating (rank user-features user movie-features movie)

  (loop :for f :from 0 :below rank

        :sum (* (aref user-features f user)

                (aref movie-features f movie))))
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 Fourier Transform
The last item we’ll discuss in this chapter is not exactly an optimization problem, but 

it’s also a numeric algorithm that bears a lot of significance to the previous one and has 

broad practical applications. The discrete Fourier transform (DFT) is the most important 

discrete transform, used to perform Fourier analysis in many practical applications: in 

digital signal processing, the function is any quantity or signal that varies over time, such 

as the pressure of a sound wave, a radio signal, or daily temperature readings, sampled 

over a finite time interval; in image processing, the samples can be the values of pixels 

along a row or column of a raster image.

It is said that the Fourier transform transforms a “signal” from the time/space 

domain (represented by observed samples) into the frequency domain. Put simply, 

a time-domain graph shows how a signal changes over time, whereas a frequency- 

domain graph shows how much of the signal lies within each given frequency band over 

a range of frequencies. The inverse Fourier transform performs the reverse operation 

and converts the frequency-domain signal back into the time domain. Explaining the 

deep meaning of the transform is beyond the scope of this book; the only thing worth 

mentioning here is that operating on the frequency domain allows us to perform many 

useful operations on the signal, such as determining the most important features, 

compression (that we’ll discuss in the following), and so on.

The complexity of computing DFT naively just by applying its definition on n 

samples is O(n^2) :

(defun dft (vec)

  (rtl:with ((n (length vec))

             (rez (make-array n))

             (scale (/ (- (* 2 pi #c(0 1))) n)))

    ;; #c(0 1) is imaginary unit (i) - Lisp allows us

    ;; to operate on complex numbers directly

    (dotimes (i n)

      (setf (aref rez i)

            (loop :for j :from 0 :below n

                  :sum (* (aref vec j)

                          (exp (* scale i j))))))))
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However, the well-known fast Fourier transform (FFT) achieves a much better 

performance of O(n log n) . Actually, a group of algorithms shares the name FFT, but 

their main principle is the same. You might have already guessed, from our previous 

chapters, that such reduction in complexity is achieved with the help of the divide- 

and- conquer approach. A radix-2 decimation-in-time (DIT) FFT is the simplest 

and most common form of the Cooley-Tukey algorithm, which is the standard FFT 

implementation. It first computes the DFTs of the even-indexed inputs (indices  

0, 2, ..., (- n 2)) and of the odd-indexed inputs (indices 1, 3, ..., (-n 1)) and 

then combines those two results to produce the DFT of the whole sequence. This idea is 

utilized recursively. What enables such decomposition is the observation that, thanks to the 

periodicity of the complex exponential, the elements (? rez i) and (? rez (+ i n/2)) 

may be calculated from the FFTs of the same subsequences. The formulas are the 

following:

(let ((e (fft-of-even-indexed-part))

      (o (fft-of-odd-indexed-part))

      (scale (exp (/ (- (* 2 pi #c(0 1) i))

                     n)))

      (n/2 (floor n 2)))

  (setf (aref rez i) (+ (aref e i) (* scale (aref o i)))

        (aref rez (+ i n/2)) (- (aref e i) (* scale (aref o i)))))

 Fourier Transform in Action: JPEG
Fourier transform—or rather its variant that uses only cosine functions2 and operates on 

real numbers, the discrete cosine transform (DCT)—is the enabling factor of the main 

lossy media compression formats, such as JPEG, MPEG, and MP3. All of them achieve 

the drastic reduction in the size of the compressed file by first transforming it into the 

frequency domain and then identifying the long tail of low-amplitude frequencies and 

removing all the data that is associated with these frequencies (which is, basically, 

noise). Such an approach allows specifying a threshold of the percentage of data that 

should be discarded and retained. The use of cosine rather than sine functions is critical 

for compression since it turns out that fewer cosine functions are needed to approximate 

2 The standard Fourier transform uses both the sine and cosine functions that are the components 
of the complex exponent.
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a typical signal. Also, this allows sticking to only real numbers. DCTs are equivalent to 

DFTs of roughly twice the length, operating on real data with even symmetry. There are, 

actually, eight different DCT variants, and we won’t go into detail about their differences.

The general JPEG compression procedure operates in the following steps:

• An RGB to YCbCr color space conversion (a special color space with 

luminescence and chrominance components more suited for further 

processing).

• Division of the image into 8 × 8–pixel blocks.

• Shifting the pixel values from [0,256) to [-128,128).

• Applying DCT to each block from left to right, top to bottom.

• Compressing each block through quantization.

• Entropy encoding the quantized matrix (we’ll discuss this in the next 

chapter).

• Compressed image is reconstructed through the reverse process 

using the inverse discrete cosine transform (IDCT).

The quantization step is where the lossy part of compression takes place. It aims 

at reducing most of the less important high-frequency DCT coefficients to zero; the 

more zeroes there are, the better the image will compress. Lower frequencies are used 

to reconstruct the image because the human eye is more sensitive to them, and higher 

frequencies are discarded.

P.S. Also, further development of the Fourier-related transforms for lossy 

compression lies in using the wavelet family of transforms.

 Takeaways
It was not easy to select the name for this chapter. Originally, I planned to dedicate it to 

optimization approaches. Then I thought that a number of other numerical algorithms 

needed to be presented, but they were not substantial enough to justify a separate 

chapter. After all, I saw that what all these different approaches are about is, first of all, 

approximation. And, after gathering all the descriptions in one place and combining 
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them, I came to the conclusion that approximation is, in a way, a more general and 

correct term than optimization. However, they go hand in hand, and it’s somewhat hard 

to say which one enables the other…

A conclusion that we can draw from this chapter is that the main optimization 

methods currently in use boil down to greedy local probabilistic search. In both the 

discrete and continuous domains, the key idea is to quickly find the direction, in which 

we can somewhat improve the current state of the system, and advance alongside that 

direction. All the rest is, basically, fine-tuning of this concept. There are alternatives, 

but local search a.k.a. gradient descent a.k.a. hill climbing dominates the optimization 

landscape.

Another interesting observation can be made that many approaches we have seen 

here are more of templates or frameworks than algorithms. Branch and bound, genetic 

programming, and local search define a certain skeleton that should be filled with 

domain-specific code which will perform the main computations. Such a “big picture” 

approach is somewhat uncommon to the algorithm world that tends to concentrate 

on the low-level details and optimize them down to the last bit. So the skills needed to 

design such generic frameworks are no less important to the algorithmic developers 

than knowledge of the low-level optimization techniques.

SGD, SVD, MCTS, NNSC, FFT—this sphere has plenty of algorithms with abbreviated 

names for solving particular numerical problems. We have discussed only the most well- 

known and principal ones with broad practical significance in the context of software 

development. But, besides them, there are many other famous numerical algorithms like 

the sieve of Eratosthenes, the finite element method, the simplex method, and so on and 

so forth. Yet, many of the ways to tackle them and the issues you will encounter in the 

process are, essentially, similar.
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CHAPTER 14

Compression
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Compression is one of the tools that every programmer should understand and wield 

confidently. Such situations when the size of the dataset is larger than the program can 

handle directly and it becomes a bottleneck are quite frequent and can be encountered 

in any domain. There are many forms of compression, yet the most general subdivision 

is between lossless one which preserves the original information intact and lossy 

compression which discards some information (assumed to be the most useless part 

or just noise). Lossless compression is applied to numeric or text data, whole files, 

or directories—the data that will become partially or utterly useless if even a slight 

modification is made. Lossy compression, as a rule, is applied to data that originates in 

the “analog world”: sound or video recordings, images, and so on. We have touched the 

subject of lossy compression slightly in the previous chapter when talking about such 

formats as JPEG. In this chapter, we will discuss the lossless variants in more detail. 

Besides, we'll talk a bit about other, non-compressing forms of encoding.

 Encoding
Let's start with encoding. Lossless compression is, in fact, a form of encoding, but there 

are other, simpler forms. And it makes sense to understand them before moving to 

compression. Besides, encoding itself is a fairly common task. It is the mechanism that 

transforms the data from an internal representation of a particular program into some 
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specific format that can be recognized and processed (decoded) by other programs. 

What we gain is that the encoded data may be serialized and transferred to other 

computers and decoded by other programs, possibly, independent of the program that 

performed the encoding.

Encoding may be applied to different semantic levels of the data. Character encoding 

operates on the level of individual characters or even bytes, while various serialization 

formats deal with structured data. There are two principal approaches to serialization: 

text-based and binary. The pros and cons are the opposite: text-based formats are 

easier to handle by humans but are usually more expensive to process, while binary 

variants are not transparent (and so much harder to deal with) but much faster to 

process. From the point of view of algorithms, binary formats are, obviously, better. 

But my programming experience is that they constitute a severe form of premature 

optimization. The rule of thumb should always be to start with text-based serialization 

and move to binary formats only as a last resort when it was proven that the impact on 

the program performance from that is significant and critical.

 Base64
Encoding may have both a reduction and a magnification effect on the size of the data. 

For instance, there's a popular encoding scheme—Base64. It is a byte-level (lowest- 

level) encoding that doesn't discriminate between different input data representations 

and formats. No, the encoder just takes a stream of bytes and produces another 

stream of bytes—or, more precisely, bytes in the specific range of English ASCII letters, 

numbers, and three more characters (usually, +, /, and = ). This encoding is often used 

for transferring data in the Web, in conjunction with SMTP (MIME), HTTP, and other 

popular protocols. The idea behind it is simple: split the data stream into sextets  

(6- bit parts—there are 64 different variants of those), and map each sextet to an ASCII 

character according to a fixed dictionary. As the last byte of the original data may not 

align with the last sextet, an additional padding character (=) is used to indicate 2 (=) or  

4 (==) misaligned bits. As we see, Base64 encoding increases the size of the input data by 

a factor of 1.33.
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Here is one of the ways to implement a Base64 serialization routine:

(defparameter *b64-dict*

  (coerce (append (loop :for ch :from (char-code #\A) :to (char-code #\Z)

                        :collect (code-char ch))

                  (loop :for ch :from (char-code #\a) :to (char-code #\z)

                        :collect (code-char ch))

                  (loop :for ch :from (char-code #\0) :to (char-code #\9)

                        :collect (code-char ch))

                  '(#\+ #\/ #\=))

          'simple-vector))

(defun b64-encode (in out)

  (let ((key 0)

        (limit 6))

    (flet ((fill-key (byte off beg limit)

             (setf (ldb (byte limit off) key)

                   (ldb (byte limit beg) byte))

             (setf off (- 6 beg)))

           (emit1 (k)

             (write-byte (char-code (svref *b64-dict* k)) out)))

      (loop :for byte := (read-byte in nil) :while byte :do

        (let ((beg (- 8 limit)))

          (fill-key byte 0 beg limit)

          (emit1 key)

          (fill-key byte (setf limit (- 6 beg)) 0 beg)

          (when (= 6 beg)

            (emit1 key)

            (setf limit 6))))

      (when (< limit 6)

        (setf (ldb (byte limit 0) key)

              (ldb (byte limit 0) 0))

        (emit1 key)

        (loop :repeat (ceiling limit 2) :do

          (emit1 64))))))
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This is one of the most low-level pieces of Lisp code in this book. It could be written 

in a much more high-level manner: utilizing the generic sequence access operations, 

say, on bit-vectors, instead of the bit-manipulating ones on numbers. However, it would 

be also orders of magnitude slower due to the need to constantly “repackage” the bits, 

converting the data from integers to vectors and back. I also wanted to show a bit of 

bit fiddling, in Lisp. The standard, in fact, defines a comprehensive vocabulary of bit 

manipulation functions; and there's nothing stopping the programmer from writing 

performant code operating at a single bit level.

One important choice made for Base64 encoding is the usage of streams as the 

input and output. This is a common approach to such problems based on the following 

considerations:

• It is quite easy to wrap the code so that we could feed/extract strings 

as inputs and outputs. Doing the opposite and wrapping a string- 

based code for stream operation is also possible, but it defeats the 

whole purpose of streams, which is…

• Streams allow to efficiently handle data of any size and not waste 

memory, as well as CPU, for storing intermediary copies of the strings 

we're processing. Encoding a huge file is a good illustration of why 

this matters. With streams, we do it in an obvious manner: (with- 

open- file (in ...) (rtl:with-out-file (out) (base64-encode 

in out)). With strings, however, it will mean, first, reading the file 

contents into memory—and we may not even have enough memory 

for that—and, after that, filling another big chunk of memory with the 

encoded data, which we'll still, probably, need to either dump to a file 

or send over the network.

So what happens in the preceding code? First, the bytes are read from the binary 

input stream in; then each one is slashed into two parts. The higher bits are set into 

the current base64 key, which is translated, using b64-dict, into an appropriate byte 

and emitted to the binary output stream out. The lower bits are deposited in the higher 

bits of the next key in order to use this leftover during the processing of the next byte. 

However, if the leftover from the previous byte was 4 bits, at the current iteration, we 

will have 2 base64 bytes available as the first will use 2 bits from the incoming byte 

and the second will consume the remaining 6 bits. This is addressed in the code block 
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(when (= 6 beg) ...). The function relies on the standard Lisp ldb operation which 

provides access to the individual bits of an integer. It uses the byte-spec (byte limit 

offset) to control the bits it wants to obtain.

Implementing a decoder procedure is left as an exercise to the reader…

Taking the example from the Wikipedia article, we can see our encoding routine in 

action (here, we also rely on the FLEXI- STREAMS library to work with binary in-memory 

streams):

CL-USER> (let ((in (flex:make-in-memory-input-stream

                    (map 'vector 'char-code "Man i")))

               (out (flex:make-in-memory-output-stream)))

           (b64-encode in out)

           (map 'string 'code-char (rtl:? out 'vector))))

"TWFuIGk="

This function, although it's not big, is quite hard to debug due to the need for careful 

tracking and updating of the offsets into both the current base64 chunk (key) and the 

byte being processed. What really helps me tackle such situations is a piece of paper 

that serves for recording several iterations with all the relevant state changes. Something 

along these lines:

        M (77)    |    a (97)     |    n (110)

   0 1 0 0 1 1 0 1|0 1 1 0 0 0 0 1|0 1 1 0 1 1 1 0

0: 0 1 0 0 1 1    |               |                 19 = T

               0 1|               |

1:             0 1|0 1 1 0        |                 22 = W

                  |        0 0 0 1|

2:                |        0 0 0 1|0 1               5 = F

Iteration 0:

beg: 2

off: 0

limit: 6

beg: 0

off: (- 6 2) = 4

limit: 2
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Iteration 1:

beg: 4

off: 0

limit: 4

beg: 0

off: (- 6 4) = 2

limit: 4

Another thing that is indispensable, when coding such procedures, is the availability 

of the reference examples of the expected result, like the ones in Wikipedia. Lisp REPL 

makes iterating on a solution and constantly rechecking the results, using such available 

data, very easy. However, sometimes, it makes sense to reject the transient nature of code 

in the REPL and record some of the test cases as unit tests. As the motto of my test library 

should- test declares, you should test even Lisp code sometimes. :) The tests also help the 

programmer to remember and systematically address the various corner cases. In this 

example, one of the special cases is the padding at the end, which is handled in the code 

block (when (< limit 6) ...). Due to the availability of a clear spec and reference 

examples, this algorithm lends itself very well to automated testing. As a general rule, all 

code paths should be covered by the tests. If I were to write those tests, I'd start with the 

following simple version. They address all three variants of padding and also the corner 

case of an empty string:

(deftest b64-encode ()

  ;;  B64STR would be the function wrapped over the REPL code presented 

above

  (should be rtl:blankp (b64str ""))

  (should be string= "TWFu" (b64str "Man"))

  (should be string= "TWFuIA==" (b64str "Man "))

  (should be string= "TWFuIGk=" (b64str "Man i")))

Surely, many more tests should be added to a production-level implementation: to 

validate operation on non-ASCII characters, handling of huge data, and so on.

Chapter 14  Compression

https://github.com/vseloved/should-test


311

 Lossless Compression
The idea behind lossless compression is straightforward: find an encoding that is 

tailored to our particular dataset and allows the encoding procedure to produce 

a shorter version than using a standard encoding. Not being general-purpose, the 

vocabulary for this encoding may use a more compact representation for those things 

that occur often and a longer one for those that appear rarely, skipping altogether those 

that don't appear at all. Such an encoding scheme will be, probably, structure-agnostic 

and just convert sequences of bytes into other sequences of a smaller size, although 

custom structure-aware compression is also possible.

This approach can be explained with a simple example. The phrase “this is a test” 

uses 8-bit ASCII characters to represent each letter. There are 256 different ASCII 

characters in total. However, for this particular message, only seven characters are used: 

t, h, i, s, Space, a, and e. Seven characters, according to the entropy definition, need only 

2.81 bits to be distinguished. Encoding them in just 3 ((ceiling 2.81)) bits instead of 

8 will reduce the size of the message almost thrice. In other words, we could create the 

following vocabulary (where #*000 is a Lisp literal representation of a zero bit-vector of 3 

bits):

#h(#\t #*000

   #\h #*001

   #\i #*010

   #\s #*011

   #\a #*100

   #\e #*101

   #\Space #*110)

Using this vocabulary, our message could be encoded as the following bit-vector: #

*0000010100111100100111101001100001010111000. The downside, compared to using 

some standard encoding, is that we now need to package the vocabulary alongside 

the message, which will make its total size larger than the original that used an 8-bit 

standard encoding with a known vocabulary. It's clear, though, that, as the message 

becomes longer, the fixed overhead of the vocabulary will quickly be exceeded by the 

gain from message size reduction. However, we have to account for the fact that the 

vocabulary may also continue to grow and require more and more bits to represent 

each entry (for instance, if we use all Latin letters and numbers, it will soon reach 6 or 7 

bits, and our gains will diminish as well). Still, the difference may be pre-calculated and 
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the decision made for each message or a batch of messages. For instance, in this case, 

the vocabulary size may be, say, 30 bytes, and the message size reduction is 62.5%, so 

a message of 50 or more characters will be already more compact if encoded with this 

vocabulary even when the vocabulary itself will be sent with it. The case of only seven 

characters is pretty artificial, but consider that DNA strings have only four characters.

However, this simplistic approach is just the beginning. Once again, if we use an 

example of the Latin alphabet, some letters, like q or x, may end up used much less 

frequently, than, say, p or a. Our encoding scheme uses equal-length vectors to represent 

them all. Yet, if we were to use shorter representations for more frequently used 

chars at the expense of longer ones for the characters occurring less often, additional 

compression could be gained. That's exactly the idea behind Huffman coding.

 Huffman Coding
Huffman coding tailors an optimal “alphabet” for each message, sorting all letters based 

on their frequency and putting them in a binary tree, in which the most frequent ones 

are closer to the top and the less frequent ones to the bottom. This tree allows calculating 

a unique encoding for each letter based on a sequence of left or right branches that need 

to be taken to reach it, from the top. The key trick of the algorithm is the usage of a heap 

to maintain the characters (both individual and groups of already processed ones) in 

sorted order. It builds the tree bottom-up by first extracting two least frequent letters 

and combining them: the least frequent on the left, the more frequent on the right. Let's 

consider our test message. In it, the letters are sorted by frequency in the following order:

((#\a 1) (#\e 1) (#\h 1) (#\i 2) (#\s 3) (#\t 3) (#\Space 3))

Extracting the first two letters results in the following treelet:

 ((#\a #\e) 2)

  /         \

(#\a 1)  (#\e 1)

Uniting the two letters creates a tree node with a total frequency of 2. To use this 

information further, we add it back to the queue in place of the original letters, and it 

continues to represent them during the next steps of the algorithm:

((#\h 1) ((#\a #\e) 2) (#\i 2) (#\s 3) (#\t 3) (#\Space 3))
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By continuing this process, we'll come to the following end result:

  ((#\s #\t #\Space #\i #\h #\a #\e) 14)

    /                                \

 ((#\s #\t) 6)     ((#\Space #\i #\h #\a #\e) 8)

   /        \        /                       \

(#\s 3)   (#\t 3) (#\Space 3)  ((#\i #\h #\a #\e) 5)

                                 /               \

                              (#\i 2)  ((#\h #\a #\e) 3)

                                         /           \

                                      (#\h 1)  ((#\a #\e) 2)

                                                 /       \

                                               (#\a 1)  (#\e 1)

From this tree, we can construct the optimal encoding:

#h(#\s #*00

   #\t #*01

   #\Space #*10

   #\i #*110

   #\h #*1110

   #\a #*11110

   #\e #*11111)

Compared to the simple approach that used constantly 3 bits per character, it takes 

1 bit less for the three most frequent letters and 2 bits more for two least frequent ones. 

The encoded message becomes #*01111011000101100010111101001111110001, and it 

has a length of 38 compared to 43 for our previous attempt.

To be clear, here are the encoding and decoding methods that use the pre-built 

vocabulary (for simplicity's sake, they operate on vectors and strings instead of streams):

(defun huffman-encode (envocab str)

  (let ((rez (make-array 0 :element-type 'bit 

                         :adjustable t :fill-pointer t)))

    (rtl:dovec (char str)

      (rtl:dovec (bit (rtl:? envocab char))

        (vector-push-extend bit rez)))

    rez))
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(defun huffman-decode (devocab vec)

  (let (rez)

    (dotimes (i (length vec))

      (dotimes (j (- (length vec) i))

        (rtl:when-it (rtl:? devocab (rtl:slice vec i (+ i j 1)))

          (push rtl:it rez)

          (incf i j)

          (return))))

    (coerce (reverse rez) 'string)))

It is worth recalling that vector-push-extend is implemented in a way which will 

not adjust the array by only 1 bit each time it is called. The efficient implementation 

“does the right thing,” for whatever the right thing means in this particular case (maybe 

adjusting by one machine word). You can examine the situation in more detail by trying 

to extend the array by hand (using adjust-array or providing a third optional argument 

to vector-push-extend ) and comparing the time taken by the different variants, to 

verify my words.

Finally, here is the most involved part of the Huffman algorithm, which builds 

the encoding and decoding vocabularies (with the help of a heap implementation we 

developed in Chapter 9):

(defun huffman-vocabs (str)

  ;; here we assume more than a single unique character in STR

  (let ((counts #h())

        (q (make-heap :op '< :key 'rt))

        (envocab #h())

        (devocab #h(equal)))  ; bit-vectors as keys require

                              ; equal comparison

    ;; count character frequencies

    (rtl:dovec (char str)

       (incf (gethash char counts 0)))  ; here, we use the default third argument

                                       ; of get# with the value of 0

    ;; heapsort the characters based on their frequency

    (rtl:dotable (char count counts)

      (heap-push (pair char count) q))
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    ;; build the tree

    (dotimes (i (1- (heap-size q)))

      (rtl:with (((lt cl) (heap-pop q))

                 ((rt cr) (heap-pop q)))

        (heap-push (pair (list lt rt) (+ cl cr))

                   q)))

    ;; traverse the tree in DFS manner

    ;; encoding the path to each leaf node as a bit-vector

    (labels ((dfs (node &optional (level 0) path)

               (if (listp node)

                   (progn

                     (dfs (rtl:lt node) (1+ level) (cons 0 path))

                     (dfs (rtl:rt node) (1+ level) (cons 1 path)))

                   (let ((vec (make-array level :element-type 'bit

                                           :initial-contents

                                          (reverse path))))

                     (setf (rtl:? envocab node) vec

                           (rtl:? devocab vec) node)))))

      (dfs (lt (heap-pop q))))

    (list envocab devocab)))

 Huffman Coding in Action: Dictionary Optimization
Compression is one of the areas for which it is especially interesting to directly compare 

the measured gain in space usage to the one expected theoretically. Yet, as we discussed 

in one of the previous chapters, such measurements are not so straightforward as 

execution speed measurements. Yes, if we compress a single sequence of bytes into 

another one, there's nothing more trivial than to compare their lengths, but, in many 

tasks, we want to see a cumulative effect of applying compression on a complex data 

structure. This is what we're going to do next.

Consider the problem that I had in my work on the tool for text language 

identification wiki- lang- detect. This software relies on a number of big dictionaries that 

map strings (character trigrams and individual words) to floats. The obvious approach to 

storing these maps is with a hash-table. However, due to the huge number of keys, such 

table will, generally, have a sizeable overhead, which we would like to avoid. Besides, 
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the keys are strings, so they have a good potential for reduction in occupied size when 

compressed. The data is also serialized into per-language files in the tab-separated 

format. This is the sample of a word-level file for the Danish language:

afrika    -8.866735

i    -2.9428265

the    -6.3879676

ngo    -11.449115

of    -6.971129

kanye    -12.925021

e    -8.365895

natal    -12.171249

Our task is to load the data in memory so that access to the keys has constant 

runtime and minimal occupied space.

Let's begin with a simple hash-table-based approach. The following function will 

load two files from the default directory (*default-pathname-defaults*) and return a 

list of two hash-tables—for the word and trigram probabilities:

(defun load-data-into-hts (lang)

  (declare (optimize sb-c::instrument-consing))

  (mapcar (lambda (kind)

            (let ((rez (make-hash-table :test 'equal)))

              (dolines (line (fmt "~A-~A.csv" lang kind))

                (let ((space (position #\Space line)))

                  (rtl:sethash (slice line 0 space) rez

                                (read-from-string (slice line (1+ 

space))))))

              rez))

          '("words" "3gs")))
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To measure the space it will take, we'll use a new SBCL extension called allocation 

profiling from the sb-aprof package.1 To enable the measurement, we have put a 

special declaration immediately after the defun header: (optimize sb-c::instrument- 

consing).

Now, prior to running the code, let's look at the output of room:

CL-USER> (room)

Dynamic space usage is:   60,365,216 bytes.

...

This is a freshly loaded image, so space usage is minimal. Usually, before proceeding 

with the experiment, I invoke garbage collection to ensure that we don't have some 

leftover data from the previous runs that may overlap with the current one. In SBCL, you 

run it with (sb-ext:gc:full t).

Now, let's load the files for the German language (the biggest ones) under aprof. 

The data can be obtained from the GitHub repository of the project. The total size of two 

German-language files on disk (words and trigram dictionaries) is around 4 MB:

CL-USER> (sb-aprof:aprof-run

          (lambda () (defparameter *de* (load-data-into-hts "DE"))))

227 (of 50000 max) profile entries consumed

       %        Bytes        Count    Function

 -------  -----------    ---------    --------

    24.2     34773600       434670    SB-KERNEL:%MAKE-ARRAY - #:|unknown|

    19.4     27818880       217335     SB-IMPL::%MAKE-STRING-INPUT-STREAM - 

SB-IMPL::STRING-INPUT-STREAM

    19.4     27818880       434670    SLICE - LIST

    17.3     24775088                 SB-IMPL::HASH-TABLE-NEW-VECTORS

    54.0     13369744         52      SIMPLE-VECTOR

    46.0     11405344        156       (SIMPLE-ARRAY (UNSIGNED-BYTE 32) (*))

1 To make full use of this feature and be able to profile SBCL internal functions, you’ll need to 
compile SBCL with the --with-cons-profiling flag. Many thanks to Douglas Katzman for 
developing this feature and guiding me through its usage.

Chapter 14  Compression

https://github.com/vseloved/wiki-lang-detect/blob/master/models/wiki156min.zip


318

    14.9     21406176                  SB-IMPL::ANSI-STREAM-READ-LINE-FROM-

FRC-BUFFER

    99.4     21280192     225209      (SIMPLE-ARRAY CHARACTER (*))

     0.6       125984       7874      LIST

     4.8      6957184     217412      SB-KERNEL::INTEGER-/-INTEGER - RATIO

    00.0        14160                 SB-IMPL::%MAKE-PATHNAME

    91.8        12992        812      LIST

     8.2         1168          1      SIMPLE-VECTOR

    00.0         4160          2       SB-IMPL::SET-FD-STREAM-ROUTINES - 

(SIMPLE-ARRAY CHARACTER (*))

    00.0         3712                 SB-IMPL::%MAKE-DEFAULT-STRING-OSTREAM

    62.1         2304          8      (SIMPLE-ARRAY CHARACTER (*))

    37.9         1408          8      SB-IMPL::CHARACTER-STRING-OSTREAM

    00.0         1024                 MAKE-HASH-TABLE

    53.1          544          2      SIMPLE-VECTOR

    46.9          480          6       (SIMPLE-ARRAY (UNSIGNED-BYTE 32) (*))

    00.0          832                 SB-IMPL::%MAKE-FD-STREAM

    73.1          608          2      SB-SYS:FD-STREAM

    19.2          160          2      SB-VM::ARRAY-HEADER

     7.7           64          2      (SIMPLE-ARRAY CHARACTER (*))

    00.0          576                 GET-OUTPUT-STREAM-STRING

    55.6          320          8      SIMPLE-BASE-STRING

    44.4          256          8      SB-KERNEL:CLOSURE

    00.0          400                 SB-KERNEL:VECTOR-SUBSEQ*

    60.0          240          6      (SIMPLE-ARRAY CHARACTER (*))

    40.0          160          5      SIMPLE-BASE-STRING

    00.0          400          5      SB-IMPL::%%MAKE-PATHNAME - PATHNAME

    00.0          384          2      SB-IMPL::%MAKE-HASH-TABLE - HASH- TABLE

    00.0          288          4       SB-KERNEL:%CONCATENATE-TO-STRING - 

(SIMPLE-ARRAY CHARACTER (*))
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    00.0         1w92           12     SB-IMPL::UNPARSE-NATIVE-PHYSICAL- 

FILE - LIST

    00.0          176            2     SB-IMPL::READ-FROM-C-STRING/UTF-8 - 

(SIMPLE-ARRAY CHARACTER (*))

    00.0          128            4     SB-ALIEN-INTERNALS:%SAP-ALIEN -  

SB- ALIEN- INTERNALS:ALIEN-VALUE

    00.0           96                 SB-IMPL::QUERY-FILE-SYSTEM

    66.7           64            2    SB-KERNEL:CLOSURE

    33.3           32            2    SB-VM::VALUE-CELL

 =======  ===========

   100.0    143576336

The profiling report is pretty cryptic, at first sight, and requires some knowledge of 

SBCL internals to understand. It contains all the allocations performed during the test 

run, so we should mind that some of the used memory is garbage and will be collected at 

the next gc. We can confirm that by looking at the room output:

CL-USER> (room)

Dynamic space usage is:   209,222,464 bytes.

CL-USER> (sb-ext:gc :full t)

NIL

CL-USER> (room)

Dynamic space usage is:   107,199,296 bytes.

Let's study the report in detail. Around 47 MB was, in fact, used for the newly 

created data structures—more than ten times what was needed to store the data on 

disk. Well, efficient access requires sacrificing a lot of space. From the report, we can 

make an educated guess where this 47 MB originates: 24.7 MB was used for the hash-

table structures themselves (SB-IMPL::HASH-TABLE-NEW-VECTORS) and 21.4 MB for the 

keys (SB- IMPL::ANSI-STREAM-READ-LINE-FROM-FRC-BUFFER), plus some small amount 

of bookkeeping information. We can also infer that the floating-point values required 

around 7 MB (SB-KERNEL::INTEGER-/-INTEGER - RATIO), but it seems like they were 

put inside the hash-table arrays without any indirection. To verify that this assumption is 

correct, we can calculate the total number of keys in the hash-tables, which amounts to 
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216993, and multiply it by 32 (the number of bits in a short-float used here). Also, the first 

three lines, which, in total, accrued around 90 MB or almost two-thirds of the memory 

used, are all related to reading the data and its processing; and this space was freed 

during gc.

So this report, although it is not straightforward to understand, gives a lot of insight 

into how space is used during the run of the algorithm. And the ability to specify what to 

track on a per-code block basis makes it even more useful.

From the obtained breakdown, we can see the optimization potential of the current 

solution:

• The use of a more space-efficient data structure instead of a hash- 

table might save us up to 17 MB of space (7 MB of float values will 

remain intact).

• And another 20 MB may be saved if we compress the keys.

Let's try the second option as it is exactly the focus of this chapter. We'll use the 

created hash-tables to make new ones with Huffman-encoded keys. Here are the 

contents of the word probabilities table:

;; the following output was obtained with *print-length* set to 10

CL-USER> (rtl:print-ht (first *de*))

#{EQUAL

  "afrika" -9.825206

  "i" -7.89809

  "the" -7.0929685

  "ngo" -12.696277

  "noma" -14.284437

  "of" -6.82038

  "kanye" -14.233144

  "e" -7.7334323

  "natal" -11.476304

  "c" -8.715089

  ...

 }
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And here is the function that will transform the tables:

(defun huffman-tables (hts envocab)

  (declare (optimize sb-c::instrument-consing))

  (mapcar (lambda (ht)

            (let ((rez (make-hash-table :test 'equal)))

              (rtl:dotable (str logprob ht)

                (setf (rtl:? rez (huffman-encode envocab str)) logprob))

              rez))

          hts))

;; the Huffman encoding vocabulary *DE-VOCAB* should be built

;; from all the keys of *DE* tables separately

CL-USER> (sb-aprof:aprof-run

          (lambda () (defparameter *de2* (huffman-tables *de* *de- vocab*))))

1294 (of 50000 max) profile entries consumed

       %        Bytes        Count    Function

 -------  -----------    ---------    --------

    42.5     44047104      1376461     SB-VM::ALLOCATE-VECTOR-WITH- 

WIDETAG - ARRAY

    23.9     24775088                 SB-IMPL::HASH-TABLE-NEW-VECTORS

    54.0     13369744         52      SIMPLE-VECTOR

    46.0     11405344        156       (SIMPLE-ARRAY (UNSIGNED-BYTE 32) (*))

    20.1     20864160                 HUFFMAN-ENCODE

    83.3     17386800       217335    SB-VM::ARRAY-HEADER

    16.7      3477360       217335    SIMPLE-BIT-VECTOR

     6.7      6955072       217335     SB-KERNEL:VECTOR-SUBSEQ* - SIMPLE- 

BIT- VECTOR

     3.4      3477360       217335     (SB-PCL::FAST-METHOD RUTILS.GENERIC:: 

GENERIC-SETF :AROUND (T T)) - LIST

     3.4      3477360       217335     (SB-PCL::FAST-METHOD RUTILS.GENERIC:: 

GENERIC-SETF (HASH-TABLE T)) - LIST

    00.0         2464           77    SB-KERNEL::INTEGER-/-INTEGER - RATIO
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    00.0         1024                 MAKE-HASH-TABLE

    53.1          544          2      SIMPLE-VECTOR

    46.9          480          6       (SIMPLE-ARRAY (UNSIGNED-BYTE 32) (*))

    00.0          384          2       SB-IMPL::%MAKE-HASH-TABLE - HASH- TABLE

    00.0           96                 SB-C::%PROCLAIM

    66.7           64          2      LIST

    33.3           32          1      SB-KERNEL:CLOSURE

    00.0           96          2      SB-INT:SET-INFO-VALUE - SIMPLE-VECTOR

    00.0           64          2       SB-THREAD:MAKE-MUTEX - SB- HREAD:MUTEX

    00.0           32          1      SB-IMPL::%COMPILER-DEFVAR - LIST

    00.0           32          2      HUFFMAN-TABLES - LIST

    00.0           16          1       SB-KERNEL:ASSERT-SYMBOL-HOME-PACKAGE-

UNLOCKED - LIST

 =======  ===========

   100.0    103600352

CL-USER> (sb-ext:gc :full t)

NIL

CL-USER> (room)

Dynamic space usage is:   139,922,208 bytes.

So we have claimed 32 MB of additional space (instead of 47), and some of it seems 

to be used by other unrelated data (some functions I have redefined in the REPL during 

the experiment and others), as the compressed keys amount for only 3.5 MB:

3477360     217335     SIMPLE-BIT-VECTOR

That is more than five times reduction or almost 40% compression of the whole data 

structure!

And what about performance? Huffman compression will be needed at every data 

access, so let's measure the time it will take for vanilla string keys and the bit-vector 

ones. We will use another file from the wiki-lang-detect repository for the smoke test—a 

snippet from Faust:
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CL-USER> (defparameter *de-words*

           (let ((words (list))

                 (dict (first *de*)))

             (rtl:dolines (line "data/smoke/de.txt")

               (dolist (word (split #\Space line))

                 (push word words)))

             words))

CL-USER> (length *de-words*)

562

CL-USER> (let ((vocab (first *de*)))

           (time (loop :repeat 1000 :do

                   (dolist (word *de-words*)

                     (gethash word vocab)))))

Evaluation took:

  0.045 seconds of real time

CL-USER> (let ((vocab (first *de2*)))

           (time (loop :repeat 1000 :do

                   (dolist (word *de-words*)

                     (gethash (huffman-encode *de-vocab* word) vocab)))))

Evaluation took:

  0.341 seconds of real time

Hmm, with Huffman coding, it's almost 10× slower. :( Is there a way to speed it up 

somewhat? To answer it, we can utilize another profiler—this time a more conventional 

one, which measures the time spent in each operation. SBCL provides access to two 

versions of such profilers: a precise and a statistical one. The statistical doesn't seriously 

interfere with the flow of the program as it uses sampling to capture the profiling data, 

and it's the preferred one among the developers. To use it, we need to perform (require 

'sb-sprof) and then run the computation with profiling enabled (the lengthy output is 

redacted to show only the most important parts):
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CL-USER> (let ((dict (first *de2*)))

           (sb-sprof:with-profiling (:report :graph)

             (loop :repeat 100 :do

               (dolist (word *de-words*)

                 (gethash (huffman-encode *de-vocab* word) dict)))))

Number of samples:   34

Sample interval:     0.01 seconds

Total sampling time: 0.34 seconds

Number of cycles:    0

Sampled threads:

 #<SB-THREAD:THREAD "repl-thread" RUNNING {100FB19BC3}>

 Count     %  Count     %      Callees

------------------------------------------------------------------------

    24  70.6                   "Unknown component: #x52CD6390" [41]

     5  14.7     24  70.6      HUFFMAN-ENCODE [1]

     1   2.9                   SB-IMPL::GETHASH/EQL [17]

     1   2.9                   SB-IMPL::GETHASH3 [6]

     1   2.9                   LENGTH [14]

     1   2.9                    SB-KERNEL:HAIRY-DATA-VECTOR-REF/CHECK-BOUNDS 

[13]

     2   5.9                   (SB-VM::OPTIMIZED-DATA-VECTOR-REF BIT) [5]

    13  38.2                   VECTOR-PUSH-EXTEND [11]

------------------------------------------------------------------------

     4  11.8                   SB-VM::EXTEND-VECTOR [4]

     4  11.8      4  11.8      SB-VM::ALLOCATE-VECTOR-WITH-WIDETAG [2]

------------------------------------------------------------------------

     6  17.6                   "Unknown component: #x52CD6390" [41]

     3   8.8      6  17.6      SB-IMPL::GETHASH/EQUAL [3]

     1   2.9                   SXHASH [42]

     2   5.9                   SB-INT:BIT-VECTOR-= [10]

------------------------------------------------------------------------

     8  23.5                   VECTOR-PUSH-EXTEND [11]

     2   5.9      8  23.5      SB-VM::EXTEND-VECTOR [4]

     2   5.9                   SB-VM::COPY-VECTOR-DATA [9]

     4  11.8                   SB-VM::ALLOCATE-VECTOR-WITH-WIDETAG [2]
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------------------------------------------------------------------------

     2   5.9                   HUFFMAN-ENCODE [1]

     2   5.9      2   5.9      (SB-VM::OPTIMIZED-DATA-VECTOR-REF BIT) [5]

------------------------------------------------------------------------

...

           Self        Total        Cumul

  Nr  Count     %  Count     %  Count     %    Calls  Function

------------------------------------------------------------------------

   1      5  14.7     24  70.6      5  14.7        -  HUFFMAN-ENCODE

   2      4  11.8      4  11.8      9  26.5        -   SB-VM::ALLOCATE- 

VECTOR- WITH-WIDETAG

   3      3   8.8       6  17.6     12  35.3        -  SB-IMPL::GETHASH/EQUAL

   4      2   5.9      8  23.5     14  41.2        -  SB-VM::EXTEND-VECTOR

   5      2   5.9      2   5.9     16  47.1        -   (SB-VM::OPTIMIZED- 

DATA- VECTOR-REF BIT)

   6      2   5.9      2   5.9     18  52.9        -  SB-IMPL::GETHASH3

   7      2   5.9      2   5.9     20  58.8        -  GETHASH

   8      2   5.9      2   5.9     22  64.7        -   (SB-VM::OPTIMIZED- 

DATA- VECTOR-SET BIT)

   9      2   5.9      2   5.9     24  70.6        -   SB-VM::COPY-VECTOR- 

DATA

  10      2   5.9      2   5.9     26  76.5        -  SB-INT:BIT-VECTOR-=

  11      1   2.9     13  38.2     27  79.4        -  VECTOR-PUSH-EXTEND

  12      1   2.9      1   2.9     28  82.4        -   SB-VM::SLOW-HAIRY- 

DATA-VECTOR-SET

  13      1   2.9      1   2.9     29  85.3        -   SB-KERNEL:HAIRY-DATA- 

VECTOR-REF/CHECK-

BOUNDS

  14      1   2.9      1   2.9     30  88.2        -  LENGTH

  15      1   2.9      1   2.9     31  91.2        -   SB-KERNEL:HAIRY-DATA- 

VECTOR-SET

  16      1   2.9      1   2.9     32  94.1        -   SB-KERNEL:VECTOR- 

SUBSEQ*

  17      1   2.9      1   2.9     33  97.1        -   SB-IMPL::GETHASH/EQL

...
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Unsurprisingly, most of the time is spent in huffman-encode, and of it the biggest 

chunks are vector-push-extend and hash-table access (to get the Huffman code of a 

letter). Surely, instead of extending the vector at each iteration, it would be much nicer 

to just perform a bulk copy of the bits for each character directly into the vector. Let's try 

that and see the difference:

(defun huffman-encode2 (envocab str)

  (let ((vecs (map 'vector (lambda (ch) (get# ch envocab))

                   str))

        (total-size 0))

    (rtl:dovec (vec vecs)

      (incf total-size (length vec)))

    (let ((rez (make-array total-size :element-type 'bit))

          (i 0))

      (rtl:dovec (vec vecs)

        (let ((size (length vec)))

          (setf (subseq rez i) vec)

          (incf i size)))

      rez)))

CL-USER> (let ((vocab (first *de2*)))

           (time (loop :repeat 1000 :do

                   (dolist (word *de-words*)

                     (gethash (huffman-encode2 *de-vocab* word) vocab)))))

Evaluation took:

  0.327 seconds of real time

Almost no difference. Well, it's a usual case with these micro-optimizations: you 

have a brilliant idea, try it under the profiler, and, bah, no difference… This doesn't have 

to stop us, though. Another idea could be to use a jump-table instead of a hash-table 

to store character-vector mappings. There are only around 500 characters that have a 

mapping in my data, although they span the whole Unicode range:
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CL-USER> (reduce 'max (mapcar 'char-code (rtl:keys *de-vocab*)))

65533

CL-USER> (defparameter *jvocab* (make-array (1+ 65533)

                                            :element-type 'bit-vector

                                            :initial-element #*))

CL-USER> (rtl:dokv (k v *de-vocab*)

           (setf (aref *jvocab* (char-code k)) v))

(defun huffman-encode3 (envocab str)

  (let ((rez (make-array 0 :element-type 'bit :adjustable t :fill-pointer t)))

    (rtl:dovec (char str)

      ;; here, we have changed the hash-table to a jump-table

      (rtl:dovec (bit (svref envocab (char-code char)))

        (vector-push-extend bit rez)))

    rez))

CL-USER> (let ((vocab (first *de2*)))

           (time (loop :repeat 1000 :do

                   (dolist (word *de-words*)

                     (gethash (huffman-encode3 *jvocab* word) vocab)))))

Evaluation took:

  0.308 seconds of real time

OK, we get an improvement of around 10%.2 That's a start. But many more ideas 

and experiments are needed if we want to significantly optimize this implementation. 

Yet, for the sake of space conservation on the pages of this book, we won't continue 

with it.

Another tool we could use to analyze the performance and think about further 

improvement is flamegraphs—a way to visualize profiler output. cl- flamegraph is a 

wrapper around sb-sprof that generates the output in the common format which can be 

further processed by the Perl tool, in order to generate the image itself. Here is the basic 

output I got. It's rather rough and, probably, requires some fiddling with the Perl tool to 

obtain a prettier image:

2 It was verified by taking the average of multiple test runs.
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To conclude, key compression alone gives a sizeable reduction in used space at the 

cost of deteriorated performance.

Another possible angle of attack is to move from a hash-table to a more space- 

efficient structure. We have explored this direction somewhat in Chapter 8 already.

 Arithmetic Coding
Why does Huffman coding work? The answer lies in Shannon's source coding 

theorem and has to do with a notion of entropy. Entropy is one of the ways to 

represent expectation and surprise, in a message. The most random message has 

the maximal surprise, that is, it's very hard to predict what symbol will appear 

at a certain position in it, while the least random (for instance, containing only 

repetitions of a single char) is the least surprising. Obviously, any kind of useful data 

is not uniformly distributed, or, otherwise, it's indistinguishable from white noise. 

Most of the data representations use an “alphabet” (encoding) that is redundant, 

for a particular message. Why? Because it is general-purpose and should allow 

expressing arbitrary messages. Yet, in practice, some passages appear much more 

often than the others, some words and some letters are more frequent, and even 

some patterns in the images may be too.

The idea of character-level compression algorithms is to tailor a custom vocabulary 

that uses fewer bits for low-entropy (frequent) characters and more bits for high-entropy 

ones. In general, the probability distribution of characters may be thought of as a [0,1) 

interval, in which each char occupies a slice proportionate to its frequency. If we rely on 

standard encoding, the interval for our test example will look like this:

|---+---+---+------+---------+---------+---------|

0 e   a   h    i        s         t       Space  1
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Here, each subinterval for a character is its probability times the number of bits per 

character (8 for each). Huffman coding tries to equalize this distribution by assigning 

fewer bits to characters that occupy larger space. For the Huffman vocabulary we have 

constructed, the distribution will look like this:

|-----+-----+----+------+------+-------+-------|

0  e     a    h     i      s      t      Space 1

As you can see, it has become more even, but still not totally. This is due to the 

discrete nature of the encoding that results in rounding the number of bits to the 

closest integer value. There's another approach to solving the same problem that aims 

at reducing the rounding error even further—arithmetic coding. It acts directly on our 

interval and encodes the whole message in a single number that represents the point in 

this interval. How is this point found and used? Let's consider a message with a single 

character i. In our example, the subinterval for it is [0.214285714, 0.357142857). So, 

if we use any number from this interval and know that the message contains a single 

character, we can unambiguously decode it back. Ideally, we'd use the number from the 

interval that has the least count of digits. Here is a simple example of how such a number 

can be found:

(defun find-shortest-bitvec (lo hi)

  (let ((rez (make-array 0 :element-type 'bit :adjustable t :fill-pointer t)))

    (loop

      (rtl:with ((lod lof (floor (* lo 2)))

                 (hid hif (floor (* hi 2))))

        (when (or (zerop lof)

                  (zerop hif)

                  (/= lod hid))

          (vector-push-extend hid rez)

          (return))

        (vector-push-extend lod rez)

        (setf lo lof

              hi hif)))

    rez))

RTL-USER> (find-shortest-bitvec 0.214285714 0.357142857)

#*01
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The result is a bit-vector that represents the fractional part of some floating-point 

number lying within the interval, which may be also used as an encoding of our one- 

character message. Obviously, we could use just a single bit to encode it with a custom 

vocabulary of one entry, but, here, for the purpose of illustration, I wanted to use an 

existing pre-calculated vocabulary that includes other characters as well. Also, if we 

compare this version with the Huffman coding, the message length is decreased by 1 bit.

Now, how can we process longer messages? In the same manner: by recursively 

dividing the currently selected part using the same original distribution. For the 

message is

• On step 1 (for character i), the interval [0.214285714, 

0.357142857) will be selected.

• On step 2 (for character s), we'll narrow it down to [0.26530612, 

0.29591838) (using the subinterval [0.357142857, 0.5714286) for s).

For this interval, the shortest encoding will be 01001. In this case, it has the same size 

as the Huffman one.

So the naive arithmetic encoding implementation is quite simple:

(defun arithm-encode (envocab message)

  (let ((lo 0.0)

        (hi 1.0))

    (rtl:dovec (char message)

      (let ((coef (- hi lo)))

        (rtl:dotable (ch prob envocab)

          (let ((off (* prob coef)))

            (when (eql char ch)

              (setf hi (+ lo off))

              (return))

            (incf lo off)))))

    (find-shortest-bitvec lo hi)))

CL-USER> (arithm-encode #h(#\e 1/14

                           #\a 1/14

                           #\h 1/14

                           #\i 2/14
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                           #\s 3/14

                           #\t 3/14

                           #\Space 3/14)

                        "this is a test")

#*100110110100001110000001

However, this function has a hidden bug. The problem lies in the dreaded floating- 

point overflow that happens quite soon in the process of narrowing the interval, which 

results in using more and more digits of the floating-point number until all the bits are 

utilized and we can't distinguish the intervals any further. If we try to faithfully decode 

even the short message encoded in the preceding text, we'll already see this effect by 

getting the output this ist sssst.

The implementation of this approach, which works around the bug, relies on the 

same idea but uses a clever bit arithmetic trick. Due to that, it becomes less clean and 

obvious, because it has to work not with the whole number, but with a bounded window 

in that number (in this case, a 32-bit one), and, also, still take care of potential overflow 

that may happen when the range collapses around 0.5. Here it is shown, for illustration 

purposes, without a detailed explanation.3 This function is another showcase of the Lisp 

standard support for handling bit-level values. Besides, read-eval (#.) is used here to 

provide literal values of bitmasks:4

(defun arithm-encode-correct (envocab message)

  (let ((lo 0)

        (hi (1- (expt 2 32)))

        (pending-bits 0)

        (rez (make-array 0 :element-type 'bit :adjustable t :fill-pointer t)))

    (flet ((emit-bit (bit)

             (vector-push-extend bit rez)

             (let ((pbit (if (zerop bit) 1 0)))

               (loop :repeat pending-bits :do (vector-push-extend pbit rez))

               (setf pending-bits 0))))

3 You can study the details in the relevant article.
4 Some implementations (for instance, SBCL) have “smart enough” compilers to perform constant 
folding of such expressions. However, read-eval may be used to help the compiler if it is not 
smart enough.
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      (rtl:dovec (char message)

        (rtl:with ((range (- hi lo -1))

                   ((plo phi) (rtl:? envocab char)))

          (psetf lo (round (+ lo (* plo range)))

                 hi (round (+ lo (* phi range) -1)))

          (loop

            (cond ((< hi #.(expt 2 31))

                   (emit-bit 0))

                  ((>= lo #.(expt 2 31))

                   (emit-bit 1)

                   (decf lo #.(expt 2 31))

                   (decf hi #.(expt 2 31)))

                  ((and (>= lo #.(expt 2 30))

                        (< hi (+ #.(expt 2 30) #.(expt 2 31))))

                   (decf lo #.(expt 2 30))

                   (decf hi #.(expt 2 30))

                   (incf pending-bits))

                  (t (return)))

            (psetf lo (mask32 (ash lo 1))

                   hi (mask32 (1+ (ash hi 1)))))))

      (incf pending-bits)

      (emit-bit (if (< lo #.(expt 2 30)) 0 1)))

    rez))

(defun mask32 (num)

  ;; this utility is used to confine the number in 32 bits

  (logand num #.(1- (expt 2 32))))

CL-USER> (arithm-encode-correct #h(#\e '(0 1/14)

                                   #\a '(1/14 1/7)

                                   #\h '(1/7 3/14)

                                   #\i '(3/14 5/14)

                                   #\s '(5/14 4/7)

                                   #\t '(4/7 11/14)

                                   #\Space '(11/14 1))

                                "this is a test")

#*10011011010000111000001101010110010101
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Note that the length of the compressed message is 38 bits—the same as the 

Huffman version!

And here, for the sake of completeness and verification, is the decoding routine. 

It works in a similar fashion but backward: we determine the interval into which our 

current number falls, emit the corresponding character, and narrow the search interval 

to the currently found one. We'll need to have access to the same vocabulary and know 

the length of the message:

(defun bitvec->int (bits)

  (reduce (lambda (bit1 bit2) (+ (ash bit1 1) bit2)

          bits))

(defun arithm-decode (dedict vec size)

  (rtl:with ((len (length vec))

             (lo 0)

             (hi (1- (expt 2 32)))

             (val (bitvec->int (subseq vec 0 (min 32 len))))

             (off 32)

             (rez (make-string size)))

    (dotimes (i size)

      (rtl:with ((range (- hi lo -1))

                 (prob (/ (- val lo) range)))

        (rtl:dotable (char r dedict)

          (rtl:with (((plo phi) r))

            (when (>= phi prob)

              (psetf (char rez i) char

                     lo (round (+ lo (* plo range)))

                     hi (round (+ lo (* phi range) -1)))

              (return))))

        (print (list val lo hi))

        (loop

          (cond ((< hi #.(expt 2 31))

                 ;; do nothing

                 )

                ((>= lo #.(expt 2 31))

                 (decf lo #.(expt 2 31))
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                 (decf hi #.(expt 2 31))

                 (decf val #.(expt 2 31)))

                ((and (>= lo #.(expt 2 30))

                      (< hi #.(* 3 (expt 2 30))))

                 (decf lo #.(expt 2 30))

                 (decf hi #.(expt 2 30))

                 (decf val #.(expt 2 30)))

                (t

                 (return)))

          (psetf lo (mask32 (ash lo 1))

                 hi (mask32 (1+ (ash hi 1)))

                 val (mask32 (+ (ash val 1)

                                (if (< off len)

                                    (aref vec off)

                                    0)))

                 off (1+ off)))))

    rez)))

CL-USER> (let ((vocab #h(#\e '(0 1/14)

                         #\a '(1/14 1/7)

                         #\h '(1/7 3/14)

                         #\i '(3/14 5/14)

                         #\s '(5/14 4/7)

                         #\t '(4/7 11/14)

                         #\Space '(11/14 1))))

           (arithm-decode vocab

                          (arithm-encode-correct vocab "this is a test")

                          14))

"this is a test"

 DEFLATE
Entropy-based compression—or, as I would call it, character-level one—can do only so 

much: it can't account for repetitions of the larger-scale message parts. For instance, 

a message with a single word repeated twice, when compressed with Huffman or 
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arithmetic encoding, will have twice the length of the message with a single occurrence 

of that word, the reason being that the probability distribution will not change, and 

thus the encodings of each character. Yet, there's an obvious possibility to reduce 

the compressed size here. This and other similar cases are much better treated by 

dictionary-based or block-level encoding approaches. The most well-known and 

widespread of them is the DEFLATE algorithm that is a variant of LZ77. Surely, there are 

other approaches like LZW, LZ78, or the Burrows-Wheeler algorithm (used in bzip2), 

but they are based on the same principal approach, so studying DEFLATE will allow you 

to grasp other algorithms if necessary.

But, before considering DEFLATE, let's first look at the simplest block-level 

scheme—run-length encoding (RLE). This is not even a block-level algorithm, in full, as 

it operates on single characters, once again. The idea is to encode sequences of repeating 

characters as a single character followed by the number of repetitions. Of course, such an 

approach will hardly help with natural language texts that have almost no long character 

repetitions; instead, it was used in images with limited palettes (like those encoded in 

the GIF format). It is common for such images to have large areas filled with the same 

color, so the GIF format, for instance, used RLE for each line of pixels. That was one of 

the reasons that an image with a horizontal pattern like this

xxxxx

xxxxx

xxxxx

lent itself to stellar compression, while the same one rotated by 90 degrees didn't. :)

x  x  x

x  x  x

x  x  x

x  x  x

x  x  x

LZ77 is a generalization of the RLE approach that considers runs not just of single 

characters but of variable-length character sequences. Under such conditions, it becomes 

much better suited for text compression, especially when the text has some redundancies. 

For example, program code files tend to have some identifiers constantly repeated (like if, 
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loop, or nil, in Lisp), each code file may have a lengthy identical copyright notice at the 

top, and so on and so forth. The algorithm operates by replacing repeated occurrences of 

data with references to a single copy of that data seen earlier in the uncompressed stream. 

The encoding is by a pair of numbers: the length of the sequence and the offset back into 

the stream where the same sequence was originally encountered.

The most popular LZ77-based compression method is DEFLATE. In the algorithm, 

literals, lengths, and a symbol to indicate the end of the current block of data are all 

placed together into one alphabet. Distances are placed into a separate alphabet as 

they occur just after lengths, so they cannot be mistaken for another kind of symbol or 

vice versa. A DEFLATE stream consists of a series of blocks. Each block is preceded by 

a 3-bit header indicating the position of the block (last or intermediate) and the type of 

character-level compression used: no compression, Huffman with a predefined tree, and 

Huffman with a custom tree. Most compressible data will end up being encoded using 

the dynamic Huffman encoding. The static Huffman option is used for short messages, 

where the fixed saving gained by omitting the tree outweighs the loss in compression 

due to using a nonoptimal code.

The algorithm performs the following steps:

 1. Matching and replacement of duplicate strings with pointers: 

Within a single block, if a duplicate series of bytes is spotted (a 

repeated string), then a backreference is inserted, linking to the 

previous location of that identical string instead. An encoded 

match to an earlier string consists of an 8-bit length (the repeated 

block size is between 3 and 258 bytes) and a 15-bit distance 

(which specifies an offset of 1–32768 bytes inside the so-called 

“sliding window”) to the beginning of the duplicate. If the distance 

is less than the length, the duplicate overlaps itself, indicating 

repetition. For example, a run of any number of identical bytes 

can be encoded as a single byte followed by a length of (1-n).

 2. Huffman coding of the obtained block: Instructions to generate 

the necessary Huffman trees immediately follow the block 

header. There are, actually, two trees: the 288-symbol length/

literal tree and the 32-symbol distance tree, themselves encoded 

as canonical Huffman codes by giving the bit length of the code 

for each symbol. The bit lengths are then run-length encoded to 

produce as compact a representation as possible.
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An interesting fact is that DEFLATE compression is so efficient in terms of speed 

that it is faster to read a compressed file from an ATA hard drive and decompress it in 

memory than to read an original longer version: disk access is much longer than CPU 

processing, for this rather simple algorithm! Even more, it applies to network traffic. 

That's why compression is used (and enabled by default) in many popular network 

protocols, for instance, HTTP.

 Takeaways
This chapter, unlike the previous one, instead of exploring many different approaches, 

dealt with, basically, just a single one in order to dig deeper and to demonstrate the use 

of all the tools that can be applied in algorithmic programming: from a piece of paper to 

sophisticated profilers. Moreover, the case we have analyzed provides a great showcase 

not just of the tools but of the whole development process with all its setbacks, trial and 

error, and discoveries.

Bit fiddling was another topic that naturally emerged in this chapter. It may look 

cryptic to those who have never ventured into this territory, but mastering the technique 

is necessary to gain access to a number of important areas of the algorithm landscape.
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CHAPTER 15

Synchronization

 

This is the final chapter of the book, in which we will discuss optimization of parallel 

computations: whether concurrently on a single machine in a shared-memory setting 

or in a distributed shared-nothing environment. This is a huge topic that spans 

synchronization itself, parallelization, concurrency, distributed computations, and the 

functional approach. And every senior software developer should be well versed in it.

Usually, synchronization is studied in the context of system or distributed 

programming, but it has a significant algorithmic footprint and is also one of the hottest 

topics for new algorithm research. In fact, there are whole books that concentrate on it, 

but, usually, they attack the problem from other angles, not focusing on the algorithmic 

part. This chapter will be more algorithm-centered, although it will also present an 

overview of the problem space. So, in the end, you’ll have a good foundation to explore 

the topic further if a desire or need for that arises.

Let’s start from the basics. In the previous chapters of the book, we, mainly, viewed 

algorithms as single computations running without external interruptions. This 

approach, obviously, removes the unnecessary complexity, but it also isn’t totally faithful 

to reality. Most of the programs we deal with, now, run in multiprocessing environments 

(sometimes, even distributed ones), and even when they don’t utilize these capabilities, 

these are still available, and they sometimes have their impact and, besides, might 

https://doi.org/10.1007/978-1-4842-6428-7_15#DOI


340

have improved the performance of the programs if they would have been utilized. The 

majority of the back-end stuff, which, currently, is comprised of services running in the 

datacenters, is multithreaded. There’s a notorious “Zawinski’s Law” that states that every 

program attempts to expand until it can read mail. Those programs which cannot so 

expand are replaced by ones which can. Being a good joke, it also reflects an important 

truth about the tendency of all programs over time to become network-aware and thus 

distributed to at least some extent.

There are two principally different types of environments in which the programs that 

need synchronization run: shared-memory and shared-nothing ones.

In a shared-memory setting, there exists some shared storage (not necessarily 

RAM) that can be directly accessed by all the threads1 of the application. Concurrent 

access to data in this shared memory is the principal source of the synchronization 

challenges, although not the only one. The example of a shared-memory program is a 

normal application that uses multithreading provided either directly by the OS or, more 

frequently, by the language runtime.2

The opposite of shared-memory is a shared-nothing environment, in which all 

threads3 don’t have any common data storage and can coordinate only by sending 

messages directly to other processes. The contents of the messages have to be 

copied from the memory of the sender to the receiver. In this setting, some of the 

synchronization problems disappear, but others still remain. At the fundamental level, 

some synchronization or coordination still needs to happen. From a performance 

standpoint, however, the shared-nothing mode is, usually, inferior due to the need for 

additional data copying. So both paradigms have their place, and the choice, which one 

to utilize, depends on the context of a particular task.

The main goal of synchronization is ensuring program correctness when multiple 

computations are running in parallel. Another side of the coin is achieving optimal 

performance, which is also addressed by parallelization that we have somewhat 

discussed in a couple of prior chapters. Prioritizing performance before correctness, 

although tempting, is one of the primary sources of bugs in the concurrent systems. A 

trivial example would be building a shared-memory program without explicit use of 

1 We will further use the term “thread” to denote a separate computation running as part of our 
application, as it is less ambiguous than “process” and also much more widespread than all the 
other terms.

2 This internal “threading,” usually, also relies on the OS threading API behind the scenes.
3 In this context, they tend to be called “processes,” but we’ll still stick to the term “thread.”
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any synchronization mechanisms. It is, definitely, the most performant approach, but 

non-coordinated access to the shared data will inevitably result in failures like data 

corruption.

 Synchronization Troubles
So let’s talk in more detail about the most common synchronization problems that 

the methods we will discuss next are trying to handle. Such situations are called 

race conditions for there’s a situation when multiple threads compete for the same 

resource—be it data storage or processor—and, in the absence of special coordination, 

the order of execution will be unspecified, which may result in unpredictable and 

unintended outcomes. There are two main results of this unpredictability (often, both 

occur simultaneously):

• Data corruption or loss

• Incorrect order of execution up to total failure of the program

Here is the simplest code segment that is amenable to data corruption in 

multithreaded programs:

(incf i)

It seems like there’s just one operation involved—how can there be a race condition? 

From the point of view of a programmer in a high-level language, indeed, we deal with a 

single operation, but if we go deeper to the level of machine code, we’ll see that it is not 

the case. The relevant assembly snippet will, probably, contain three instructions:

mov i, register

inc register

mov register, i

You’ve just seen one more convincing evidence why every programmer should 

understand how the lower levels of their platform operate. :)

The issue is that modern processors can’t directly modify data in the RAM (our 

variable i). First, the data needs to be moved into a register, only then some operation on 

it may be performed by the CPU, and, finally, it needs to be put back where the high-level 

program can find it. If an interrupt occurs (we’re talking about multithreaded execution 

in a single address space, in this context) after mov i, register, the current thread will 
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remember the old value of i (let it be 42) and be put into a waitqueue. If another thread 

that wants to change i is given processor time next, it may set it to whatever value it 

wants and continue execution (suppose it will be 0). However, when the turn is returned 

to the first thread, it will increment the value it remembered (42), so i will change the 

value in the following sequence: 42 → 0 → 43. Hardly, it’s an expected behavior.

Such data corruption will only impact the mentioned variable and may not cause 

catastrophic failures in the program. Its behavior will be incorrect, but in some situations 

that can be tolerated (for instance, if we gather some statistics and occasional off-by-one 

errors will not be noticed). Yet, if i was some counter that impacts the core behavior of 

the program, it might easily lead to a catastrophe.

Ultimately, incorrect execution order should be considered the root cause of all 

synchronization problems. And here it is also manifest: we expected increment to 

be a single (atomic) operation and thus finish execution before anything else would 

happen to i.

What are some other common cases of execution order errors? The most well-known 

and dreaded race condition is a deadlock. It is a situation of mutual blocking among two 

or more threads. Here is the simplest illustration of how it can occur:

thread 1 ---> acquire resource1 --> try to acquire resource2

thread 2 --> acquire resource2 ------> try to acquire resource1

In other words, two threads need exclusive access to two resources, but the order of 

access is opposite and the timing of the operations is such that the first thread manages 

to acquire access to the first resource, while the second to the second. After that, the 

deadlock is inevitable, and both threads will be blocked as soon as they will try to 

access the other resource. The period between each thread acquiring the first resource 

for exclusive access and the release of this resource is called a critical section of the 

program. Only in the critical sections a synchronization issue may manifest.

The only way to untangle “from within” such deadlock situation is for one of the 

threads to release the resource it already holds. Another approach, which requires 

external intervention, is often employed in database management systems—deadlock 

monitoring. A separate thread is periodically examining blocked threads to check for 

some conditions that signify a deadlock situation, and it resets the threads that were 

spotted in such a condition. Yet, instead of trying to fix the deadlock situations, it may 

be better to prevent them from occurring altogether. The prevention techniques may 

utilize time-limited exclusive leases on resources or mandating the threads to acquire 
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resources in a specific order. However, such approaches are limited and don’t cover 

all the use cases. It would be nice to find some way to totally exclude deadlocks, but 

we should remember that the original reason why they may occur, at all, is the need to 

prevent data corruption in the case of uncontrolled access to the data. Exclusive access 

to the resource ensures that this problem will not occur, but results in the possibility of a 

deadlock, which is a comparatively lesser evil.

A livelock is a dynamic counterpart to deadlock which occurs much rarely. It is a 

situation when threads don’t constantly hold the resources exclusively (for instance, they 

might release them after a timeout), but the timing of the operations is such that at the 

time when the resource is needed by one thread, it happens to be occupied by the other, 

and, ultimately, mutual blocking still occurs.

One more obnoxious race condition is priority inversion, a phenomenon one can 

frequently observe in real life: when a secondary lane of cars merges into the main road, 

but, for some extraneous reason (traffic light malfunctioning, an accident that is blocking 

part of the road, etc.), the cars from it have more time to merge than the ones of the main 

road to progress. Priority inversion may be the reason for a more severe problem, which 

is starvation—a situation when the execution of a thread is stalled as it can’t access the 

resource it needs. Deadlocks result in starvation of all the involved threads, but the issue 

may occur in other conditions, as well. I would say that starvation or, more generally, 

underutilization is the most common performance issue of multithreaded applications.

 Low-Level Synchronization
I hope, in the previous section, the importance of ensuring proper execution order in 

the critical sections of the program was demonstrated well enough. How to approach 

this task? There are many angles of attack. Partially, the problem may be solved 

by the introduction of atomic operations. Atomic increment and decrement are a 

common example of those, which may be found in the ecosystem of the majority of the 

programming languages. For instance, SBCL provides an sb-ext:atomic-incf macro 

that operates on the fixnum slots of structures, array cells, contents of cons pairs, or 

global variables. Some other languages, like Java, provide AtomicInteger and similar 

structures that guarantee atomic operations on their main slots. In fact, the de facto 

standard Lisp cross-implementation multithreading library Bordeaux Threads also 

defines an API for manipulating atomic integers, which means that most of Common 

Lisp implementations support these operations.
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What enables atomic operations are special hardware instructions:

• TSL: Test and set lock

• CAS: Compare and swap

• LL/CS: Load link/store conditional

The most widespread of them is CAS that has the same effect as if the following code 

would work as a single atomic operation:

(defmacro cas (place old new)

  `(when (eql ,place ,old)

     (setf ,place ,new))

Based on this spec, we could define atomic-incf using cas:

(defmacro atomic-incf (place &optional i)

  (let ((cur (gensym "CUR"))

        (rez (gensym "REZ")))

    `(loop :for ,rez := (let ((,cur ,place))

                          (cas ,place ,cur (+ ,cur ,i)))

           :when ,rez :do (return ,rez))))

Here, we read the current value of place and then try to set it with cas. These two 

operations happen non-atomically, so there’s a chance that cas will return nil. In that 

case, we redo the whole sequence again. It is clear that execution time of such operation 

is nondeterministic, but, in a reasonably configured multithreaded system, there should 

be, generally, just a single chance for cas to fail: when the thread is preempted between 

the assignment and cas. It shouldn’t repeat the second time this thread gets its time slice 

for it should have enough time to complete both operations considering that it will start 

from them.

Another important low-level instruction is a memory barrier. It causes the CPU 

to enforce an ordering constraint on memory operations issued before and after the 

barrier instruction. That is, the operations issued prior to the barrier are guaranteed to 

be performed before operations issued after the barrier. Memory barriers are necessary 

because most modern CPUs employ performance optimizations that can result in out- 

of- order execution. The reordering of memory loads and stores goes unnoticed within a 

single thread of execution but can cause unpredictable behavior in concurrent programs. 

One more leak from the low level adding to the list of synchronization worries…
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On top of CAS and atomic operations, some higher-level synchronization 

primitives are provided by the OS and the execution runtimes of most of the 

programming languages. The most popular of them is the semaphore. It is a counter 

that is initially set to the number of threads that can proceed past querying its value. 

If the counter is above zero, the thread may continue execution, but it also atomically 

decrements the counter. This operation is usually called wait, acquire, or down on the 

semaphore. However, if the counter is already down to zero, the thread goes to sleep 

and is put into an OS waitqueue until the wakeup notification arrives. The notification 

is initiated by some thread calling release/up on the same semaphore. This operation 

atomically increments the counter value and also allows some of the waiting threads 

to continue execution. The most used type of semaphores is called the mutex, and it 

allows only a single thread to enter and also mandates the implementation to check 

that the thread that releases the mutex is the one that has previously acquired it. There 

are also other types of semaphores or more complex locks built on top of them, such as 

the read-write lock or a monitor.

Semaphores are an alternative to a lower-level spin-lock primitive that uses busy 
waiting, that is, constant checking of the counter variable until it increases above zero.

Another, more general name for this method is polling that refers to constantly 

querying the state of some resource (a lock, a network socket, a file descriptor) to know 

when its state changes. Polling has both drawbacks and advantages: it occupies the 

thread instead of yielding CPU to other workers, which is a serious downside, but it also 

avoids expensive utilization of the OS context-switching required by semaphores.

So both semaphores and spin-locks find their place. In the low-level OS code, 

spin- locks prevail, while semaphores are a default synchronization primitive in the 

user space.

 Mutual Exclusion Algorithms
Relying on hardware features for synchronization is a common approach taken by most 

software systems. However, since the beginning of work on this problem, computer 

scientists, including such famous algorithmists as Dijkstra and Lamport, proposed 

mutual exclusion algorithms that allowed guarding the critical sections without any 

special support from the platform. One of the simplest of them is Peterson’s algorithm.  

Chapter 15  SynChronization



346

It guarantees mutual exclusion of two threads with the use of two variables: a two-

element array interest and a Boolean turn. A true value of the interest item 

corresponding to a thread indicates that it wants to enter the critical section. Entrance 

is granted if a second thread does not want the same or it has yielded priority to the first 

thread:

(defparameter *interest* (rtl:vec nil nil))

(defparameter *turn* nil)

(defun peterson-call (i fn)

  (let ((other (abs (1- i))))

    (setf (aref *interest* i) t

          *turn* other)

    ;; busy waiting

    (loop :while (and (aref *interest* other)

                      (= *turn* other)))

    ;; critical section start

    (funcall fn)

    ;; critical section end

    (setf (aref *interest* i) nil))

The algorithm satisfies the three essential criteria to solve the critical section 

problem: mutual exclusion, progress, and bounded waiting. Mutual exclusion means 

that several competing threads can never be in the critical section at the same time. For 

Peterson’s algorithm, if thread 0 is in its critical section, then (aref *interest* 0) is 

true. In addition, either (aref *interest* 1) is nil (meaning thread 1 has left its critical 

section and isn’t interested in coming back into it) or *turn* is 0 (meaning that thread 1 

is just now trying to enter the critical section but waiting) or thread 1 is trying to enter its 

critical section, after setting (aref *interest* 1) to true but before setting *turn* to 0. 

So if both processes are in the critical section, then we conclude that the state must satisfy 

(and (aref *interest* 0) (aref *interest* 1) (= *turn* 0) (= *turn* 1)),  

which is, obviously, impossible. That is, only one of the threads could have entered the 

section. The condition of progress, basically, says that only those threads that wish to 

enter the critical section can participate in making the decision as to which one will do 

it next and that this selection cannot be postponed indefinitely. In our case, a thread 

cannot immediately reenter the critical section if the other thread has set its interest flag. 

Thus, the thread that has just left the critical section will not impact the progress of the 
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waiting thread. Bounded waiting means that the number of times a thread is bypassed 

by another thread after it has indicated its desire to enter the critical section is bounded 

by a function of the number of threads in the system. In Peterson’s algorithm, a thread 

will never wait longer than one turn for entrance to the critical section.

The drawback of Peterson’s algorithm is busy waiting.4 So it may be compared to 

a spin-lock. There are a number of other similar algorithms, including Dekker’s and 

Lamport’s ones, which also share this property. A newer Szymański’s algorithm is 

designed to avoid busy waiting, but it requires access to the OS scheduling facilities 

to make the thread sleep, waiting for the wakeup call, making the algorithm similar to 

semaphores.

 High-Level Synchronization
All the mentioned synchronization primitives don’t solve the challenges of 

synchronization completely. Rather, they provide tools that enable reasonable solutions 

but still require advanced understanding and careful application. The complexity of 

multithreaded programs is a level-up compared to their single-threaded counterparts, 

and thus much effort continues being spent on trying to come up with high-level ways 

to contain it. That is, remove it from the sight of a regular programmer by providing 

the primitives that handle synchronization behind the scenes. A simple example of 

that is Java synchronized classes that employ an internal monitor to ensure atomic 

access to the slots of a synchronized object. The major problem with regular locks 

(like semaphores) is that working with them brings us into the realm of global state 

manipulation. Such locking can’t be isolated within the boundaries of a single 

function—it leaks through the whole caller chain, and this makes the program much 

harder to reason about. In this regard, it is somewhat similar to the use of goto, albeit 

on a larger scale, and so a push for higher-level synchronization facilities resembles 

Dijkstra’s famous appeal to introduce structured programming (“goto considered 

harmful”). Ironically, Dijkstra is one of the creators of the classic synchronization 

mechanisms that are now frowned upon. However, synchronization has intrinsic 

complexity that can’t be fully contained, so no silver bullet exists (and hardly will ever be 

created) and every high-level solution will be effective only in a subset of cases.  

4 The other apparent limitation of supporting only two threads can be lifted by a modification to 
the algorithm, which requires some hardware support.
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I have seen that very well on my own when teaching a course on system programming 

and witnessing how students solve the so-called classic synchronization problems. The 

task was to apply both classic synchronization techniques (semaphores and others) 

and the new high-level ones (using Erlang, Haskell, Clojure, or Go, which all provide 

some of those). The outcome, in terms of complexity, was not always in favor of the new 

approaches.

There are a number of these classic synchronization problems, and I was even 

collecting them to be able to provide more variants of the tasks to diminish cheating. :) 

But, in essence, they all boil down to just a few archetypal cases: producer-consumer, 

readers-writers, sleeping barber, and the dining philosophers. Each problem 

demonstrates a certain basic synchronization scenario and allows the researchers to 

see how their approach will handle it. I won’t include them in the book but strongly 

encourage anyone interested in this topic to study them in more detail and also try to 

solve using different synchronization mechanisms.

Now, let’s talk about some of the prominent high-level approaches. Remember 

that they try to change the paradigm and avoid the need for explicit locking of critical 

sections altogether.

 Lock-Free Data Structures
My favorite among them is lock-free data structures. This is a simple and effective idea 

that can help deal with many common use cases and, indeed, avoid the necessity for 

explicit synchronization. Still, their use is limited and, obviously, can’t cover all the 

possible scenarios.

The most important among them is arguably a lock-free queue. It can be 

implemented in different ways, and there’s a simple and efficient implementation 

using cas provided by SBCL in the sb-concurrency contrib package. Here is the 

implementation of the main operations (taken from the SBCL source code and slightly 

simplified):

(defstruct lf-queue

  (head (error "No HEAD.") :type cons)

  (tail (error "No TAIL.") :type cons))

(defconstant +dummy+ '.dummy.)
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(defun lf-enqueue (value queue)

  (let ((new (cons value nil)))

    (loop (when (eq nil (sb-ext:compare-and-swap

                         (cdr (lf-queue-tail queue))

                         nil new))

            (setf (lf-queue-tail queue) new)

            (return value)))))

(defun lf-dequeue (queue)

  (loop (rtl:with ((head (lf-queue-head queue))

                   (next (cdr head)))

          (typecase next

            ;; the queue always has at least one element:

            ;; a +dummy+ node, thus a non-empty queue

            ;; will have at least two elements,

            ;; so a null NEXT means that the queue was empty

            (null (return (values nil

                                  nil)))

            (cons (when (eq head (sb-ext:compare-and-swap

                                  (lf-queue-head queue)

                                  head next))

                    (let ((value (car next)))

                      (setf (car next) +dummy+)

                      (return (values value

                                      t)))))))))

An important precondition to understand this code is knowing that (car (queue- 

head queue)) is +dummy+ and its cdr points to the first data node in the queue. By using 

compare-and-swap, we know definitely whether we are accessing the most recent 

version of the head (with a correct pointer to the next element) or if it has already 

become stale. In the latter case, we’ll just retry, and in the former, we’ll also need to cut 

off the current head by setting (car next) to +dummy+.

The value of this structure lies in that it enables the implementation of the master- 

worker pattern that is a backbone of many back-end applications, as well as, in general, 

different forms of lock-free and wait-free coordination between the running threads. 

Basically, it’s a lock-free solution to the producer-consumer problem. The items are 
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put in the queue by some producer threads (masters) and consumed by the worker 

threads. Such an architecture allows the programmer to separate concerns between 

different layers of the application: for instance, one type of threads may be responsible 

for handling incoming connections and, in order to ensure system high availability, 

these threads shouldn’t spend much time processing them. So, after some basic 

processing, the connection sockets are put into the queue, from which the heavy-lifting 

worker threads can consume them and process in a more elaborate fashion. That is, 

it’s a job queue for a thread pool. Surely, a lock-based queue may also be utilized as 

an alternative, in these scenarios, but the necessity to lock from the caller’s side makes 

the code for all the involved threads more complicated: what if a thread that has just 

acquired the lock is abruptly terminated for some reason?

 Data Parallelism and Message Passing
Beyond thread pools, there’s a whole concept of data parallelism, which, in essence, lies 

in submitting different computations to the pool and implementing synchronization 

as an orchestration of those tasks. In addition, Node.js and Go use lock-free IO in 

conjunction with such thread pools (and a special syntax for its seamless integration) for 

an efficient implementation of user space green threads to support this paradigm.

Even further along this direction is Erlang that is a whole language built around 

lock-free IO, efficient user space threading, and a shared-nothing memory model. It is 

the language of message-passing concurrency that aims to solve all synchronization 

problems within this single approach. As discussed in the beginning, such stance has 

its advantages and drawbacks, and so Erlang fits some problems (like coordination 

between a large number of simple agents) exceptionally well, while for others it imposes 

unaffordable costs in terms of both performance and complexity.

I won’t go deeper into this topic as it is not directly related to the matter of this book.

 STM
Another take on concurrency is the technology that is used, for quite a long time, in 

the database systems and was reimplemented in several languages, being popularized 

by the author of Clojure—Software Transactional Memory (STM). The idea is to treat 

all data accesses in memory as part of transactions, computations that possess the 

ACID properties: atomicity, consistency, and isolation (minus durability, which is only 

relevant to the database systems persisting data on disk). These transactions should still 
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be initiated by the programmer, so the control over synchronization remains, to a large 

extent, in their hands with some portion of the associated complexity. The transactions 

may be implemented in different ways, but they will still use locking behind the scenes, 

and there are two main approaches to applying locking:

• Pessimistic: When the locks are acquired for the whole duration of 

the transaction, basically making it analogous to a very conservative 

programming style that avoids the deadlocks but seriously hinders 

program performance—acquiring all locks at once and then entering 

the critical section. In the context of STM, each separate variable will 

have its own lock.

• Optimistic: When the initial state of the transaction variables is 

remembered in the thread-local storage and locking occurs only at 

the last (commit) phase, when all the changes are applied—but only 

when there were no external changes to the transaction variables. If 

at least one of them were changed, the whole transaction would need 

to be rolled back and retried.

In both cases, the main issue is the same: contention. If the number of threads 

competing for the locks is small, an optimistic approach should perform better, while, in 

the opposite case, there will be too many rollbacks and even a possibility of a livelock.

The optimistic transactions are, usually, implemented using the Multiversion 

Concurrency Control (MVCC) mechanism. MVCC ensures a transaction never has to 

wait to read an object by maintaining several versions of this object. Each version has 

both a Read Timestamp and a Write Timestamp which lets a particular transaction read 

the most recent version of the object which precedes the own Read Timestamp of the 

transaction.

STM is an interesting technology, which hasn’t proven its case yet beyond the 

distinct area of data management systems, such as RDBMs and their analogs.

 Distributed Computations
So far, we have discussed synchronization mainly in the context of software running 

in a single address space on a single machine. Yet, the same issues, although 

magnified, are also relevant to distributed systems. Actually, the same models of 

computation are relevant: shared-memory and shared-nothing message passing. 
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However, for distributed computing, message passing becomes much more natural, 

while the significance of shared memory is seriously diminished and the “memory” 

itself becomes some kind of a network storage system like a database or a network 

filesystem.

However, more challenges are imposed by the introduction of the unreliable network 

as a communication environment between the parts of a system. These challenges are 

reflected in the so-called “fallacies of distributed computing”:

• The network is reliable.

• Latency is zero.

• Bandwidth is infinite.

• The network is secure.

• Topology doesn’t change.

• There is a single administrator.

• Transport cost is zero.

• The network is homogeneous.

• Clocks on all nodes are synchronized.

Another way to summarize those challenges, which is the currently prevailing look 

at it, is the famous Brewer’s CAP Theorem, which states that any distributed system 

may have only two of the three desired properties at once: consistency, availability, and 

partition tolerance. And since partitional tolerance is a required property of any network 

system as it’s the ability to function in the unreliable network environment (that is the 

norm), the only possible distributed systems are CP and AP, that is, they either guarantee 

consistency but might be unavailable at times or are constantly available but might be 

sometimes inconsistent.

 Distributed Algorithms
Distributed computation requires distributed data structures and distributed algorithms. 

The domains that are in active development are distributed consensus, efficient 

distribution of computation, and efficient change propagation. Google pioneered the 

area of efficient network computation with the MapReduce framework that originated 

from the ideas of functional programming and Lisp, in particular. The next-generation 

systems such as Apache Spark develop these ideas even further.
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MapReduce is primarily targeted at large-scale distributed computing, but it can be 

run and demonstrated on a single machine also. If you remember the parallel merge sort 

example, it can be alternatively expressed as a MapReduce computation in the following 

way (using the primitive from the lparallel multiprocessing library). This function is 

intended to be run in parallel using N threads on a single machine. However, if we had 

access to a distributed underlying implementation, it could be transparently swapped in 

without the need for any changes to this code:

(defun mapreduce-merge-sort (list n &key (pred '<))

  (lparallel:pmap-reduce

    (lambda (x) (merge-sort x pred))            ; map step: solve a 

                                                ; subproblem

     (lambda (x y) (merge (type-of x) x y pred)) ; reduce step: combine 

                                                ; solutions

    (group (ceiling (length list) n) list)))    ; divide data into 

                                                ; sub- problems

Yet, the primary challenge for distributed systems is efficient consensus. The 

addition of the unreliable network makes the problem nontrivial compared to a 

single-machine variant where the consensus may be achieved easily in a shared- 

memory setting. The world has seen an evolution of distributed consensus algorithms 

implemented in different data management systems, from the 2-Phase Commit (2PC) to 

the currently popular RAFT protocol.

2PC is an algorithm for coordination of all the processes that participate in a 

distributed atomic transaction on whether to commit or roll back the transaction. The 

protocol achieves its goal even in many cases of temporary system failure. However, it is 

not resilient to all possible failure configurations, and in rare cases, manual intervention 

is needed. To accommodate recovery from failure, the participants of the transaction use 

logging of states, which may be implemented in different ways. Though usually intended 

to be used infrequently, recovery procedures compose a substantial portion of the 

protocol, due to many possible failure scenarios to be considered.
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In a “normal execution” of any single distributed transaction, the 2PC consists of two 

phases:

 1. The “commit-request” or voting phase, in which a coordinator 

process attempts to prepare all the participating processes to 

take the necessary steps for either committing or aborting the 

transaction and to vote, either “Yes” (commit) or “No” (abort).

 2. The “commit” phase, in which, based on the voting of the 

participants, the coordinator decides whether to commit (only if 

all have voted “Yes”) or roll back the transaction and notifies the 

result to all the participants. The participants then follow with the 

needed actions (commit or roll back) with their local transactional 

resources.

It is clear, from the description, that 2PC is a centralized algorithm that depends 

on the authority and high availability of the coordinator process. Centralized and peer- 

to- peer are the two opposite modes of the network algorithms, and each algorithm is 

distinguished by its level of centralization.

The 3PC is a refinement of the 2PC which is supposed to be more resilient to failures 

by introducing an intermediate stage called “prepared to commit.” However, it doesn’t 

solve the fundamental challenges of the approach that are due to its centralized nature, 

only making the procedure more complex to implement and thus having more failure 

modes.

The modern peer-to-peer coordination algorithm alternatives are Paxos and 

RAFT. RAFT is considered to be a simpler (and, thus, more reliable) approach. It is also, 

not surprisingly, based on voting. It adds a preliminary phase to each transaction, which 

is leader election. The election, as well as other activities within a transaction, doesn’t 

require unanimous agreement, but a simple majority. Besides, execution of all the stages 

on each machine is timeout-based, so if a network failure or a node failure occurs, the 

operations are aborted and retried with an updated view of the other peers. The details 

of the algorithm can be best understood from the RAFT website, which provides a link to 

the main paper, good visualizations, and other references.
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 Distributed Data Structures
We have already mentioned various distributed hash-tables and content-addressable 

storage as one of the examples of these types of structures. Another exciting and rapidly 

developing direction is eventually consistent data structures or CRDTs (conflict-free 

replicated data types). They are the small-scale representatives of the AP (or eventually 

consistent) systems that favor high availability over constant consistency, as they 

become more and more the preferred mode of operation of distributed systems.

The issue that CRDTs address is conflict resolution when different versions of the 

structure appear due to network partitions and their eventual repair. For a general 

data structure, if there are two conflicting versions, the solution is either to choose 

one (according to some general rules, like take the random one or the latest one, or 

application-specific logic) or to keep both versions and defer conflict resolution to the 

client code. CRDTs are conflict-free, that is, the structures are devised so that any conflict 

is resolved automatically in a way that doesn’t bring any data loss or corruption.

There are two ways to implement CRDTs: convergent structures rely on the 

replication of the whole state, while commutative use operation-based replication. Yet, 

both strategies result in the CRDTs with equivalent properties.

The simplest CRDT is a G-Counter (where “G” stands for grow only). Its operation 

is based on the trivial fact that addition is commutative, that is, the order of applying 

the addition operation doesn’t matter: we’ll get the same result as long as the number 

of operations is the same. Every convergent CRDT has a merge operation that combines 

the states of each node. On each node, the G-Counter stores an array that holds the 

per-node numbers of the local increments. And its merge operation takes the maximums 

of the elements of this array across all nodes, while obtaining the value of the counter 

requires summing all of the cells:

(defstruct (g-counter (:conc-name nil))

  ccs)

(defun make-gcc (n)

  (make-g-counter :ccs (make-array n)))

(defun gcc-val (gcc)

  (reduce '+ (ccs gcc))

(defun gcc-merge (gcc1 gcc2)

  (rtl:map* 'max gcc1 gcc2))
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The structure is eventually consistent as, at any point in time, asking any live node, 

we can get the current value of the counter from it (so there’s constant availability). 

However, if not all changes have already been replicated to this node, the value may be 

smaller than the actual one (so consistency is only eventual once all the replications are 

over).

The next step is a PN-Counter (positive-negative). It uses a common strategy in 

CRDT creation: combining several simpler CRDTs. In this case, it is a combination of two 

G-Counters: one for the number of increments and another decrements.

A set is, in some sense, a more sophisticated analog of a counter (a counter may be 

considered a set of 1s). So a G-Set functions similar to a G-Counter: it allows each node 

to add items to the set that are stored in the relevant cell of the main array. The merging 

and value retrieval operations use union. Similarly, there’s 2P-Set (2-phase) that is 

similar in construction to the PN-Counter. The difference of a 2P-Set from a normal set is 

that once an element is put into the removal G-Set (called the “tombstone” set), it cannot 

be readded to the set. That is, addition may be undone, but deletion is permanent. This 

misfeature is amended by LWW-Set (last-write-wins) that adds timestamps to all the 

records. Thus, an item with a more recent timestamp prevails, that is, if an object is 

present in both underlying G-Sets, it is considered present in the set if its timestamp in 

the addition set is greater than the one in the removal set, and removed in the opposite 

case.

There are also more complex CRDTs used to model sequences, including Treedoc, 

RGA, Woot, Logoot, and LSEQ. Their implementations differ, but the general idea is that 

each character (or chunk of characters) is assigned a key that can be ordered. When 

new text is added, it’s given a key that is derived from the key of some adjacent text. As a 

result, the merge is the best-possible approximation of the intent of the edits.

The use cases for CRDTs are, as mentioned in the preceding text, collaborative 

editing, maintaining such structures as shopping carts (e.g., with an LWW-Set), counters 

of page visits to a site or reactions in a social network, and so on and so forth.

 Distributed Algorithms in Action: Collaborative Editing
In fact, CRDTs are a data structure–centric answer to another technology that is used, for 

quite some time, to support collaborative editing: operational transformation (OT). OT 

was employed in such products as Google Docs and its predecessors to implement lock- 

free simultaneous rich-text editing of the same document by many actors.
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OT is an umbrella term that covers a whole family of algorithms sharing the same 

basic principles. Such systems use replicated document storage, that is, each node in 

the system operates on its own copy in a non-blocking manner as if it was a single- 

user scenario. The changes from every node are constantly propagated to the rest of 

the nodes. When a node receives a batch of changes, it transforms the changes before 

executing them to account for the local changes that were already made since the 

previous changeset—thus the name “operational transformation.”

The basic idea of OT can be illustrated with the following example. Let’s say we 

have a text document with a string "bar" replicated by two nodes and two concurrent 

operations:

(insert 0 "f") # o1 on node1

(delete 2 "r") # o2 on node2

Suppose, on node 1, the operations are executed in the order o1, o2. After executing 

o1, the document changes to "fbar". Now, before executing o2 we must transform it 

against o1 according to the transformation rules. As a result, it will change to (delete 3 

"r"). So the basic idea of OT is to adjust (transform) the parameters of incoming editing 

operations to account for the effects of the previously executed concurrent operations 

locally (whether they were invoked locally or received from some other node) so that 

the transformed operation can achieve the correct effect and maintain document 

consistency. The word “concurrent” here means operations that happened since 

some state that was recorded on the node that has sent the new batch of changes. The 

transformation rules are operation-specific.

In theory, OT seems quite simple, but it has its share of implementation nuances 

and issues:

• While the classic OT approach of defining operations through 

their offsets in the text seems to be simple and natural, real-world 

distributed systems raise serious issues: namely, that operations 

propagate with finite speed (remember one of the network 

fallacies); states of participants are often different, thus the resulting 

combinations of states; and operations are extremely hard to foresee 

and understand.
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• For OT to work, every single change to the data needs to be captured: 

obtaining a snapshot of the state is usually trivial, but capturing 

edits is a different matter altogether. The richness of modern user 

interfaces can make this problematic, especially within a browser- 

based environment.

• The notion of a “point in time” relevant to which the operations 

should be transformed is nontrivial to implement correctly (another 

network fallacy in play). Relying on global time synchronization is 

one of the approaches, but it requires tight control over the whole 

environment (which Google has demonstrated to be possible for 

its datacenter). So, in most cases, a distributed solution instead of 

simple timestamps is needed.

The most popular of these solutions is a vector clock (VC). The VC of a distributed 

system of n nodes is a vector of n logical clocks, one clock per process; a local “smallest 

possible values” copy of the global clock array is kept in each process, with the following 

rules for clock updates:

• Initially all clocks are zero.

• Each time a process experiences an internal event, it increments its 

own logical clock in the vector by one.

• Each time a process sends a message, it increments its own logical 

clock in the vector by one (as in the preceding bullet, but not twice 

for the same event) and then sends a copy of its own vector.

• Each time a process receives a message, it increments its own logical 

clock in the vector by one and updates each element in its vector 

by taking the maximum of the value in its own vector clock and the 

value in the vector in the received message (for every element).

You might notice that the operation of vector clocks is similar to the CRDT 

G-Counter.

VCs allow the partial causal ordering of events. A vector clock value for the event x is 

less than the value for y if and only if for all indices the items of the x 's clock are less or 

equal and, at least for one element, they are strictly smaller.
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Besides vector clocks, the other mechanisms to implement distributed partial 

ordering include Lamport Timestamps, Plausible Clocks, Interval Tree Clocks, Bloom 

Clocks, and others.

 Persistent Data Structures
To conclude this chapter, I wanted to say a few words about the role of the functional 

paradigm in synchronization and distributed computing. That’s no coincidence that it 

was mentioned several times in the description of different synchronization strategies: 

essentially, functional programming is about achieving good separation of concerns by 

splitting computations into independent referentially transparent units that are easier to 

reason about. Such an approach supports concurrency more natively than the standard 

imperative paradigm, although it might not be optimal computationally (at least, in the 

small). Yet, the gains obtained from parallelism and utilizing the scale of distributed 

computing may greatly outweigh this low-level inefficiency. So, with the advent of 

concurrent and distributed paradigms, functional programming gains more traction and 

adoption. Such ideas as MapReduce, STM, and message passing–based coordination 

originated in the functional programming world.

Another technology coming from the functional paradigm that is relevant to 

synchronization is purely functional data structures. Their principal property is 

that any modification doesn’t cause a destructive effect on the previous version of 

the structure, that is, with each change, a new version is created, while the old one 

may be preserved or discarded depending on the particular program requirements. 

This feature makes them very well suited for concurrent usage as the possibility of 

corruption due to incorrect operation order is removed, and such structures are also 

compatible with any kind of transactional behavior. The perceived inefficiency of 

constant copying, in many cases, may be mostly avoided by using structure sharing. 

So the actual cost of maintaining these data structures is not proportional to their 

size, but rather constant or, at worst, logarithmic in size. Another name for these 

structures is persistent data structures—contrast to “ephemeral” ones which operate 

by destructive modification.

Chapter 15  SynChronization



360

The basic persistent functional structure is, as we already mentioned in one 

of the preceding chapters, a Lisp list5 used as a stack. We have also seen the queue 

implemented with two stacks called a real-time queue. It is a purely functional data 

structure, as well. The other examples are mostly either list- or tree-based, that is, they 

also use the linked backbone structured in a certain way.

To illustrate once again how most persistent data structures operate, we can look at 

a zipper that may be considered a generalization of a real-time queue. It is a technique 

of representing a data structure so that it is convenient for writing programs that 

traverse the structure arbitrarily and update its contents in a purely functional manner, 

that is, without destructive operations. A list-zipper represents the entire list from the 

perspective of a specific location within it. It is a pair consisting of a recording of the 

reverse path from the list start to the current location and the tail of the list starting at 

the current location. In particular, the list-zipper of a list (1 2 3 4 5) when created will 

look like this: (() . (1 2 3 4 5)). As we traverse the list, it will change in the following 

manner:

• ((1) . (2 3 4 5))

• ((2 1) . (3 4 5))

• And so on

If we want to replace 3 with 0, the list-zipper will become ((2 1) . (0 4 5)), while 

the previous version will still persist. The new zipper will reuse the list (2 1) and create 

a new list by consing 0 to the front of the sublist (4 5). Consequently, the memory state 

after performing two movements and one update will look like this:

5 If we forbid the destructive rplaca/rplacd operations and their derivatives.
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It is apparent that each operation on the zipper (movement or modification) adds 

at most a single additional element. So its complexity is the same as for normal lists 

(although with larger constants).

Zippers can operate on any linked structures. A very similar structure for trees is 

called a finger tree. To create it from a normal tree, we need to put “fingers” to the right 

and left ends of the tree and transform it like a zipper. A finger is simply a point at which 

you can access part of a data structure.

Let’s consider the case of a 2-3 tree for which the finger approach was first 

developed. First, we restructure the entire tree and make the parents of the first and last 

children the two roots of our tree. This finger is composed of several layers that sit along 

the spine of the tree. Each layer of the finger tree has a prefix (on the left) and a suffix (on 

the right), as well as a link further down the spine. The prefix and suffix contain values in 

the finger tree: on the first level, they contain values (2-3 trees of depth 0); on the second 

level, they contain 2-3 trees of depth 1; on the third level, they contain 2-3 trees of depth 

2, and so on. This somewhat unusual property comes from the fact that the original 2-3 

tree was of uniform depth. The edges of the original 2-3 tree are now at the top of the 
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spine. The root of the 2-3 tree is now the very bottom element of the spine. As we go 

down the spine, we are traversing from the leaves to the root of the original 2-3 tree; as 

we go closer to the root, the prefix and suffix contain deeper and deeper subtrees of the 

original 2-3 tree.

Now, the principle of operation (traversal or modification) on the finger tree is the 

same as with the zipper: with each change, some elements are tossed from one side of 

the spine to the other, and the number of such elements remains within the O(log n) 

limits.

Finally, another data structure that is crucial for the efficient implementation 

of systems that rely solely on persistent data structures (like the Clojure language 

environment) is a hash-array mapped trie (HAMT). It may be used both in ephemeral 

and persistent modes to represent maps and sets with O(log n) access complexity.6 

HAMT is a special trie that uses the following two tricks:

• As an array-mapped trie, instead of storing pointers to the children 

nodes in a key-value indexed with their subkeys, it stores a list, an 

array of pointers, and a bitmap that is used to determine if the pointer 

is present and at what position in the array it resides. This feature 

requires limiting the number of possible subkeys (e.g., individual 

characters, which are the dominant use case for tries) to the length of 

a bitmap. The default length is 32, which is enough to represent the 

English alphabet. :)

• However, the hash feature gives us a number of benefits including 

limiting the limitations on the subkeys. Actually, in a HAMT, all 

values are stored at the leaves that have the same depth, while the 

subkeys are obtained by, first, hashing the key and then splitting the 

obtained hash into n -bit ranges (where n is usually also 5).7 Each 

subkey is used as an index into the bitmap: if the element at it is 1, the 

key is present. To calculate the index of a pointer in the pointer array, 

we need to perform popcount on the preceding bits.

6 …and a quite high algorithm base—usually 32—that means very shallow trees resulting in just a 
handful of hops even for quite large structures.

7 Except for the length of the leftmost range that depends on the number of bits in a hash. For 
instance, for a 32-bit hash, it may be 7, and the depth of the whole HAMT would be 5.
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With such a structure, all major operations will have O(log 5), that is, O(1) 

complexity. However, hash collisions are possible, so the hash-table–related collision 

considerations also apply to a HAMT. In other words, HAMTs are pretty similar to 

hash-tables, with the keys being split into parts and put into a trie. However, due to their 

tree-based nature, the memory footprints and the runtime performance of iteration and 

equality checking of the HAMTs lag behind array-based counterparts:

• Increased memory overhead as each internal node adds an overhead 

over a direct array-based encoding, so finding a small representation 

for internal nodes is crucial.

• On the other hand, HAMTs do not need expensive table resizing and 

do not waste (much) space on null references.

• Iteration is slower due to non-locality, while a hash-table uses a 

simple linear scan through a continuous array.

• Delete can cause the HAMT to deviate from the most compact 

representation (leave nodes with no children, in the tree).

• Equality checking can be expensive due to non-locality and the 

possibility of a degenerate structure due to deletes.

So what’s the value of this structure if it’s just a slightly less efficient hash-table? 

The difference is that a HAMT can not only be implemented both with destructive 

operations, but also, being a tree, it can be easily adapted to persistent mode with a usual 

path-copying trick that we have already seen.

Complexity estimations for persistent data structures use amortized analysis to prove 

acceptable performance (O(log n)). Another trick at play here is called scheduling, 

and it lies in properly planning heavy structure-rebuilding operations and splitting them 

into chunks to avoid having to execute some at a time when optimal complexity can’t 

be achieved. To learn more about these topics, read the seminal book by Chris Okasaki, 

Purely Functional Data Structures,8 that describes these methods in more detail and 

provides complexity analysis for various structures.

8 His thesis with the same title is freely available, but the book covers more and is more accessible.
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Besides, the immutability of persistent data structures enables additional 

optimizations that may be important in some scenarios:

• Native copy-on-write (COW) semantics that is required in some 

domains and algorithms.

• Objects can be easily memoized.

• Properties, such as hashes, sizes, and so on, can be precomputed.

The utility of persistent data structures is only gradually being realized and 

apprehended. Recently, some languages, including Clojure, were built around them 

as core structures. Moreover, some people even go as far as to claim that git is a purely 

functional data structure due to its principal reliance on structure-sharing persistent 

trees to store the data.

 Takeaways
We have covered a lot of ground in this chapter at a pretty high level. Obviously, you can 

go much deeper: whole books are written on the topics of concurrency and distributed 

computing.

Overall, concurrency can be approached from, at least, three different directions:

 1. There’s a low-level view: the means that should be provided 

by the underlying platforms to support concurrent operation. 

It includes the threading/process APIs, the atomic operation, 

synchronization, and networking primitives.

 2. Then, there’s an architecture viewpoint: what constraints our 

systems should satisfy and how to ensure that. At this level, the 

main distinctions are drawn: shared-memory vs. shared-nothing, 

centralized vs. peer-to-peer.

 3. And, last but not least, comes the algorithmic perspective. What 

data structures (as usual, they are, in fact, more important than 

the algorithms) can be used to satisfy the constraints in the 

most efficient way possible or to simplify the architecture? We 

have seen several examples of special-purpose ones that cater 

to the needs of a particular problem: lock-free data structures, 
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eventually consistent ones, and purely functional persistent 

ones. And then, there are some areas where special-purpose 

algorithms also play a major role. Their main purpose, there, is 

not so much computational efficiency (like we’re used to), but, 

mostly, correctness coupled with good enough efficiency.9 Mutual 

exclusion and distributed consensus algorithms are examples of 

such targeted algorithm families.

There’s a lot of room for further research in the realms of synchronization and, 

especially, distributed computation. It is unclear whether the new breakthroughs 

will come from our current computing paradigms or we’ll have to wait for the new 

tide and new approaches. Anyway, there’s still a chance to make a serious and lasting 

contribution to the field by developing new algorithm-related stuff. And not only that. 

Unlike other chapters, we haven’t talked much here about the tools that can help a 

developer of concurrent programs. The reason for that is, actually, an apparent lack of 

such tools, at least of widely adopted ones. Surely, the toolbox we have already studied in 

the previous chapters is applicable here, but an environment with multiple concurrent 

threads and, possibly, multiple address spaces adds new classes of issues and seriously 

complicates debugging. There are network service tools to collect metrics and execution 

traces, but none of them is tightly integrated into the development toolboxes, not to 

speak of their limited utility. So substantial pieces are still missing from the picture and 

are waiting to be filled.

9 The reason for that might be relative immaturity of this space, as well as its complexity, so 
that our knowledge of it hasn’t been developed enough to reach the stage when optimization 
becomes the main focus.

Chapter 15  SynChronization



367
© Vsevolod Domkin 2021 
V. Domkin, Programming Algorithms in Lisp, https://doi.org/10.1007/978-1-4842-6428-7

 Afterword

This book is, surely, not perfect. Hopefully, most of the mistakes in it were fixed with the 

help of many nice people who commented on the chapters as they were published on 

my blog.

Also, the book is terribly incomplete. Almost every chapter could be expanded by 

a factor of 2 or 3 with relevant details and concrete implementations of some of the 

general ideas that are presented, currently. But neither did I have the time to write 

those down nor, what’s much more important, anyone would have had the time to 

read them, in entirety. I believe I have put enough concrete examples with executable 

code to illustrate all the important concepts in each part. This is a great advantage of 

using Lisp for the book: the code is clear and compact enough to serve both to explain 

the algorithms and to permit testing them for real, in the REPL. The main compromise 

each author has to make is between brevity and completeness. I hope that I made the 

right choices in this regard, but, for sure, there’s much more to learn about every piece 

of technology mentioned. My hope is that the book lays a solid groundwork to facilitate 

further deeper exploration.

There are also a couple of topics that I would have liked to cover but couldn’t find 

a good place for them. Probabilistic data structures is the most important of them. Yet, 

they are not big enough to justify a separate chapter and, also, don’t fit into any of the 

existing chapters.

But enough with the whining. :) In fact, I’m quite satisfied with the end result as my 

main goal was to sufficiently develop the following key themes:

• The main one, obviously, was the description of all the important 

data structures and the associated algorithms.

• The next, also very important, was the demonstration of the 

essential tools that help in the development, testing, and 

verification of the produced algorithmic code: tracing, profiling, 

pretty-printing, and so on.

https://doi.org/10.1007/978-1-4842-6428-7#DOI
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• We have also discussed, when it was relevant, the real-world 

engineering considerations and constraints that influence the 

programs using our algorithms. And sometimes these constraints 

have more impact than the purely theoretical complexity 

calculations.

• Finally, in each chapter, I tried to present the practical use case of 

the algorithms we have studied, showing the broad variety of such 

applications. In fact, it spans all the different corners of the software 

landscape we’re used to. We have talked, albeit briefly, about such 

different domains as neural networks, plagiarism detection, web 

search, mapping, chess-playing, image compression, and many 

others.

There are a lot of books on algorithms, but I haven’t seen any that primarily aims 

to bridge the gap between theory and practice. This is one of the key distinctions of 

Programming Algorithms in Lisp. It is definitely not the best exposition of the theoretical 

ideas, but I hope that, instead, it builds sufficient understanding and skill for the 

common developer to start writing efficient algorithmic programs.

I wanted to finish the book with the following statement: programming craft is 

primarily about making choices. What approach to prefer, which algorithm to choose, 

what trade-offs to make. And, at the other level, what properties to give more priority: 

speed or safety, brevity or consistency, space or debuggability, clarity or conciseness, 

and so on and so forth. Lisp is one of the few languages that are “pro-choice.” Its authors 

understood very well the importance of freedom to make the critical choices, and it 

is felt in the design of the language. For instance, with the help of declaim, we can 

even signal our preferences to the compiler, to some extent, at the level of a single file 

or even an individual form. (declaim (optimize (speed 3) (safety 1) (debug 0) 

(compilation-speed 0))) will ask the compiler to produce the fastest possible code. 

Yes, this language will not guard you against poor choices as some others claim to do. 

Sometimes, you’re not wise enough to make a correct choice, but, much more often, 

every choice just has its pros and cons, so someone will approve of it and someone 

won’t. And that’s what freedom is about: ownership and responsibility. So use Lisp if 

you liked it. And if you prefer other languages, I’d urge you to still take advantage of the 

concept of freedom of choice in programming. Don’t be constrained by the prevailing 

paradigms, and try to use the best parts of all the different approaches you know…

Afterword
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